張習(xí)春 魯菲菲 呂育松 羅榮劍 焦桂愛 鄔亞文 唐紹清 胡培松 魏祥進(jìn)
(中國水稻研究所 水稻生物學(xué)國家重點(diǎn)實驗室,杭州 310006; #共同第一作者;*通訊聯(lián)系人,E-mail:weixiangjin@caas.cn)
兩個堊白突變體的鑒定及突變基因的圖位克隆
張習(xí)春#魯菲菲#呂育松 羅榮劍 焦桂愛 鄔亞文 唐紹清 胡培松 魏祥進(jìn)*
(中國水稻研究所 水稻生物學(xué)國家重點(diǎn)實驗室,杭州 310006;#共同第一作者;*通訊聯(lián)系人,E-mail:weixiangjin@caas.cn)
【目的】研究兩個水稻堊白突變體胚乳堊白的形成機(jī)制,為稻米品質(zhì)改良提供理論基礎(chǔ)?!痉椒ā恳詮闹谢?1的EMS突變體庫中篩選出的兩個穩(wěn)定遺傳的堊白突變體eb6、eb7為材料,對其進(jìn)行農(nóng)藝性狀、稻米理化性質(zhì)和遺傳學(xué)分析,并利用eb6與南京11衍生的F2群體對控制堊白的基因進(jìn)行圖位克隆。同時對候選基因的表達(dá)模式及淀粉合成相關(guān)基因在突變體及野生型中表達(dá)情況進(jìn)行了分析。【結(jié)果】與野生型相比,兩個突變體胚乳中央部位呈現(xiàn)白色且不透明,淀粉復(fù)合顆粒形狀不規(guī)則且排列疏松,而突變體胚乳邊緣部位與野生型無異,都為半透明狀,淀粉復(fù)合顆粒呈多面體且排列致密。相對于野生型,突變體 eb6、eb7成熟種子中的直鏈淀粉含量和膠稠度顯著降低,蛋白質(zhì)含量顯著升高。RVA譜分析顯示突變體淀粉黏滯性明顯低于野生型。同時,支鏈淀粉聚合度分析顯示突變體eb6中聚合度(DP)小于16的短鏈顯著增加,DP為16~23的中長鏈顯著減少。遺傳分析表明突變體 eb6、eb7胚乳堊白表型由單隱性核基因控制,并且它們?yōu)橐粚Φ任煌蛔凅w。利用突變體eb6與南京11雜交衍生的F2群體將突變體基因定位在第1染色體長臂上物理距離86.6 kb的區(qū)間內(nèi)。該區(qū)間包含22個開放閱讀框(ORF),其中ORF13編碼腺苷二磷酸葡萄糖焦磷酸化酶大亞基2(OsAGPL2)。序列分析發(fā)現(xiàn)eb6與eb7分別在OsAGPL2第3、第7外顯子上發(fā)生1個單堿基替換,并分別導(dǎo)致一個氨基酸替換。RT-PCR及原位雜交結(jié)果顯示,OsAGPL2主要在水稻發(fā)育中的籽粒中表達(dá)。同時OsAGPL2的突變導(dǎo)致了多個淀粉合成相關(guān)基因在水稻籽粒灌漿過程中的表達(dá)模式發(fā)生改變?!窘Y(jié)論】突變體 eb6、eb7籽粒胚乳出現(xiàn)嚴(yán)重堊白表型為OsAGPL2突變所致。本研究進(jìn)一步證明了OsAGPL2在調(diào)控水稻籽粒胚乳中淀粉的合成、淀粉復(fù)合顆粒的形成及稻米理化性質(zhì)的平衡中起著重要的作用。
堊白;淀粉合成;圖位克??;OsAGPL2;水稻
水稻是最主要的糧食作物之一,全世界超過一半的人口以水稻為主食。隨著人民生活水平的提高,對稻米品質(zhì)也提出了更高的要求,稻米品質(zhì)的優(yōu)劣直接關(guān)系到水稻品種在市場的認(rèn)可度和稻米的市場競爭力。堊白是影響稻米外觀品質(zhì)的最重要因素之一,嚴(yán)重堊白不僅影響稻米的外觀品質(zhì)、碾磨加工品質(zhì)和蒸煮食味品質(zhì),甚至?xí)绊懰咀蚜AV丶爱a(chǎn)量[1-4]。因此,對堊白形成機(jī)制的研究對于稻米品質(zhì)改良及生產(chǎn)都具有重要的指導(dǎo)意義。
堊白是稻米胚乳中白色不透明的部分,它是由于水稻籽粒灌漿不充分,胚乳中的淀粉體和蛋白質(zhì)體充實不良,相互間存在空隙引起光線散射而形成的一種光學(xué)特性[5-6]。在水稻籽粒中,淀粉占胚乳中干物質(zhì)含量的80%以上,因此,影響淀粉含量及顆粒形態(tài)的因素都可能導(dǎo)致堊白的發(fā)生。淀粉合成是一個相當(dāng)復(fù)雜的過程,首先光合作用合成的葡萄糖轉(zhuǎn)化為蔗糖,蔗糖通過維管束運(yùn)送到籽粒中并在蔗糖轉(zhuǎn)化酶(invertase)、蔗糖合酶(SuSy)、尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)及己糖激酶(hexokinase)等一系列酶的作用下最終轉(zhuǎn)化成葡萄糖-1-磷酸(G1P),而G1P則在腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)的作用下轉(zhuǎn)化為合成淀粉的底物腺苷二磷酸葡萄糖(ADPG)[7-11],在淀粉合酶(SS)、淀粉分支酶(SBE)及淀粉脫支酶(DBE)等的協(xié)同作用下最終合成直鏈淀粉和支鏈淀粉[12-14]。除了上述淀粉合成直接相關(guān)的酶外,還有很多調(diào)控子也間接影響水稻籽粒淀粉的合成[15-16]。無論是淀粉合成酶基因或調(diào)控子基因發(fā)生突變都會或多或少地影響到籽粒淀粉合成及其結(jié)構(gòu),最終導(dǎo)致堊白的發(fā)生;例如主要參與支鏈淀粉B2-B4鏈延伸的淀粉合成酶基因SSⅢa的突變使胚乳產(chǎn)生心白表型、同時粒重下降[17]。編碼ADPG轉(zhuǎn)運(yùn)蛋白的OsBT1突變后導(dǎo)致總淀粉含量下降,種子表現(xiàn)出堊白[18]??刂扑咀蚜装椎闹餍TL chalk5編碼液泡氫離子轉(zhuǎn)運(yùn)焦磷酸酶,通過調(diào)控細(xì)胞質(zhì)中氫離子的平衡來間接影響淀粉合成,Chalk5功能缺失導(dǎo)致直鏈淀粉含量下降,胚乳出現(xiàn)堊白[19]。
AGPase是淀粉合成過程中的限速酶,它催化G1P和ATP轉(zhuǎn)化為淀粉合成的底物ADPG。在大部分高等植物中,其活性受3-磷酸甘油酸變構(gòu)激活,被無機(jī)磷酸鹽抑制[20-22],其轉(zhuǎn)錄活性受到糖的促進(jìn),硝酸鹽和磷酸鹽的抑制[23-25]。研究表明,大部分原核生物中的AGPase是由單個亞基組成的同源四聚體(α4),而在植物中則是由大小亞基構(gòu)成異源四聚體(α2β2)[17,26-29],越來越多的試驗結(jié)果表明,大小亞基對于AGPase的催化活性以及變構(gòu)調(diào)節(jié)活性都是必要的[30-32]。水稻AGPase的小亞基由OsAGPS1和OsAGPS2編碼,大亞基分別由OsAGPL1、OsAGPL2、OsAGPL3、OsAGPL4編碼。OsAGPS1和OsAGPL1構(gòu)成了造粉體中的AGPase,主要在胚乳發(fā)育的早期大量表達(dá)。OsAGPS2具有可變剪接,分別編碼了葉綠體和胚乳細(xì)胞質(zhì)基質(zhì)中小亞基S2a和S2b,OsAGPL2在胚乳細(xì)胞的細(xì)胞質(zhì)基質(zhì)中表達(dá),OsAGPL3只在葉片中表達(dá),而OsAGPL4在種子和葉片中表達(dá)量較低[33-34]。已有研究表明,水稻AGPase活性約90%來自于細(xì)胞質(zhì)基質(zhì),僅有10%來自于質(zhì)體[35-37],而且細(xì)胞質(zhì)基質(zhì)中表達(dá)的小亞基S2b和大亞基L2能夠直接互作[38],因此OsAGPS2b和OsAGPL2對AGPase活性有決定作用。OsAGPL2在胚乳發(fā)育的中后期大量表達(dá),該時期是籽粒灌漿、淀粉合成、稻米品質(zhì)形成的重要時期,而且已報道的多個OsAGPL2的復(fù)等位突變體,無義和錯義突變都使籽粒皺縮,胚乳堊白[39-41],因此OsAGPL2對籽粒的發(fā)育和稻米品質(zhì)的形成具有重要的調(diào)控作用。
本研究從粳稻品種中花11的突變體庫中篩選出兩個胚乳中心部位白色不透明的突變體eb6、eb7,等位性測驗表明其相互等位。對該兩個突變體的形態(tài)學(xué)、稻米理化性質(zhì)進(jìn)行了詳細(xì)的描述與分析,通過圖位克隆發(fā)現(xiàn)這兩個堊白突變體都在OsAGPL2不同外顯子上發(fā)生單堿基替換,導(dǎo)致單個氨基酸的替換。本研究為揭示OsAGPL2調(diào)控水稻籽粒淀粉合成、堊白形成及籽粒發(fā)育提供了重要補(bǔ)充。
表1 突變體eb6基因精細(xì)定位所用分子標(biāo)記Table 1. Markers for fine mapping of eb6.
1.1實驗材料
堊白突變體eb6和eb7來源于粳稻品種中花11,經(jīng) EMS誘變、多代自交后,其籽粒堊白性狀穩(wěn)定遺傳,等位性測驗表明兩者為一對等位突變體。利用eb6與南京11、eb7與93-11所衍生的F2群體對突變體基因進(jìn)行遺傳分析;以eb6和南京11的F2群體對突變基因開展定位研究。所有材料均于正季種植于中國水稻研究所富陽實驗基地,種植和管理方法同大田生產(chǎn)。突變體和野生型完全成熟后,隨機(jī)選取 15株,測定千粒重、粒型等農(nóng)藝性狀。每組實驗重復(fù)3次,取平均值。
1.2種子灌漿過程中干物質(zhì)和游離糖含量測定
在開花盛期對野生型和突變體當(dāng)天開花的穎花作標(biāo)記,記為開花后0 d(DAF0)。以后分別收取開花后5、10、15、20、25、30 d種子,65℃下烘干至恒重,去殼、測定干物質(zhì)量。測定干物質(zhì)后的樣品研磨成粉,用于胚乳中蔗糖、葡萄糖、果糖含量測定,測定方法采用 Biosentec公司提供的葡萄糖-果糖-蔗糖試劑盒(酶法),用DU800UV分光光度計(Beckman)進(jìn)行吸光度測定。
1.3稻米理化性質(zhì)測定
總淀粉、直鏈淀粉、支鏈淀粉和膠稠度采用農(nóng)業(yè)部部頒標(biāo)準(zhǔn)NY/T83-1998[42]測定,蛋白質(zhì)含量參照GB/T5009.5-1995[43]指定方法,利用半微量凱氏定氮法進(jìn)行測定;脂肪按照GB/T5512-2008《糧油檢驗:糧食中粗脂肪含量測定》索氏提取法測定;支鏈淀粉聚合度測定參照Han等[44]的方法。
1.4胚乳橫截面掃描電鏡觀察
分別隨機(jī)選取突變體eb6、eb7及其野生型完整的干燥種子(去殼),用金屬刀片沿糙米籽粒中部外層劃一圈,然后掰斷,形成自然斷面,以導(dǎo)電膠粘著于樣品臺上,橫斷面向上,利用真空鍍膜儀對橫斷面鍍金,使用HitachiTM-1000型掃描電鏡對米粒橫截面的不同部位進(jìn)行觀察和拍照[45]。
1.5eb6突變體基因的精細(xì)定位
利用本實驗室保存的均勻分布于12條染色體的512對SSR引物(http://www.gramene.org/)對突變體eb6和南京11進(jìn)行多態(tài)性篩選,挑選出具有多態(tài)性的SSR引物144對。從突變體和南京11衍生的F2群體中挑選糙米表型為類似突變體的堊白胚乳的分離單株,提取DNA對突變基因進(jìn)行定位。首先利用340個F2堊白胚乳單株對突變體基因進(jìn)行初步定位,在初步定位標(biāo)記之間進(jìn)一步開發(fā)13對有多態(tài)的SSR和InDel標(biāo)記(表1),利用970個表現(xiàn)為胚乳堊白的隱性單株對突變基因進(jìn)行精細(xì)定位。DNA采用CTAB法提取[41]。使用PCR快速擴(kuò)增,結(jié)合非變性聚丙烯酰胺凝膠電泳及銀染方法定位目的基因。
1.6 RNA提取和基因表達(dá)分析
水稻根、莖、葉和幼穗中的總RNA采用Trizol法提取,種子的總RNA采用SDS-Trizol法[46]提取。以DNaseⅠ消化處理的總RNA為模板,Oligo(dT)為引物,反轉(zhuǎn)錄酶催化下合成cDNA第一鏈。利用實時熒光定量PCR分析目的基因在野生型不同組織中及淀粉合成相關(guān)基因在突變體和野生型籽粒灌漿過程中的表達(dá)情況,內(nèi)參基因為Ubiqutin(GenBank登錄號為AF184280)。熒光定量PCR體系(20 μL)如下:cDNA模板1 μL,2×SYBR qPCR Mix(TOYOBO)10 μL,上下游引物(10 μmol/L)各1 μL,ddH2O 7 μL。定量PCR儀為羅氏Light Cycle 480,擴(kuò)增程序如下:95℃下30 s,95℃下5 s,60℃下30 s,72℃下15 s,40個循環(huán)。以2-△△CT計算各基因的相對表達(dá)量。淀粉合成相關(guān)基因的表達(dá)引物見表2。
1.7原位雜交
取開花后9 d的籽粒,去殼后立即放入70% FAA固定液(乙醇70%,冰乙酸5%,甲醛10%,DEPC處理水15%)中固定,抽真空使樣品沉于底部。使用不同濃度梯度的無水乙醇溶液對樣品進(jìn)行脫水處理,之后利用二甲苯對樣品進(jìn)行透明化處理,最后使用石蠟對樣品進(jìn)行包埋,每天換臘2次,4 d后包埋定型。利用石蠟切片機(jī)將樣品切至8 μm厚的蠟帶并置于載玻片上于42℃展片,再利用二甲苯脫蠟、不同濃度的乙醇和DEPC處理水清洗、風(fēng)干后以42℃預(yù)熱好的蛋白酶K溶液孵育,之后乙醇進(jìn)行脫水、風(fēng)干,將提前制作好的雜交溶液加于載玻片,蓋上保鮮膜,42℃下雜交過夜(探針引物序列:ATG CAA TTC ATG ATG CCA TTGG和TAT CAG CAT CTG ATG TGA ACA C),之后進(jìn)行免疫反應(yīng),洗脫、顯色、脫水和封片,詳細(xì)步驟參照Li等[47]的方法。
表2 淀粉合成相關(guān)基因?qū)崟r熒光定量PCR分析所用的引物Table 2. Primers associated with starch synthesis used in RT-PCR.
2.1突變體eb6和eb7稻米的表型
突變體eb6和eb7成熟種子外觀與野生型中花11無明顯差異(圖1-A),但是突變體的糙米和精米兩端透明,中間部位白色不透明,表現(xiàn)為嚴(yán)重堊白,野生型種子的糙米與精米都具有較高透明度(圖1-B~C)。胚乳橫切面觀察發(fā)現(xiàn),野生型種子胚乳無論中央還是外圍部位均表現(xiàn)為透明,突變體eb6和eb7的胚乳外圍部位與野生型類似,但是中央部位表現(xiàn)出白色且不透明(圖1-D),因此突變體eb6和eb7稻米表現(xiàn)為嚴(yán)重心白。而eb6和eb7的粒長、粒寬、粒厚及千粒重與野生型無顯著差異(圖 1-E~H)。除此之外,兩個突變體的其他農(nóng)藝性狀,如株高、生育期等與野生型均無明顯差異。
2.2 突變體種子的胚乳淀粉顆粒結(jié)構(gòu)
對突變體和野生型成熟種子胚乳自然橫斷面進(jìn)行電鏡掃描發(fā)現(xiàn),野生型胚乳橫斷面中央和邊緣部位淀粉顆粒均呈現(xiàn)形狀規(guī)則的多面體結(jié)構(gòu),淀粉顆粒之間排列緊密(圖 2-A~C)。而突變體eb6、eb7胚乳中央部位淀粉顆粒呈球形或不規(guī)則形狀,淀粉顆粒排列疏松且相互間存在較大的間歇,同時,存在大量的小的淀粉顆粒(圖 2-D~G);不同于中央部位,2個突變體胚乳的邊緣部位淀粉粒排列整齊,致密規(guī)則,與野生型一致(圖2-F,I)。
2.3突變體與野生型理化性質(zhì)差異分析
籽粒灌漿過程中干物質(zhì)積累變化趨勢顯示,從開花后5 d(DAF5) 到種子成熟(DAF30),突變體eb7與野生型籽粒干物質(zhì)積累趨勢基本一致,最終籽粒干質(zhì)量無顯著差異(圖 3-A)。分析灌漿過程籽粒中游離糖含量的變化發(fā)現(xiàn),eb7與野生型在灌漿過程中蔗糖、葡萄糖和果糖的動態(tài)變化趨勢基本一致,但是DAF10至灌漿結(jié)束,eb7籽粒中的蔗糖含量高于野生型(圖3-B),而在開花至花后10 d期間,eb7籽粒中的葡萄糖含量和果糖含量顯著高于野生型,而花后10 d,eb7與野生型一致(圖3-C~D)。
圖1 突變體與野生型表型比較Fig. 1. Phenotypes of the mutants and the wild type(WT).
圖2 野生型和突變體胚乳中淀粉顆粒結(jié)構(gòu)觀察Fig. 2. Structure of starch granules in the endosperm of the wild type and the mutants.
圖3 突變體eb7與野生型灌漿過程中干物質(zhì)和游離糖含量比較Fig. 3. Content of free sugars and dry-weight during the grain filling stage in the grain of eb7 and wild type(WT).
圖4 突變體與野生型種子的品質(zhì)特性Fig. 4. Quality properties ofseedsofmutantsand wild type(WT).
稻米理化性質(zhì)分析表明,eb6、eb7的總淀粉和支鏈淀粉含量與野生型無顯著差異,而直鏈淀粉含量則顯著降低(圖 4-A~C)。同時,突變體蛋白質(zhì)含量顯著高于野生型,脂肪含量未發(fā)生顯著改變,但膠稠度顯著降低(圖 4-D~F)。此外,野生型和突變體的堿消值約為6.5,無顯著差異。RVA檢測顯示,兩個突變體的淀粉黏度下降,其中eb6下降更為顯著(圖4-G)。支鏈淀粉鏈長分析顯示,相比野生型,突變體eb7中聚合度(DP)小于16的短鏈顯著增加,DP為16~23的中長鏈顯著減少(圖4-H)。
表3 突變基因eb6的遺傳分析Table 3. Genetic analysis of the eb6.
圖5 突變體基因的精細(xì)定位及雜交F1表型Fig. 5. Fine mapping of eb6 and the appearance of hybrid seeds.
2.4突變體基因的精細(xì)定位
突變體eb6與秈稻品種南京11、93-11所衍生的F2群體胚乳表型發(fā)生分離,胚乳表現(xiàn)為透明的單株與表現(xiàn)為堊白的單株的株數(shù)分離比符合3∶1(χ2=1.72<χ20.05=3.84,χ2=1.17<χ20.05=3.84,表3),因此突變體eb6胚乳堊白表型符合單隱性核基因控制的遺傳規(guī)律。從eb6與南京11的F2群體中選取340株胚乳堊白單株初步將eb6突變體基因定位在第1染色體長臂標(biāo)記M4和M17之間。隨后擴(kuò)大定位群體至970株隱性單株,最終將eb6定位在標(biāo)記M10和M11之間約86.6 kb的染色體區(qū)間(圖5-A~B)。通過基因組注釋網(wǎng)站 (http://rapdblegacy.dna.affrc.go.jp/)分析發(fā)現(xiàn)該區(qū)間內(nèi)包含了22個開放閱讀框(ORF,圖5-C)。其中,ORF13基因編碼AGPase的大亞基L2(OsAGPL2)。序列分析發(fā)現(xiàn),eb6在OsAGPL2第3外顯子的堿基C替換為堿基T,導(dǎo)致編碼蛋白中一個異亮氨酸變成蘇氨酸,并且發(fā)現(xiàn)eb7也在OsAGPL2第7外顯子的堿基C突變?yōu)閴A基T,導(dǎo)致編碼蛋白中一個脯氨酸被替換為絲氨酸(圖5-D),因此推斷OsAGPL2的突變是導(dǎo)致eb6、eb7胚乳表現(xiàn)為堊白的原因。為了進(jìn)一步證明該結(jié)論,我們對突變體eb6、eb7進(jìn)行了等位性測驗,結(jié)果表明兩個突變體的正反交F1的籽粒胚乳均表現(xiàn)為嚴(yán)重堊白,胚乳淀粉復(fù)合顆粒均呈現(xiàn)不規(guī)則球形,排列疏松(圖5-E~H)。因此,我們認(rèn)為OsAGPL2的突變導(dǎo)致了eb6、eb7籽粒胚乳。
圖6 OsAGPL2相對表達(dá)量Fig. 6. Relative expression of OsAGPL2.
2.5組織表達(dá)及原位雜交
利用實時RT-PCR分析OsAGPL2的組織表達(dá)情況,結(jié)果顯示 OsAGPL2主要在發(fā)育中的種子中表達(dá),其中在開花后12 d左右的種子中表達(dá)量最大,在葉片和幼穗中有少量表達(dá)量,而在根和莖干中基本不表達(dá)(圖6-A)。對開花后9 d的籽粒進(jìn)行原位雜交結(jié)果也顯示,OsAGPL2在水稻籽粒胚乳和胚中都有大量表達(dá)(圖6-B、C)。
2.6淀粉合成相關(guān)基因的表達(dá)分析
突變體eb6、eb7直鏈淀粉含量和膠稠度下降,支鏈淀粉鏈長分布明顯改變,胚乳中淀粉顆粒結(jié)構(gòu)異常,因此,其胚乳中淀粉合成相關(guān)基因的表達(dá)可能受到一定程度的影響。分析淀粉合成相關(guān)基因在突變體eb7和野生型開花后6、9、12和15 d的胚乳中的表達(dá)情況,結(jié)果顯示,OsAGPL2的表達(dá)量在突變體中顯著上調(diào),在12 d左右表達(dá)量達(dá)到最高,腺苷葡萄腺苷葡萄糖焦磷酸化酶大亞基4(OsAGPL4)、糖焦磷酸化酶小亞基 2b(OsAGPS2b)和淀粉磷酸化酶L(OsPHOL)在eb7和野生型中的表達(dá)差異情況與 OsAGPL2類似;腺苷葡萄糖焦磷酸化酶大亞基 1(OsAGPL1)、腺苷葡萄糖焦磷酸化酶大亞基 3(OsAGPL3)、腺苷葡萄糖焦磷酸化酶小亞基2a(OsAGPS2a)、淀粉合成酶Ⅱa(OsSSⅡa)、淀粉異構(gòu)酶I(OsISAI)、淀粉分支酶Ⅰ(OsBEⅠ)和淀粉分支酶Ⅱ(OsBEⅡ)在籽粒灌漿早期即開花后 6 d在eb7中顯著下調(diào);淀粉合成酶Ⅰ(OsSSⅠ)、淀粉異構(gòu)酶Ⅱ(OsISAⅡ)和淀粉異構(gòu)酶 III(OsISAⅢ)于開花后6~12 d內(nèi)在eb7中顯著下調(diào);而在開花后6~15 d內(nèi),突變體eb7中顆粒淀粉合成酶Ⅰ(OsGBSSⅠ)的表達(dá)量始終高于野生型,腺苷葡萄糖焦磷酸化酶小亞基1(OsAGPS1)的表達(dá)量與野生型基本一致(圖7)。以上結(jié)果表明,OsAGPL2的突變影響了淀粉合成相關(guān)基因的正常表達(dá)。
圖7 野生型和突變體在種子發(fā)育過程胚乳中淀粉合成相關(guān)基因定量表達(dá)分析Fig. 7. Expression profiles of starch synthesis genes during seed development in the wild type(WT) and the mutants.
稻米品質(zhì)由外觀品質(zhì)、加工品質(zhì)、蒸煮品質(zhì)和食味品質(zhì)等構(gòu)成。外觀品質(zhì)主要包括粒形、透明度、堊白率及堊白度等。稻米堊白直接關(guān)系到稻米的市場受歡迎程度,還影響著稻米的食味品質(zhì)、加工品質(zhì)及營養(yǎng)品質(zhì)等。然而籽粒堊白的形成機(jī)制較為復(fù)雜,涉及到水稻源庫流的協(xié)調(diào),同時還存在基因型與環(huán)境型互作效應(yīng),因此堊白一直以來都是稻米品質(zhì)研究的重點(diǎn)與難點(diǎn)[1,3,4,48-49]。本研究鑒定了兩個嚴(yán)重心白突變體,等位性測驗發(fā)現(xiàn)其為一對等位突變體。電鏡掃描結(jié)果顯示突變體堊白部分淀粉復(fù)合顆粒呈現(xiàn)圓球形,小顆粒數(shù)目增多,復(fù)合顆粒之間存在較大的間歇,淀粉體顆粒之間結(jié)合不緊密而引起光線折射可能突變體是堊白形成的最直接的原因。稻米堊白突變不僅影響其外觀品質(zhì),通常還伴隨著系列的理化性質(zhì)的改變,如下調(diào)OsLTP36的表達(dá)量時胚乳會產(chǎn)生嚴(yán)重堊白,同時胚發(fā)育延遲,脂肪酸和蛋白含量減少,淀粉粒松散并且變小。粉質(zhì)突變體flo7相對于其野生型,flo7籽粒外圍表現(xiàn)為白粉狀,而里層為半透明狀,胚乳外圍復(fù)合淀粉粒排列松散,直鏈淀粉含量顯著降低,支鏈淀粉結(jié)構(gòu)變化[50]。本研究結(jié)果表明,相較于野生型,兩個突變體中蛋白質(zhì)含量顯著升高,直鏈淀粉含量顯著降低,支鏈淀粉構(gòu)成也發(fā)生改變,短鏈淀粉含量增加,中長鏈淀粉含量減少,膠稠度和最大黏稠度都減小(圖4)。綜上所述,堊白突變體eb6、eb7相對野生型不僅稻米的外觀品質(zhì)發(fā)生了改變,其稻米理化性質(zhì)也發(fā)生了系列的改變。因此,對堊白突變體eb6、eb7的研究有助于進(jìn)一步了解稻米外觀、蒸煮品質(zhì)及粒重的形成與調(diào)控機(jī)理。
圖位克隆結(jié)果證實eb6、eb7分別是AGPase的大亞基基因OsAGPL2的第3、第7個外顯子發(fā)生單堿基的替換導(dǎo)致單個氨基酸的改變(圖 5)。AGPase是淀粉合成過的關(guān)鍵酶,水稻中AGPase的酶活只有10%左右來自于質(zhì)體,90%左右來自于細(xì)胞質(zhì),活性高低主要由胚乳細(xì)胞質(zhì)同工酶所決定[35-37],而水稻胚乳細(xì)胞質(zhì)中的AGPase主要由OsAGPS2b和OsAGPL2構(gòu)成。組織表達(dá)和原位雜交的結(jié)果顯示OsAGPL2主要在發(fā)育中的籽粒中大量表達(dá)(圖6)。RT-PCR分析顯示在突變體中 OsAGPL2和OsAGPS2b表達(dá)顯著上調(diào),這可能是OsAGPL2的突變產(chǎn)生反饋?zhàn)饔檬沟耐蛔凅w中AGPase同工酶基因包括 OsAGPL2本身發(fā)生轉(zhuǎn)錄上調(diào)。同時其他淀粉合成相關(guān)的基因在突變體中的表達(dá)也受到了影響,如在開花后6~15 d內(nèi),eb7中OsGBSSⅠ的表達(dá)量始終高于野生型,而 OsSSⅠ、OsSSⅡa、OsBEⅠ、OsBEⅡ、OsISAⅠ、OsISAⅡ在籽粒灌漿前期的表達(dá)量顯著低于野生型。因此,OsAGPL2的突變體對淀粉合成相關(guān)基因的表達(dá)產(chǎn)生了重要的影響,AGPase活性的下降及其淀粉合成相關(guān)基因表達(dá)的改變最終導(dǎo)致了突變體籽粒胚乳中淀粉合成及淀粉復(fù)合顆粒發(fā)育異常。本研究結(jié)果進(jìn)一步拓展了對OsAGPL2功能的認(rèn)識,有助于更深入了解淀粉合成、堊白發(fā)生的機(jī)理。
[1] 江良榮,李義珍,王侯聰,黃育民. 稻米外觀品質(zhì)的研究進(jìn)展與分子改良策略. 分子植物育種,2003,1(2): 243-255.Jiang L R,Li Y Z,Wang H C,Huang Y M. Research progresses on appearance quality of rice grain and strategies for its molecular improvement. Mol Plant Breed,2003,1(2): 243-255.
[2] 江戶一雄,江幡守衞. 心白米.に する的研究第2.日本作物學(xué)會紀(jì)事,1959,28(1): 46-50.Nagato K,Ebata M. Studies on white-core rice kernel:II. On the physical properties of the kernel. Jpn J Crop Sci,1959,28(1): 46-50. (in Japanese)
[3] Cheng F M,Zhong L J,Wang F,Zhang G P.Differences in cooking and eating properties between chalky and translucent parts in rice grains . Food Chem,2005,90(1): 39-46.
[4] 程方民,鐘連進(jìn),舒慶堯,黃華宏,石春海,吳平.早秈水稻堊白部位淀粉的蒸煮食味品質(zhì)特征. 作物學(xué)報,2002,28(3): 363-368.Cheng F M,Zhong L J,Shu Q Y,Huang H H,Shi C H,Wu P. Studies on the cooking and eating quality properties in chalky milled grains of early indica rice.Acta Agron Sin,2002,28(3): 363-368. (in Chinese with English abstract)
[5] 田代亨,江幡守衞. 腹白米に する的研究第2 . 日本作物學(xué)會紀(jì)事,1974,43(1/2): 105 Tashiro T,Ebata M. Studies on white-belly rice kernel:II. Location on the panicle on occurrence of white-belly kernel. Jpn J Crop Sci,1974,43(1):105-110. (in Japanese)
[6] 程方民,胡東維,丁元樹. 人工控溫條件下稻米堊白形成變化及胚乳掃描結(jié)構(gòu)觀察. 中國水稻科學(xué),2000,14(2): 83-87.Cheng F M,Hu D W,Ding Y S. Dynamic change of chalkiness and observation of grain endosperm structure with scanning electron microscope under controlled temperature condition. Chin J Rice Sci,2000,14(2): 83-87. (in Chinese with English abstract)
[7] Invertases S A. Primary structures,functions,and roles in plant development and sucrose partitioning. Plant Physiol,1999,121(1): 1-8.
[8] Asano T,Kunieda N,Omura Y,Ibe H,Kawasaki T,Takano M,Sato M,Furuhashi H,Mujin T,Takaiwa F,Wu C Y,Tasa Y,Satozawa T,Sakamoto M,Shimada H. Rice SPK,a calmodulin-like domain protein kinase,is required for storage product accumulation during seed development phosphorylation of sucrose synthase is a possible factor. Plant Cell,2002,14(3): 619-628.
[9] Abe T,Niiyama H,Sasahara T. Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endosperm. Theor Appl Genet,2002,105(2/3): 216-221.
[10] Cho J I,Ryoo N,Ko S,Lee S K,Lee J,Jung K H,Lee Y H,Bhoo S H,Winderickx J,An G,Hahn T R,Jeon J S. Structure,expression,and functional analysis of the hexokinase gene family in rice(Oryza sativa L.).Planta,2006,224(3): 598-611.
[11] Kawagoe Y,Kubo A,Satoh H,Takaiwa F,Nakamura Y. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant J,2005,42(2): 164-174.
[12] Kubo A,Fujita N,Harada K,Matsuda T,Satoh H,Nakamura Y. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol,1999,121(2): 399-410.
[13] Hirose T,Terao T. A comprehensive expression analysis of the starch synthase gene family in rice(Oryza sativa L.) . Planta,2004,220(1): 9-16.
[14] Ball S,Guan H P,James M,Myers A,Keeling P,Mouille G,Buleon A,Colonna P,Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell,1996,86(3): 349-352.
[15] She K C,Kusano H,Koizumi K,Yamakawa H,Hakata M,Imamura T,Fukuda M,Naito N,Tsurumaki Y,Yaeshima M,Tsuge T,Matsumoto K,Kudoh M,Itoh E,Kikuchi S,Kishimoto N,Yazaki J,Ando T,Yano M,Aoyama T,Sasaki T,Satoh H,Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell,2010,22(10): 3280-3294.
[16] Wang Y H,Ren Y L,Liu X,Jiang L,Chen L M,Han X H,Jin M N,Liu S J,Liu F,Lü J,Zhou K N,Su N,Bao Y Q,Wan J M. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J,2010,64(5): 812-824.
[17] Ryoo N,Yu C,Park C S,Baik M Y,Park I M,Cho M H,Bhoo S H;An G,Hahn T R,Jeon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep,2007,26(7): 1083-1095.
[18] Cakir B,Shiraishi S,Tuncel A,Matsusaka H,Satoh R,Singh S,Crofts N,Hosaka Y,Fujita N,Hwang S K,Satoh H,Okita T W. Analysis of the rice ADP-glucose transporter(OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiol,2016,170(3): 1271-1283.
[19] Li Y,Fan C,Xing Y,Yun P,Luo L,Yan B,Peng B,Xie W,Wang G,Li X,Xiao J,Xu C,He Y. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet,2014,46(4): 398-404.
[20] Ballicora M A,Iiglesias A A,Preiss J. ADP-glucose pyrophosphorylase: A regulatory enzyme for plant starch synthesis. Photosyn Res,2004,79(1): 1-24.
[21] Lee S K,Hwang S K,Han M,Eom J S,Kang H G,Han Y,Choi S B,Cho M H,Bhoo S H,An G,Hahn T R,Okita T W,Jeon J S. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice(Oryza sativa L.). Plant Mol Biol,2007,65(4):531-556.
[22] Hwang S K,Okita T W. Understanding structurefunction relationship of ADP-glucose pyrophosphorylase by deciphering its mutant forms//Tetlow I.Starch: Origins,Structure and Metabolism. Vol.5.London UK: the Society for Experimental Biology,2012: 77-114.
[23] Harn C H,Bae J M,Lee S S,Liu J R. Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels. Plant amp; Cell Physiol,2000,41(11): 1235-1242.
[24] Akihiro T,Mizuno K,Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plantamp;Cell Physiol,2005,46(6):937-946.
[25] Nielsen T H,Krapp A,R?per-Schwarz U,Stitt M. The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant,Cell amp; Environ,1998,21(5):443-454.
[26] Haugen T H,Ishaque A,Preiss J. Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (EC 2.7. 7.27). J Biol Chem,1976,251(24): 880-7885.
[27] Okita T W,Nakata P A,Anderosin J M,Sowokinos J,Morell M,Preiss J. The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol,1990,93(2): 785-790.
[28] Smith-White B J,Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources.J Mol Evol,1992,34(5): 449-464.
[29] Villand P,Olsen O A,Kleczkowski L A. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol,1993,23(6): 1279-1284.
[30] Cross J M,Clancy M,Shaw J R,Okita T W,Hannah L C. Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol,2004,135(1): 137-144.
[31] Georgelis N,Braun E L,Shaw J R,Hannah L C. The two AGPase subunits evolve at different rates in angiosperms,yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria. Plant Cell,2007,19(5): 1458-1472.
[32] Hwang S K,Hamada S,Okita T W. Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit. Phytochemistry,2007,68(4): 464-477.
[33] Ohdan T,Francisco P B,Sawadat T,Hirose T,Terao T,Satoh H,Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot,2005,56(422): 3229-3244.
[34] Cook F R,Fahy B,Trafford K. A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield. Funct Plant Biol,2012,39(12): 1068-1078.
[35] Sikka V K,Choi S B,Kavakli I H,Sakulsingharoj C,Gupta S,Lto H,Okita T W. Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci,2001,161(3): 461-468.
[36] Burton R A,Johnson P E,Beckles D M,Fincher G B,Jenner H L,Naldrett M J,Naldrett M J,Denyer K.Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol,2002,130(3): 1464-1475.
[37] Denyer K,Dunlap F,Thorbj R T,Keeling P,Smith A M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol,1996,112(2): 779-785.
[38] Tang X J,Peng C,Zhang J,Cai Y,You X M,Kong F,Yan H G,Wang G X,Wang L,Jin J,Chen W W,Chen X G,Ma J,Wang P,Jiang L,Zhang W W,Wan J M.ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci,2016,249: 70-83.
[39] Tuncel A,Kawaguchi J,Ihara Y,Matsusaka H,Nishi A,Nakamura T,Kuhara S,Hirakawa H,Nakamura Y,Cakir B,Nagamine A,Okita T W,Hwang S K,Satoh H. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plantamp;Cell Physiol,2014,55(6): 1169-1183.
[40] Zhang D P,Wu J G,Zhang Y J,Shi C H. Phenotypic and candidate gene analysis of a new floury endosperm mutant (osagpl2-3) in rice. Plant Mol Biol Rep,2012,30(6): 1303-1312.
[41] Masahiro Y,Isono Y,Satoh H,Omura T. Gene analysis of sugary and shrunken mutants of rice,Oryza sativa L. Jpn J Breeding,1984,34(1): 43-49.
[42] 中華人民共和國農(nóng)業(yè)部.米質(zhì)測定方法NY 147-88.北京: 中國標(biāo)準(zhǔn)出版社,2002.Ministry of Agriculture of the People’s Republic of China. Detection Method for Rice Quality NY 147-88. Beijing: China Standard Publishing House,2002.(in Chinese)
[43] 孫成效,段彬伍,謝黎虹,陳能. 利用近紅外透射光譜技術(shù)同步測定糙米的多項品質(zhì)指標(biāo)初報. 中國水稻科學(xué),2006,20(4): 451-454.Sun C X,Duan B W,Xie L H,Chen N. Determination of several quality characteristics of brown rice by near infrared transmission spectroscopy. Chin J Rice Sci,2006,20(4): 451-454. (in Chinese with English abstract)
[44] Han X H,Wang Y H,Liu X,Jiang L,Ren Y L,Liu F,Peng C,Li J J,Jin X M,Wu F Q,Wang J L,Guo X P,Zhang X,Cheng Z J,Wan J M. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot,2012,63: 121-130.
[45] 康海岐,常紅葉. 雜交水稻主要親本材料的堊白性狀及其胚乳結(jié)構(gòu)電鏡掃描. 中國農(nóng)學(xué)通報,2007,23(4): 180-185.Kang H Q,Chang H Y. Study on chalkiness characters and endosperm structures of the main parents’ kernel of hybrid rice. Chin Agric Sci Bull,2007,23(4):180-185. (in Chinese with English abstract)
[46] Li Z W,Trick H N. Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch . BioTechniques,2005,38(6): 872-876.
[47] Bahaji A,Li J,Sánchez-López á M,Fernández E B,Mu?oz F J,Ovecka M,Almagro G,Montero M,Ezquer I,Etxeberria E,Romero J P. Starch biosynthesis,its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv,2014,32(1): 87-106.
[48] 劉霞,付艷蘋,朱曄榮,李艷萍,王勇. 水稻堊白形成的生理和遺傳機(jī)制. 植物生理學(xué)通訊,2007,43(3):569-574.Liu X,Fu Y P,Zhu Y R,Li Y P,Wang Y.Physiological and genetic mechanism of rice chalkiness formation. Plant Physoil Commun,2007,43(3): 569-574. (in Chinese)
[49] 周立軍,江玲,翟虎渠,萬建民. 水稻堊白的研究現(xiàn)狀與改良策略. 遺傳,2009,31(6): 563-572.Zhou L J,Jiang L,Zhai H Q,Wan J M. Current status and strategies for improvement of rice grain chalkiness.Hereditas(Beijing),2009,31(6): 563-572. (in Chinese with English abstract)
[50] Zhang L,Ren Y,Lu B,Yang C Y,Feng Z M,Liu Z,Chen J,Ma W W,Wang Y,Yu X W,Wang Y L,Zhang W W,Wang Y H,Liu S J,Wu F Q,Zhang X,Guo X P,Bao Y Q,Jiang L,Wan J M. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. J Exp Bot,2016,67(3): 633-647.
Identification and Gene Mapping-based Clone of Two Chalkiness Mutants in Rice
ZHANG Xichun#,LU Feifei#,Lü Yusong,LUO Rongjian,JIAO Guiai,WU Yawen,TANG Shaoqing,HU Peisong,WEI Xiangjin*
(State Key Laboratory of Rice Biology,China National Rice Research Institute,Hangzhou 310006,China; # These authors contributed equally to this work;*Corresponding author,E-mail: weixiangjin@caas.cn)
【Objective】Chalkiness affects the appearance,processing,cooking and eating quality of rice. The objective of the study was to uncover the genetic mechanism of two rice chalky endosperm mutants for improving rice quality.【Method】Two chalkiness mutants,eb6 and eb7 were identified from EMS-treated japonica rice Zhonghua 11. The agronomic traits and starch physicochemical properties of the two mutants were investigated. Genetic analysis and map-based cloning for the gene responsible for the eb6 and eb7 phenotypes were carried out with the F2population derived from the cross between eb6 and Nanjing 11,eb7 and 93-11. Furthermore,the expression pattern of candidate gene and the transcript levels of genes related to starch synthase in mutants and wild type(WT) were also investigated.【Result】The central parts of them were white and opaque,with loosely and irregularly arranged and smaller compound starch granules(SGs). Whereas,the marginal part of endosperms of WT and mutants and the central part of WT were filled with densely packed,similar sized polyhedral SGs. The amylose content and gel consistency of mutants were dramatically lower than those of WT. Simultaneously,the proportions of chains with degree of polymerization(DP) of amylopectin in the range from 6 to 16 were significantly increased,whereas the proportion of chains with DP in the range from 16 to 23 was noticeably decreased in the eb6. Genetic analysis showed that a single recessive gene controls chalkiness phenotype of mutants. Based on the F2 population derived from the cross between eb6 and Nanjing 11,the gene was finally narrowed down to a 86.6 kb physical region on chromosome 1. Within this region,one open reading frame(LOC_Os01g44220) has been annotated as large subunit of ADP-glucose pyrophosphorylase gene(OsAGPL2).Sequence analysis revealed that there was only one a nucleotide substitution in the 3rd exon of eb6 and the 7th exon of eb7,which resulted in an amino acid replacement in OsAGPL2,respectively. The qRT-PCR and in-situ hybridization assay indicated that OsAGPL2 was mainly expressed in the developing grains. Moreover,the expression patterns of many genes involved starch synthesis were intensively influenced in mutants.【Conclusion】OsAGPL2 indisputably corresponds to endosperm chalkiness of eb6 and eb7. And all results suggest that OsAGPL2 plays an important role in starch synthesis,the formation of compound starch granules and rice quality.
chalkiness; starch synthesis; mapping-based cloning; OsAGPL2; rice
10.16819/j.1001-7216.2017.7003
2017-01-06;修改稿收到日期:2017-02-13。
國家重點(diǎn)研發(fā)計劃資助項目(2016YFD0101801);國家自然科學(xué)基金資助項目(31471472,31301303,31501280)。
Q343.5;S511.033
A
1001-7216(2017)06-0568-12