王東祥,凌祥,彭浩,崔政偉,楊新俊
(1江南大學(xué)機(jī)械工程學(xué)院,江蘇省食品先進(jìn)制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2南京工業(yè)大學(xué)江蘇省過程強(qiáng)化與新能源裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 211800)
轉(zhuǎn)盤邊緣黏性薄液膜不同破碎模式臨界轉(zhuǎn)變特性
王東祥1,2,凌祥2,彭浩2,崔政偉1,楊新俊1,2
(1江南大學(xué)機(jī)械工程學(xué)院,江蘇省食品先進(jìn)制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2南京工業(yè)大學(xué)江蘇省過程強(qiáng)化與新能源裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 211800)
液膜在離心粒化器邊緣的破碎模式直接決定了霧化后的液滴形態(tài)和尺寸分布,是影響物料品質(zhì)的關(guān)鍵因素。針對轉(zhuǎn)盤粒化器,提出臨界轉(zhuǎn)變系數(shù)表征液膜由膜狀向纖維狀破碎的轉(zhuǎn)變條件,并拓展至其他破碎模式,建立了滴狀向纖維狀、完全纖維狀及纖維狀向膜狀破碎轉(zhuǎn)變的臨界關(guān)系。結(jié)果表明,轉(zhuǎn)盤表面潤濕性對于液膜呈滴狀以及滴狀向纖維狀模式轉(zhuǎn)變影響顯著,未完全潤濕導(dǎo)致臨界流量存在一定的隨機(jī)性,轉(zhuǎn)盤直徑與臨界流量間無明確規(guī)律;而完全纖維狀以及膜狀時,大直徑轉(zhuǎn)盤臨界流量明顯升高。轉(zhuǎn)速、流量、密度及黏度的提高,破碎模式趨向于膜狀;而增大表面張力,即使對于較大流量和轉(zhuǎn)速,液膜也能維持纖維狀或滴狀模式。調(diào)整轉(zhuǎn)盤直徑將引起表面張力與離心力同時變化,若未打破平衡,其破碎模式不會改變。研究結(jié)果為轉(zhuǎn)盤粒化器的設(shè)計與優(yōu)化提供了可借鑒的理論與應(yīng)用基礎(chǔ)。
流體力學(xué);模型;實(shí)驗(yàn)驗(yàn)證;破碎模式;轉(zhuǎn)盤;轉(zhuǎn)變特性
黏性薄液膜經(jīng)離心?;黛F化并以液滴形式進(jìn)入氣相可顯著改善相間接觸與混合,提高熱質(zhì)傳遞和反應(yīng)速率,廣泛用于干燥[1-2]、金屬或合金粉體制備[3-5]以及熔渣干法熱回收[6-13]等領(lǐng)域。而流體在粒化器邊緣的破碎模式直接決定了霧化后的液滴形態(tài)和尺寸分布,進(jìn)而作用于其凝固換熱與物相演變,是影響最終物料品質(zhì)的關(guān)鍵因素[14-17]。
轉(zhuǎn)盤和轉(zhuǎn)杯離心粒化器目前應(yīng)用相對廣泛,Hinze等[18]最早探索轉(zhuǎn)杯邊緣液膜的破碎模式,研究發(fā)現(xiàn)若?;鞅砻嫱耆珴櫇?,受?;鹘Y(jié)構(gòu)、轉(zhuǎn)速以及介質(zhì)物性和流量影響,液膜在轉(zhuǎn)杯邊緣可呈滴狀、纖維狀或膜狀破碎。以此為基礎(chǔ),F(xiàn)raser等[19-20]、Champagne 等[21]和 Liu 等[22-23]分別調(diào)整轉(zhuǎn)杯直徑、傾角和杯深等結(jié)構(gòu)參數(shù),證實(shí)了3種模式的存在,并建立了臨界轉(zhuǎn)變條件經(jīng)驗(yàn)?zāi)P?。但目前針對轉(zhuǎn)盤液膜破碎模式的研究仍相對缺乏,Matsumoto等[24]只針對滴狀與纖維狀模式開展研究,Kayano等[25]也僅研究了纖維狀向膜狀轉(zhuǎn)變的臨界條件。部分學(xué)者認(rèn)為轉(zhuǎn)盤相比轉(zhuǎn)杯,液膜具有較大切向速度滑移,需要更大轉(zhuǎn)速來達(dá)到相同霧化效果。且液膜在小流量條件下很難完全潤濕整個轉(zhuǎn)盤表面,會影響其破碎行為。而Ahmed等[26-27]在相同條件下對比了轉(zhuǎn)盤和轉(zhuǎn)杯制備的顆粒Sauter平均直徑和顆粒速度,研究發(fā)現(xiàn)相比轉(zhuǎn)杯以及一些更為復(fù)雜的派生結(jié)構(gòu),不同?;鳙@得的顆粒平均直徑和速度均在普通轉(zhuǎn)盤的95%的置信區(qū)間內(nèi),普通轉(zhuǎn)盤的切向速度滑移在33%左右,而某些轉(zhuǎn)杯結(jié)構(gòu)達(dá)到了44%。因此,普通轉(zhuǎn)盤完全能達(dá)到相同的霧化效果,慣性力更低、節(jié)能且穩(wěn)定性更高。
液膜在轉(zhuǎn)盤邊緣的破碎行為是液相與空氣相相界面的失穩(wěn)問題,不同模式相互轉(zhuǎn)變的影響機(jī)理不盡相同,目前主要采用量綱分析法[18-26],且現(xiàn)有研究集中于轉(zhuǎn)杯。本文針對轉(zhuǎn)盤,以液膜呈膜狀破碎時徑向慣性力與自由邊界表面張力的相互關(guān)系為基礎(chǔ),提出臨界轉(zhuǎn)變系數(shù)表征膜狀向纖維狀轉(zhuǎn)變的臨界條件,構(gòu)建不同模式相互轉(zhuǎn)變的臨界特性關(guān)系式,以揭示臨界轉(zhuǎn)變特性的變化規(guī)律,為轉(zhuǎn)盤?;鞯脑O(shè)計與優(yōu)化提供可借鑒的理論與應(yīng)用基礎(chǔ)。
完全膜狀破碎時,慣性力引起液膜自由邊界沿徑向向外延伸 a,而表面張力則驅(qū)使其向內(nèi)收縮。準(zhǔn)穩(wěn)態(tài)時,慣性力徑向分量 Fi與表面張力 Fs相平衡。若Fs>Fi,a趨于0,液膜向轉(zhuǎn)盤邊緣靠攏,膜狀破碎轉(zhuǎn)變?yōu)槔w維狀,據(jù)此可建立轉(zhuǎn)變的臨界條件。假設(shè)介質(zhì)以恒定流量沿轉(zhuǎn)盤軸心連續(xù)澆注,液膜呈旋轉(zhuǎn)周期性流動??紤]一無限大轉(zhuǎn)盤,半徑為R,水平放置,以恒定角速度ω沿z軸旋轉(zhuǎn),則徑向液膜厚度分布如圖1所示,液膜急劇凸起部位為水躍半徑[28]。
圖1 轉(zhuǎn)盤表面液膜厚度沿徑向的分布Fig. 1 Liquid film thickness distribution on spinning disk
假設(shè)液膜的自由邊界形狀與其徑向速度u沿z向的分布一致,且邊界曲率半徑r滿足
考慮一不可壓、無限小流體微團(tuán)位于液膜邊緣附近,忽略重力(ω2r?g),則Fi可以表示為
式中,ρ為密度,kg·m-3;z0為液膜厚度,m;ω為轉(zhuǎn)速,rad·s-1;v和u為液膜切向與徑向速度,m·s-1。
液膜自由邊界表面張力為
式中,σ為表面張力,N·m-1;R1為液膜自由邊界第1曲率半徑,m,采用式(1)進(jìn)行計算;R2和 ds分別為第2曲率半徑以及弧長微分,可表示為
為忽略量綱的影響,對式(2)和式(3)進(jìn)行量綱1化處理。假設(shè)量綱1徑向、切向速度分別為?、,量綱1液膜厚度為,且分別表示為[29-30]
式中,υ為運(yùn)動黏度,m2·s-1。式(2)、式(3)化為
定義臨界轉(zhuǎn)變系數(shù)CT為慣性力的徑向分量Fi與表面張力Fs的比值,化簡后CT可表示為
式中,We為 Weber數(shù),We=ρR3ω2/σ,Re為Reynolds數(shù),Re=R2ω/v。由式(9)可知,當(dāng)CT小于某一常數(shù)時,膜狀破碎開始轉(zhuǎn)變?yōu)槔w維狀破碎,反之呈膜狀破碎。雖然建立CT與量綱1數(shù)群We、Re以及的關(guān)聯(lián)式,即可實(shí)現(xiàn)液膜破碎模式的準(zhǔn)確預(yù)測,然而直接采用建立的預(yù)測模型適用范圍十分有限。例如當(dāng)調(diào)整流量后,相應(yīng)發(fā)生改變,雖然最直觀的參數(shù)是流量,但需要通過流量得到的具體數(shù)值后,才能預(yù)測破碎模式。因此,關(guān)注轉(zhuǎn)變條件與宏觀操作參數(shù)間的直接關(guān)系更有實(shí)際意義。液膜的體積流量Q可以表示為
結(jié)合式(6)可將式(10)化為
結(jié)合式(9)與式(11)可以看出,CT可與We、Re以及直接關(guān)聯(lián),即
雖然上述分析是基于膜狀向纖維狀破碎轉(zhuǎn)變,但不失一般性,所有破碎模式的轉(zhuǎn)變條件均可近似認(rèn)為與上述量綱1數(shù)群相關(guān),統(tǒng)一為式(12)。
給定轉(zhuǎn)盤結(jié)構(gòu)和介質(zhì),調(diào)整轉(zhuǎn)速ω與介質(zhì)流量Q即可建立不同模式相互轉(zhuǎn)變的臨界條件,如圖2所示,介質(zhì)由儲罐經(jīng)流量計、控制閥后澆注至轉(zhuǎn)盤軸心,后經(jīng)收集槽輸送至儲罐循環(huán)使用。澆注管直徑DN=8 mm,管口距轉(zhuǎn)盤上表面恒定5 mm。轉(zhuǎn)盤材料AISI 304不銹鋼,直徑D分別為50 mm和100 mm,盤厚4 mm;機(jī)械拋光,表面粗糙度Ra=1.60 μm,同心度0.025 mm。介質(zhì)為甘油水溶液(表1),流量 0~100 ml·s-1,轉(zhuǎn)速 62.8~314.2 rad·s-1。給定轉(zhuǎn)速,逐步調(diào)節(jié)介質(zhì)流量,記錄不同模式相互轉(zhuǎn)變的臨界體積流量和破碎形態(tài)。流量計測量不確定度為 1.5%,采用 PT100鉑熱電阻測量環(huán)境溫度,不確定度為±0.2℃,轉(zhuǎn)速測量不確定度為±1%,可估計測量的不確定度為5.52%。
圖2 實(shí)驗(yàn)系統(tǒng)流程Fig. 2 Schematic diagram of experimental facility
表1 所選介質(zhì)物性參數(shù)(10?C)Table 1 Physical properties of selected working fluids
圖3為不同流量下WF3介質(zhì)液膜破碎模式演化過程,D=50 mm,ω=157.1 rad·s-1。如圖3(a)所示,當(dāng)Q<0.82 ml·s-1時,液膜直接破碎形成液滴,呈滴狀破碎。隨著Q增至1.44 ml·s-1,滴狀開始向纖維狀轉(zhuǎn)變,呈混合破碎模式,纖維隨機(jī)分布且不規(guī)則,液滴主要來源于液柱斷裂,少部分由滴狀破碎產(chǎn)生[圖3(b)]。滴狀向纖維狀轉(zhuǎn)變時,轉(zhuǎn)盤表面處于未完全潤濕狀態(tài),其破碎形態(tài)受潤濕性影響。當(dāng)Q達(dá)到1.94 ml·s-1時,滴狀完全過渡至纖維狀,液滴均由纖維斷裂形成[圖3(c)]。隨著Q增加,纖維數(shù)量繼續(xù)上升,當(dāng)Q>3.24 ml·s-1時[圖3(d)],纖維數(shù)量已不再隨流量改變,間距達(dá)到最小,呈完全纖維狀模式,?;^程趨于穩(wěn)定,粒徑分布相對較窄。如圖3(e)所示,當(dāng)Q增至12.25 ml·s-1時,相鄰纖維開始融合,膜狀破碎首次出現(xiàn)。當(dāng)Q達(dá)到16.40 ml·s-1,纖維消失,呈完全膜狀形態(tài),液滴主要有兩種生成模式,部分直接由液膜破碎形成;主要經(jīng)一次破碎形成纖維,纖維二次破碎形成液滴[圖3(f)]。
圖3 破碎模式演化過程(WF3)Fig. 3 Breakup mode of liquid film for working fluid of WF3 at D=50 mm and ω=157.1 rad·s-1
圖4 為不同轉(zhuǎn)速下滴狀向纖維狀轉(zhuǎn)變的臨界體積流量。隨著 ω 從 62.8 rad·s-1增至 314.2 rad·s-1,臨界流量先急劇下降,而后趨于穩(wěn)定。轉(zhuǎn)速低時,較大流量下也能維持滴狀破碎。相同轉(zhuǎn)速時,黏度的提高導(dǎo)致臨界體積流量有所降低,且轉(zhuǎn)速較低時尤其明顯,但隨著轉(zhuǎn)速的升高,黏度的影響減小。當(dāng)ω>200 rad·s-1時,臨界體積流量隨轉(zhuǎn)速的上升趨于穩(wěn)定,這種現(xiàn)象在較大轉(zhuǎn)盤直徑時更為明顯。如圖4(b)所示,ω=219.9 rad·s-1時,3種介質(zhì)的臨界體積流量分別為1.23、0.92、0.56 ml·s-1,而當(dāng)ω增至314.2 rad·s-1時,臨界體積流量僅分別降至 0.79、0.48、0.27 ml·s-1。
圖5反映了轉(zhuǎn)盤直徑對滴狀向纖維狀模式轉(zhuǎn)變臨界流量的影響??梢钥闯觯笾睆睫D(zhuǎn)盤的臨界流量并不一定就高,相反某些轉(zhuǎn)速下可能還會降低。結(jié)合圖4和圖5可以看出,臨界流量的測量誤差范圍與介質(zhì)黏度有關(guān),黏度越高,誤差范圍越小;且隨著轉(zhuǎn)速升高,誤差范圍有所減少,說明較低轉(zhuǎn)速下滴狀向纖維狀破碎轉(zhuǎn)變的臨界流量存在一定的隨機(jī)性。原因主要是滴狀向纖維狀破碎轉(zhuǎn)變時,臨界流量一般較低,轉(zhuǎn)盤表面并處于未完全潤濕狀態(tài),且低轉(zhuǎn)速時尤其明顯,導(dǎo)致滴狀向纖維狀模式的轉(zhuǎn)變存在一定的隨機(jī)性。結(jié)合式(12),滴狀破碎向纖維狀破碎轉(zhuǎn)變的臨界條件(圖6)為
圖4 不同轉(zhuǎn)速下滴狀向纖維狀破碎轉(zhuǎn)變的臨界體積流量Fig. 4 Critical volume flow rate for transition from direct drop to ligament formation mode for different speeds
圖5 轉(zhuǎn)盤直徑對滴狀向纖維狀破碎轉(zhuǎn)變臨界體積流量的影響Fig. 5 Effect of disk diameter on critical volume flow rate for transition from direct drop to ligament formation mode
圖6 滴狀向纖維狀破碎臨界轉(zhuǎn)變條件Fig. 6 Transition curve from direct drop to ligament formation mode
研究表明[9],液膜呈完全纖維狀破碎時,纖維數(shù)量僅與介質(zhì)物性、轉(zhuǎn)盤結(jié)構(gòu)與轉(zhuǎn)速有關(guān)。圖7為不同轉(zhuǎn)速下完全纖維狀破碎的臨界體積流量。與滴狀向纖維狀破碎的轉(zhuǎn)變條件類似,隨著 ω從 62.8 rad·s-1增大至 314.2 rad·s-1,完全纖維狀破碎的臨界流量先急劇下降,而后趨于穩(wěn)定。轉(zhuǎn)速相同時,介質(zhì)黏度的影響主要體現(xiàn)在低轉(zhuǎn)速區(qū),而高轉(zhuǎn)速時其影響有所減小。然而液膜呈完全纖維狀破碎時,轉(zhuǎn)盤表面已經(jīng)完全處于潤濕狀態(tài),大直徑轉(zhuǎn)盤的臨界流量明顯升高。以WF2介質(zhì)為例,對于轉(zhuǎn)速ω=157.1 rad·s-1,當(dāng)轉(zhuǎn)盤直徑由0.05 m增加至0.1 m時,其臨界體積流量由 6.8 ml·s-1增大至 7.1 ml·s-1。結(jié)合圖7可以看出,介質(zhì)黏度越高,完全纖維狀破碎的臨界流量的誤差范圍越小,且隨轉(zhuǎn)速升高,誤差范圍總體呈下降趨勢。需要注意的是,完全纖維狀破碎時,介質(zhì)流量不會改變纖維的數(shù)量或者間距,臨界流量存在一個區(qū)間。因此相比滴狀向纖維狀轉(zhuǎn)變,圖7、圖8中的臨界流量誤差范圍較大,且較低轉(zhuǎn)速時誤差范圍有所擴(kuò)大。結(jié)合式(12),可獲得完全纖維狀破碎的臨界條件(圖8)為
圖7 不同轉(zhuǎn)速下完全纖維狀破碎的臨界體積流量Fig. 7 Critical volume flow rate for fully-ligament formation mode for different speeds
圖8 完全纖維狀破碎臨界轉(zhuǎn)變條件Fig. 8 Transition curve for fully-ligament formation mode
圖9反映了纖維狀向膜狀破碎轉(zhuǎn)變的臨界體積流量與轉(zhuǎn)盤轉(zhuǎn)速的關(guān)系。隨著轉(zhuǎn)速增大,其臨界流量先急劇下降,而后下降趨勢趨于平穩(wěn)。黏度的上升則導(dǎo)致其臨界流量有所下降,以轉(zhuǎn)盤直徑為D=0.05 m,實(shí)驗(yàn)轉(zhuǎn)速157.1 rad·s-1為例,隨著介質(zhì)黏度由 0.0013 Pa·s(WF1)增加至 0.0175 Pa·s(WF3),臨界流量由 21.56 ml·s-1降至 12.25 ml·s-1。與完全纖維狀破碎類似,大直徑轉(zhuǎn)盤的臨界流量明顯提高。以轉(zhuǎn)速157.1 rad·s-1為例,對于WF1來說,當(dāng)轉(zhuǎn)盤直徑由0.05 m增加至0.1 m時,其臨界體積流量由 21.56 ml·s-1增大至 31.77 ml·s-1,對于 WF2,則從14.23 ml·s-1增大至了22.87 ml·s-1,而對于WF3,則從 12.25 ml·s-1增大至了 17.65 ml·s-1。從圖9 可以看出,黏度越高,誤差范圍越小,且隨轉(zhuǎn)速升高,誤差范圍總體微弱縮小。研究表明,纖維狀向膜狀破碎模式的轉(zhuǎn)變由相鄰纖維的融合開始,且存在一定的隨機(jī)性,因此高轉(zhuǎn)速下的臨界流量的誤差范圍明顯高于上述兩種轉(zhuǎn)變模式。結(jié)合式(12),可獲得纖維狀破碎向膜狀破碎轉(zhuǎn)變的臨界條件(圖10)為
圖9 不同轉(zhuǎn)速下完全纖維狀向膜狀轉(zhuǎn)變的臨界體積流量Fig. 9 Critical volume flow rate for ligament to sheet mode for different speeds
圖10 纖維狀破碎向膜狀破碎轉(zhuǎn)變的臨界條件Fig. 10 Transition curve from to ligament to sheet formation mode
綜上可知,提高轉(zhuǎn)速或介質(zhì)流量導(dǎo)致破碎模式向膜狀靠近,而介質(zhì)物性(如密度、黏度與表面張力)對于破碎模式的轉(zhuǎn)變機(jī)理則不盡相同。給定條件下,增加密度可提高轉(zhuǎn)盤邊緣液膜的離心力,有利于液膜向轉(zhuǎn)盤以外區(qū)域延伸而趨于膜狀破碎;黏度對于破碎模式轉(zhuǎn)變的影響與介質(zhì)流量的作用基本一致;而增大表面張力,液膜自由端收縮速度將會升高,自由端向轉(zhuǎn)盤邊緣靠攏,即使在較大的流量和轉(zhuǎn)速條件下,液膜也能維持纖維狀或滴狀破碎。轉(zhuǎn)盤直徑對于破碎模式轉(zhuǎn)變的影響則相對復(fù)雜,當(dāng)轉(zhuǎn)盤直徑增大時,Re將會有所增加,雖然We也有所上升,然而量綱1體積流量則相應(yīng)下降,因此臨界條件很有可能將沿著與臨界轉(zhuǎn)變曲線相平行的方向移動,破碎形式并不會發(fā)生改變。以介質(zhì)WF3,ω=219.9 rad·s-1,Q= 1.8 ml·s-1為例,當(dāng)轉(zhuǎn)盤直徑 D由0.05 m增至0.1 m時,雖然工況有所變化,但其破碎模式仍呈纖維狀。原因主要是調(diào)整轉(zhuǎn)盤直徑的同時,液膜表面張力與離心力亦同時改變,若未打破之前的平衡狀態(tài),其破碎模式不會明顯改變。
本文針對轉(zhuǎn)盤?;?,基于膜狀破碎時徑向慣性力與自由邊界表面張力的相互關(guān)系,提出臨界轉(zhuǎn)變系數(shù)表征膜狀向纖維狀破碎轉(zhuǎn)變的臨界條件,建立了不同破碎模式相互轉(zhuǎn)變的臨界特性經(jīng)驗(yàn)?zāi)P?,探討了臨界轉(zhuǎn)變特性的變化規(guī)律,得到以下結(jié)論。
(1)臨界轉(zhuǎn)變系數(shù)CT與量綱1臨界體積流量、We以及Re直接相關(guān)。
(2)轉(zhuǎn)盤表面潤濕性對于液膜呈滴狀以及滴狀向纖維狀模式轉(zhuǎn)變影響顯著,未完全潤濕導(dǎo)致臨界流量存在一定的隨機(jī)性,轉(zhuǎn)盤直徑與臨界流量間無明確規(guī)律;而完全纖維狀以及膜狀時,大直徑轉(zhuǎn)盤臨界流量明顯升高。
(3)轉(zhuǎn)速、流量、密度及黏度的提高,破碎模式趨向于膜狀;而增大表面張力,即使對于較大流量和轉(zhuǎn)速,液膜也能維持纖維狀或滴狀模式。調(diào)整轉(zhuǎn)盤直徑將引起表面張力與離心力同時變化,若未打破平衡,其破碎模式不會改變。本文的研究結(jié)果對轉(zhuǎn)盤離心?;到y(tǒng)的設(shè)計與優(yōu)化具有較強(qiáng)的指導(dǎo)意義和參考價值。
[1] MASTERS K. Drying of Droplets/Sprays[M]//MASTERS K. Spray Drying Handbook. Longman Scientific and Technical. New York:John Wiley & Sons Inc., 1988: 298-342.
[2] CHIANG C, CHANG M, LIU H,et al. Process intensification in the production of photocatalysts for solar hydrogen generation[J].Industrial & Engineering Chemistry Research, 2012, 51(14):5207-5215.
[3] 何先琰, 王宏, 朱恂, 等. 鉛錫合金熔融顆粒風(fēng)冷相變換熱特性實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報, 2015, 36(8): 1748-1751.HE X Y, WANG H, ZHU X,et al. Experiment study on air-cooled phase change heat transfer characteristics of Sn-Pb alloy droplets[J].Journal of Engineering Thermophysics, 2015, 36(8): 1748-1751.
[4] DEHKORDI A M, VAFAEIMANESH A. Synthesis of barium sulfate nanoparticles using a spinning disk reactor: effects of supersaturation,disk rotation speed, free ion ratio, and disk diameter[J]. Industrial &Engineering Chemistry Research, 2009, 48: 7574-7580.
[5] MOHAMMADI S, HARVEY A, BOODHOO K V K. Synthesis of TiO2nanoparticles in a spinning disc reactor[J]. Chemical Engineering Journal, 2014, 258: 171-184.
[6] 吳君軍, 王宏, 朱恂, 等. 轉(zhuǎn)盤離心?;薪z狀成粒特性[J]. 化工學(xué)報, 2015, 66(7): 2474-2480.WU J J, WANG H, ZHU X,et al. Characteristic of ligament in centrifugal granulation by spinning disc[J]. CIESC Journal, 2015,66(7): 2474-2480.
[7] ZHANG H, WANG H, ZHU X,et al. A review of waste heat recovery technologies towards molten slag in steel industry[J]. Applied Energy,2013, 112(4): 956-966.
[8] BARATI M, ESFAHANI S, UTIGARD T A. Energy recovery from high temperature slags[J]. Energy, 2011, 36(9): 5440-5449.
[9] WANG D X, LING X, PENG H. Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J]. Applied Thermal Engineering, 2015, 84: 437-447.
[10] WANG D X, LING X, PENG H,et al. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation[J]. Energy, 2013, 50: 343-352.
[11] WANG D X, PENG H, LING X. Ligament mode disintegration of liquid film at the rotary disk rim in waste heat recovery process of molten slag[J]. Energy Procedia, 2014, 61: 1824-1829.
[12] WU J J, WANG H, ZHU X,et al. Cold experiment of slag centrifugal granulation by rotary atomizer: effect of atomizer configuration[J].Applied Thermal Engineering, 2017, 111: 1557-1564.
[13] WANG H, WU J J, ZHU X,et al. Energy-environment-economy evaluations of commercial scale systems for blast furnace slag treatment: dry slag granulationvswater quenching[J]. Applied Energy,2016, 171: 314-324.
[14] LIU J X, YU Q B, DUAN W J,et al. Experimental investigation on ligament formation for molten slag granulation[J]. Applied Thermal Engineering, 2014, 73(1): 888-893.
[15] PENG H, WANG N, WANG D X,et al. Experimental study on critical characteristics of liquid atomization by spinning disk[J].Industrial & Engineering Chemistry Research, 2016, 55(21):6175-6185.
[16] 王東祥, 凌祥, 彭浩. 轉(zhuǎn)盤離心粒化熔渣液膜流動特性數(shù)值模擬研究[J]. 南京工業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2015, 37(3): 67-73.WANG D X, LING X, PENG H. Numerical simulation of film flow characteristics of molten slag on spinning disk in centrifugal atomization process[J]. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37(3): 67-73.
[17] WANG D X, LING X, PENG H,et al. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016,55(34): 9267-9275.
[18] HINZE J O, MILBORN H. Atomization of liquid by means of a rotating cup[J]. Journal of Applied Mechanics Transactions of ASME,1950, 17(2): 145-153.
[19] FRASER R, DOMBROWSKI N, ROUTLY J. The filming of liquids by spinning cups[J]. Chemical Engineering Science, 1963, 18(6):323-337.
[20] FROST A R. Rotary atomization in the ligament formation mode[J].Journal of Agricultural Engineering Research, 1981, 26(1): 63-78.
[21] CHAMPAGNE B, ANGERS R. Rep atomization mechanisms[J].International Journal of Powder Metallurgy, 1984, 16(3): 125-128.
[22] LIU J X, YU Q B, GUO Q. Experimental investigation of liquid disintegration by rotary cups[J]. Chemical Engineering Science, 2012,73(19): 44-50.
[23] LIU J X, YU Q B, LI P,et al. Cold experiments on ligament formation for blast furnace slag granulation[J]. Applied Thermal Engineering, 2012, 40: 351-357.
[24] MATSUMOTO S, BELCHER D W, CROSBY E J. Rotary atomizers:performance understanding and prediction[C]//The 3rd International Conference on Liquid Atomization and Spray Systems. London:Institute of Energy, 1986: 1-21.
[25] KAMIYA T, KAYANO A. Disintegration of viscous fluid in the ligament state purged from a rotating disk[J]. Journal of Chemical Engineering of Japan, 1971, 4(4): 364-369.
[26] AHMED M, YOUSSEF M S. Characteristics of mean droplet size produced by spinning disk atomizers[J]. Journal of Fluid Engineering,2012, 134(7): 1-9.
[27] AHMED M, YOUSSEF M S. Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J].Chemical Engineering Science, 2014, 107(14): 149-157.
[28] 王東祥, 凌祥, 彭浩, 等. 轉(zhuǎn)盤表面黏性薄液膜穩(wěn)態(tài)流動特性數(shù)值模擬[J]. 化工學(xué)報, 2017, 68(6): 2321-2327.WANG D X, LING X, PENG H,et al. Numerical simulation of stable flow dynamics of viscous film flow on spinning disk surface[J].CIESC Journal, 2017, 68(6): 2321-2327.
[29] PRIELING D, STEINER H. Unsteady thin film flow on spinning disks at large Ekman numbers using an integral boundary layer method[J]. International Journal of Heat and Mass Transfer, 2013,65(7): 10-22.
[30] WANG D X, LING X, PENG H. Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag[J]. Applied Thermal Engineering, 2014, 63(1):387-395.
date:2017-03-10.
WANG Dongxiang, dxwang@jiangnan.edu.cn
supported by the National Natural Science Foundation of China (51606086, 51406078).
Critical breakup transition characteristics of thin viscose liquid film at spinning disk rim
WANG Dongxiang1,2, LING Xiang2, PENG Hao2, CUI Zhengwei1, YANG Xinjun1,2
(1Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology,School of Mechanical Engineering,Jiangnan University,Wuxi214122,Jiangsu,China;2Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology,Nanjing Tech University,Nanjing211800,Jiangsu,China)
Liquid film breakup mode at disk rim of centrifuge particle generator directly determines droplet shapes and sizes, which is a key factor to affect product qualities. A critical transition coefficient for spinning disk particle generator was proposed to characterize liquid film breakup transition characteristics from film to ligament, to extend to other breakup modes, and to establish critical equations for transition from direct droplet to ligament,ligament to fully ligament, and fully ligament to sheet. The experimental results of three working fluids and two disks indicated that disk surface wettability played key role for liquid film to become direct droplet or to transit from direct droplet to ligament, which incomplete wetting caused random critical volume flow rate with no direct correlation between disk diameter and critical volume flow rate. Critical volume flow rate increased with increasing disk diameter in fully-ligament and film modes. In general, the increase of liquid flow rate, rotation speed, liquid density, and viscosity drove towards film breakup mode. However, high surface tension force maintained liquid film in direct drop or ligament even at large flow rate and rotation speed. Moreover, increasing disk diameter enhanced both centrifugal force and surface tension and breakup mode did not change unless the force balance was lost.
fluid mechanics; model; experimental validation; breakup mode; spinning disk; transition characteristics
TQ 021.1
A
0438—1157(2017)11—4121—08
10.11949/j.issn.0438-1157.20170233
2017-03-10收到初稿,2017-07-26收到修改稿。
聯(lián)系人及第一作者:王東祥(1985—),男,博士,副教授。
國家自然科學(xué)基金項(xiàng)目(51606086,51406078)。