陳玉田,張穎,鄭雄,何茂剛
(西安交通大學(xué)熱流科學(xué)與工程教育部重點實驗室,陜西 西安 710049)
癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的液相聲速測量
陳玉田,張穎,鄭雄,何茂剛
(西安交通大學(xué)熱流科學(xué)與工程教育部重點實驗室,陜西 西安 710049)
癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯3種脂肪酸甲酯是生物柴油的主要成分,其聲速是噴油系統(tǒng)優(yōu)化設(shè)計和等熵壓縮因子計算中所必需的參數(shù)之一。針對癸酸甲酯、月桂酸甲脂和肉豆蔻酸甲脂3種物質(zhì)聲速實驗數(shù)據(jù)缺乏的現(xiàn)狀,利用布里淵光散射法,沿0.1、2.5、5.5和8.5 MPa 4條等壓線,在288.15~498.15 K溫度范圍內(nèi),分別測量了癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的液相聲速;分析了聲速隨溫度、壓力的變化規(guī)律;依據(jù)實驗數(shù)據(jù),給出了在本文p-T熱力學(xué)區(qū)域內(nèi),3種物質(zhì)液相聲速與溫度和壓力的關(guān)聯(lián)式;關(guān)聯(lián)式計算值與實驗數(shù)據(jù)的相對偏差絕對平均值分別為:0.17%(癸酸甲酯)、0.10%(月桂酸甲酯)和0.15%(肉豆蔻酸甲酯),滿足工程應(yīng)用需求。
生物柴油;聲速;布里淵光散射;測量
生物柴油具有可再生性、良好的生物降解性、無毒、更高的辛烷值、良好的抗氧化性以及可有效降低溫室氣體排放等顯著優(yōu)點,并且可直接應(yīng)用于現(xiàn)有的柴油機中。因此,越來越多地引起了各國學(xué)者們的廣泛關(guān)注[1-2]。
生物柴油的主要成分為脂肪酸甲酯(FAMEs)和脂肪酸乙酯(FAEEs)。由于這些脂肪酸類物質(zhì)的化學(xué)結(jié)構(gòu)不同,導(dǎo)致其熱物理特性(如密度、聲速、表面張力和黏度等)與現(xiàn)用柴油間均存在明顯的差異。這些熱物性的改變將直接影響柴油機的噴油時間,而噴油過程設(shè)計是柴油機組織燃燒和降低燃料消耗以及廢氣排放的關(guān)鍵環(huán)節(jié)[3-4]。在柴油機噴油設(shè)計中必需的熱物性參數(shù)有表面張力、黏度和等熵壓縮因子,其中等熵壓縮因子是通過密度和聲速計算得到的[5]。因此,生物柴油的精確聲速數(shù)據(jù)在噴油系統(tǒng)優(yōu)化設(shè)計中起到了重要作用。
本文對處于研究熱點的3種脂肪酸甲酯——癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的文獻(xiàn)聲速實驗數(shù)據(jù)進(jìn)行了整理分析(表1)??梢?,癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯聲速的實驗研究可追溯到20世紀(jì)60年代。近年來,隨著生物柴油研究的逐步深入和大量的推廣應(yīng)用,上述3種脂肪酸酯的聲速研究也隨之增多,其中,Daridon等[5-13]開展了一系列癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯聲速的實驗研究,并且報道了一些高壓下的液相聲速數(shù)據(jù)。然而,大多數(shù)文獻(xiàn)實驗數(shù)據(jù)均集中在常壓下(或者壓力梯度很大,壓力上限210 MPa)和較小的溫度區(qū)間(溫度上限403.15 K)內(nèi),使得現(xiàn)有聲速實驗數(shù)據(jù)在p-T熱力學(xué)面上存在大量空白區(qū)域,顯然不能滿足相關(guān)研究的需求,如建立高精度的聲速預(yù)測模型等。
鑒于此,本文將集中開展癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯3種脂肪酸甲酯液相聲速的實驗測量工作,旨在補充上述3種物質(zhì)的高精度聲速實驗數(shù)據(jù)。測量沿0.1、2.5、5.5和8.5 MPa 4條等壓線進(jìn)行,所覆蓋的溫度范圍為288.15~493.15 K。此外,本文選用Daridon等[5,7]提出聲速關(guān)聯(lián)式對本文所測量的p-T范圍內(nèi)3種脂肪酸甲酯液相聲速實驗數(shù)據(jù)進(jìn)行了關(guān)聯(lián),以滿足工程需要。
表2依次給出了3種脂肪酸甲酯——癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的CAS登記號、供應(yīng)商信息、質(zhì)量分?jǐn)?shù)以及基本物化性質(zhì)。3種試劑純度(質(zhì)量分?jǐn)?shù))均優(yōu)于0.990。實驗前利用孔徑為0.22 μm的薄膜過濾器對實驗樣品進(jìn)行過濾,此外沒有經(jīng)過進(jìn)一步的提純。
表1 癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的文獻(xiàn)聲速實驗數(shù)據(jù)匯總Table 1 Literature reports on experimental speed of sound in methyl caprate, methyl laurate and methyl myristate
表2 3種脂肪酸甲酯樣品信息及基本物化性質(zhì)Table 2 Specification of three FAMEs samples
測量流體聲速的經(jīng)典方法主要有共振干涉法和脈沖法,國內(nèi)外眾多研究者都開展此兩種方法的研究工作,如德國波鴻大學(xué)的 Span等[14]、清華大學(xué)的段遠(yuǎn)源等[15]以及作者所在的課題組[16]等。布里淵散射法是一種光學(xué)流體聲速測量方法。德國埃爾朗根-紐倫堡大學(xué)的Leipertz課題組多年來一直致力于該方法的研究工作[17-19]。詳細(xì)的布里淵散射法流體聲速測量原理可參見作者課題組前期的研究報道[20-22]以及一系列相關(guān)研究工作[23-25]。限于篇幅,此處僅對該方法工作方程進(jìn)行簡要介紹。
分子的熱運動誘發(fā)熱聲波,該熱聲波為各種波長聲波的混合。當(dāng)激光射入介質(zhì)時,介質(zhì)內(nèi)的等熵壓力漲落誘發(fā)介質(zhì)產(chǎn)生自發(fā)布里淵散射,而熱聲波作為衍射光柵對散射光形成周期性功率調(diào)制。根據(jù)布拉格定律,可以計算得到散射矢量(入射光的波矢量與散射光波矢量之差)的模為
式中,kI為入射光波矢量,n為樣品折射率,λ0為入射光在真空中的波長,Θs和ΘEx分別為散射角和入射角。激光透射樣品,誘導(dǎo)其發(fā)出散射光,散射光頻譜中會出現(xiàn)兩個對稱分布的布里淵峰。根據(jù)多普勒頻移定律,散射光頻移與樣品聲速有關(guān)
式中,Δω為散射光頻移,ω0為入射光頻率,c為樣品聲速,c0為真空光速。
結(jié)合式(1)和式(2),可以得到聲速與散射光頻移的關(guān)系為
當(dāng)測量得到布里淵峰的頻移后,可由式(3)計算得到樣品聲速。本文利用光電倍增器結(jié)合Fabry-Perot干涉儀測量布里淵峰頻移,圖1給出了一個典型的實驗頻譜圖。
圖1 散射光頻譜圖Fig.1 Scattered light spectrum
圖2 布里淵散射光路示意圖Fig.2 BLS experimental setup
本文采用的光散射系統(tǒng)及溫度/壓力測控單元在本課題組前期的研究報道中均已詳述[20,26],圖2為本文所采用的布里淵散射光路,以下僅對主要實驗儀器進(jìn)行簡單介紹。激光器為Cobolt公司生產(chǎn)的SambaTM系列激光器,波長532 nm,功率300 mW;Fabry-Perot干涉儀型號SA200-5B,Thorlabs公司;光電倍增器型號H8259-01,Hamamatsu公司生產(chǎn)。溫度測量采用鉑電阻溫度傳感器(PRT,F(xiàn)luke,測量標(biāo)準(zhǔn)不確定度為0.01 K),布置于散射池內(nèi);壓力測量采用壓力變送器(Rosemount,量程0~20 MPa,測量標(biāo)準(zhǔn)不確定度為5 kPa)。聲速測量不確定度主要由3部分組成,分別為:布里淵頻率不確定度、入射光波長不確定度和入射角不確定度。綜合三者影響,最終本文聲速測量的相對擴展不確定度為:< 1% (置信因子取2),測量不確定度分析詳見文獻(xiàn)[26-27]。
本文沿4條等壓線0.1、2.5、5.5和8.5 MPa,測量了溫度288.15~498.15 K范圍內(nèi),癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的液相聲速。每個實驗點單獨測量4次,取平均值作為測量值,實驗數(shù)據(jù)的復(fù)現(xiàn)性優(yōu)于0.2%。
表3和圖3~圖5給出了癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的聲速實驗數(shù)據(jù)。對此3種脂肪酸酯而言,在本文研究的p-T熱力學(xué)區(qū)域內(nèi),其液相聲速隨著壓力升高略有增大且增大的趨勢隨著壓力的升高逐漸變大;隨著溫度的升高,其液相聲速顯著降低;沿等壓線,聲速隨溫度的變化基本呈現(xiàn)線性關(guān)系。此外,對比3種脂肪酸酯的液相聲速數(shù)據(jù)可以發(fā)現(xiàn),隨著碳原子數(shù)的增加,聲速值逐漸增加。
圖3 癸酸甲酯實驗數(shù)據(jù)Fig. 3 Experimental speed of sound in methyl caprate
圖4 月桂酸甲酯實驗數(shù)據(jù)Fig. 4 Experimental speed of sound in methyl laurate
據(jù)文獻(xiàn)報道,常被推薦用來計算脂肪酸酯類物質(zhì)液相聲速的模型有:Wada基團(tuán)貢獻(xiàn)法模型[8]和Auerbach模型[11],但這兩個計算模型均需要物質(zhì)的密度數(shù)據(jù),然而在本文的實驗溫度范圍內(nèi),無法獲取精確的癸酸甲酯、月桂酸甲酯以及肉豆蔻酸甲酯的液相密度數(shù)據(jù)。
圖5 肉豆蔻酸甲酯實驗數(shù)據(jù)Fig. 5 Experimental speed of sound in methyl myristate
因此,本文選取了Daridon等[28-30]提出的一個關(guān)于1/c2的聲速計算模型,對測量得到的實驗數(shù)據(jù)進(jìn)行了關(guān)聯(lián)。該模型直接將聲速關(guān)聯(lián)為溫度、壓力的函數(shù),并且,曾被用于正十八烷、正十九烷以及芳香烴類等多種高碳原子數(shù)的物質(zhì)液相聲速計算且具有較好的計算精度。該模型方程形式如下
式中,c為聲速,m·s-1;T為流體溫度,K;p為流體壓力,MPa;A0~F為關(guān)聯(lián)系數(shù)。表4給出了3種物質(zhì)方程式(4)中的系數(shù)和方程的計算偏差。結(jié)合圖3~圖5中方程曲線可以看出,方程計算值與實驗值具有良好的一致性。
本文將式(4)計算得到的 0.1 MPa下的癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的聲速數(shù)據(jù)與文獻(xiàn)實驗數(shù)據(jù)進(jìn)行了比較,如圖6~圖8所示。
圖6 癸酸甲酯計算偏差Fig. 6 Deviation of sound speed in methyl caprate from different authors compared to Eq. (4)
表3 癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的聲速實驗數(shù)據(jù)Table 3 Experimental speed of sound in liquid methyl caprate, methyl laurate and methyl myristate
表4 關(guān)聯(lián)式(4)系數(shù)及其計算偏差Table 4 Fitted coefficients in Eq. (4)
圖7 月桂酸甲酯計算偏差Fig. 7. Deviation of sound speed in methyl laurate from different authors compared to Eq. (4)
圖8 肉豆蔻酸甲酯計算偏差Fig. 8 Deviation of sound speed in methyl myristate from different authors compared to Eq. (4)
癸酸甲酯計算值與文獻(xiàn)實驗數(shù)據(jù)的相對偏差絕對平均值為0.08%,絕對偏差平均值為0.95 m?s-1;月桂酸甲酯計算值與Gouw等、Dzida等、Coutinho等和 Ferreira等報道的文獻(xiàn)實驗數(shù)據(jù)的相對偏差絕對平均值為0.08%,絕對偏差平均值為1.05 m?s-1;與Tat等報道的實驗數(shù)據(jù)的相對偏差絕對平均值為0.54%,絕對偏差平均值為6.54 m?s-1,原因在于Tat等選取的月桂酸甲酯實驗試劑可能被污染,純度受到影響;肉豆蔻酸甲酯計算值與文獻(xiàn)實驗數(shù)據(jù)的相對偏差絕對平均值為 0.15%,絕對偏差平均值為1.87 m?s-1。由此可見,本文的實驗數(shù)據(jù)與文獻(xiàn)數(shù)據(jù)吻合良好,關(guān)聯(lián)方程具有較高的計算精度。
本文針對癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯 3種主要的生物柴油組分物質(zhì)聲速實驗數(shù)據(jù)缺乏、現(xiàn)有實驗數(shù)據(jù)覆蓋溫度區(qū)間狹窄的研究現(xiàn)狀,利用課題組自行搭建的布里淵光散射實驗系統(tǒng)測量了這3種脂肪酸甲酯的液相聲速。該實驗系統(tǒng)的溫度、壓力測量的不確定度分別為0.01 K和5 kPa,聲速測量的相對擴展不確定度小于 1%。本文的測量溫度范圍為288.15~498.15 K,壓力為0.1、2.5、5.5和8.5 MPa,獲取了癸酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯的液相聲速實驗數(shù)據(jù)共計180個。同時,分析了聲速隨溫度、壓力的變化規(guī)律。為方便相關(guān)科研及工程領(lǐng)域的應(yīng)用,依據(jù)Daridon等提出的聲速計算模型,給出了在本文p-T熱力學(xué)區(qū)域內(nèi),3種物質(zhì)液相聲速的計算方程,方程計算精度分別為:0.17% (癸酸甲酯)、0.10% (月桂酸甲酯)和 0.15% (肉豆蔻酸甲酯)。
[1] BENJUMEA P, AGUDELO J R, AGUDELO A F. Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions[J]. Energy &Fuels, 2011, 25(2): 77-85.
[2] 李為民, 鄭曉林, 徐春明, 等.固體堿法制備生物柴油及其性能[J]. 化工學(xué)報, 2005, 56 (4):711-716.LI W M, ZHENG X L, XU C M,et al. Preparation and its properties of biodiesel by using solid base catalyst[J]. Journal of Chemical Industry and Engineering, 2005, 56 (4): 711-716.
[3] CARESANA F. Impact of biodiesel bulk modulus on jnjection pressure and injection timing. The effect of residual pressure[J]. Fuel,2011, 90(2): 477-485.
[4] BOEHMAN A L, MORRIS A D, SZYBIST J,et al. The impact of the bulk modulus of diesel fuels on fuel injection timing[J]. Energy &Fuels, 2004, 18(6): 1877-1882.
[5] NDIAYE E H I, NASRI D, DARIDON J L. Speed of sound, density,and derivative properties of fatty acid methyl and ethyl esters under high pressure: methyl caprate and ethyl caprate[J]. Journal of Chemical & Engineering Data, 2012, 57(10): 2667-2676.
[6] GOUW T H, VLUGTER J C. Physical properties of fatty acid methyl esters(Ⅳ): Ultrasonic sound velocity[J]. Journal of the American Oil Chemists’ Society, 1964, 41(8): 524-526.
[7] DARIDON J L, COUTINHOB J A P, NDIAYEA E H I, et al. Novel data and a group contribution method for the prediction of the speed of sound and isentropic compressibility of pure fatty acids methyl and ethyl esters[J]. Fuel, 2013, 105(1): 466-470.
[8] FREITAS S V D, CUNHA D L, REIS R A, et al. Application of Wada’s group contribution method to the prediction of the speed of sound of biodiesel[J]. Energy & Fuels, 2013, 27(3): 1365-1370.
[9] ?ARSKA M, BARTOSZEK K, DZIDA M. High pressure physicochemical properties of biodiesel components derived from coconut oil or babassu oil[J]. Fuel, 2014, 125(11): 144-151.
[10] TAT M, GERPEN J H V. Measurement of biodiesel speed of sound and its impact on injection timing[R]. Colorado: National Renewable Energy Laboratory, 2003.
[11] FREITAS S V D, PAREDES M L L, DARIDON J L, et al.Measurement and prediction of the speed of sound of biodiesel fuels[J]. Fuel, 2013, 103(1): 1018-1022.
[12] LOPES A F G, TALAVERA-PRIETO M D C, FERREIRA A G M,et al. Speed of sound in pure fatty acid methyl esters and biodiesel fuels[J]. Fuel, 2014, 116(1): 242-254.
[13] NDIAYE E H I, HABRIOUX M, COUTINHO J A P, et al. Speed of sound, density, and derivative properties of ethyl myristate, methyl myristate, and methyl palmitate under high pressure[J]. Journal of Chemical & Engineering Data, 2013, 58(5): 1371-1377.
[14] DáVILA M J, GEDANITZ H, SPAN R. Speed of sound measurements of liquid C1—C4alkanols[J]. Journal of Chemical Thermodynamics, 2016, 93: 157-163.
[15] LIU Q, FENG X J, AN B L, et al. Speed of sound measurements using a cylindrical resonator for gaseous carbon dioxide and propene[J]. Journal of Chemical & Engineering Data, 2014, 59(9):2788-2798.
[16] HE M G, LIU Z G, YIN J M. Measurement of speed of sound with a spherical resonator: HCFC-22, HFC-152a, HFC-143a and propane[J].International Journal of Thermophysics, 2002, 23(6): 1599-1615.
[17] FR?BA A P, BOTERO C, LEIPERTZ A. Thermal diffusivity, sound speed, viscosity, and surface tension of R227ea (1,1,1,2,3,3,3-heptafluoropropane)[J]. International Journal of Thermophysics,.2006, 27(6): 1609-1625.
[18] FR?BA A P, KREMER H, LEIPERTZ A, et al. Thermophysical properties of a refrigerant mixture of R365mfc (1,1,1,3,3-pentafluorobutane) and galden? HT 55 (perfluoropolyether)[J].International Journal of Thermophysics, 2007, 28(8): 449-480.
[19] WILL S, FR?BA A P, LEIPERTZ A. Thermal diffusivity and sound velocity of toluene over a wide temperature range[J]. International Journal of Thermophysics, 1998, 19(2): 403-414.
[20] 王升. 激光散射法流體熱擴散率和聲速測量實驗系統(tǒng)的研制及應(yīng)用[D]. 西安: 西安交通大學(xué), 2014.WANG S. Development of laser light scattering system for thermal diffusivity and speed of sound of fluids and applications[D]. Xi’an:Xi’an Jiaotong University, 2014.
[21] 張穎, 王升, 鄭雄, 等. 利用自發(fā)布里淵散射測量液體聲速[J]. 物理學(xué)報, 2015, 64(3): 1-7.ZHANG Y, WANG S, ZHENG X, et al. Measurement of speed of liquid using spontaneous Brillouin scattering method[J]. Acta Physica Sinica, 2015, 64(3): 1-7.
[22] ZHENG X, ZHANG Y, HE M. Measurement of the speed of sound in hexane and heptane at temperatures from (303.15 to 536.15) K and pressures from (1.0 to 8.5) MPa[J]. Journal of Chemical &Engineering Data, 2015, 61(2): 701-711.
[23] LASTOVKA J B, BENEDEK G B. Light-beating Techniques for the Study of the Rayleigh-Brillouin Spectrum[M]. New York:McGraw-Hill, 1966.
[24] MOUNTAIN R D. Spectral distribution of scattered light in a simple fluid[J]. Review of Modern Physics, 1996, 38(1): 205-213.
[25] ZHANG Y, ZHENG X, HE M G, et al. Speed of sound in methyl caprate, methyl laurate, and methyl myristate: measurement by Brillouin light scattering and prediction by Wada’s group contribution method[J]. Energy & Fuels, 2016, 30(11): 9502-9509.
[26] WANG S, ZHANG Y, HE M G, et al. Thermal diffusivity and speed of sound of saturated pentane from light scattering[J]. International Journal of Thermophysics, 2014, 35(8): 1450-1464.
[27] ZHANG Y, ZHENG X, HE M, et al. Speed of sound measurements of 2-methoxy-2-methylpropane in the temperature range of 293.15 and 673.15 K and for pressures up to 10 MPa[J]. Journal of Chemical &Engineering Data, 2016, 61(9): 3127-3134.
[28] DARIDON J L, LAGOURETTE B, GROLIER J P E. Experimental measurements of the speed of sound in n-hexane from 293 to 373 K and up to 150 MPa[J]. International Journal of Thermophysics, 1998,19(19): 145-160.
[29] DUTOUR S, DARIDON J L, LAGOURETTE B. Pressure and temperature dependence of the speed of sound and related properties in normal octadecane and nonadecane[J]. International Journal of Thermophysics, 2000, 21(21): 173-184.
[30] DARIDON J L, CARRIER H, LAGOURETTE B. Pressure dependence of the thermophysical properties of n-pentadecane and n-heptadecane[J]. International Journal of Thermophysics, 2002,23(3): 697-708.
date:2017-03-28.
Prof. HE Maogang, mghge@xjtu.edu.cn
supported by the National Natural Science Foundation of China (51576161).
Measurement of sound speed in methyl caprate, methyl laurate and methyl myristate
CHEN Yutian, ZHANG Ying, ZHENG Xiong, HE Maogang
(Key Laboratory of Thermal-Fluid Science and Engineering of Ministry of Education,Xi’an Jiaotong University,Xi’an710049,Shaanxi,China)
Methyl caprate, methyl laurate and methyl myristate were considered as the main components of biodiesel. The sound speed in fatty acid methyl esters (FAMEs) is one of the necessary parameter for optimizing the injection process and calculating the isoentropic compressibility. Nevertheless, the sound speed in methyl caprate, methyl laurate and methyl myristate are scarce in the literature. The sound speeds in the three FAMEs were measured by employing Brillouin light scattering method. The measurements were carried out at temperature ranging from 288.15 to 498.15 K along 4 isobaric lines 0.1, 2.5, 5.5 and 8.5 MPa. The change regularities of sound speed in methyl caprate, methyl laurate and methyl myristate with temperatures and pressures were analyzed,respectively. A rational function as function of pressure and temperature was used to correlate the experimental sound speed in the measuredp-Tregion. Comparing the experimental sound speed with the correlation results, the absolute average deviations (AADs) are 0.17% for methyl caprate, 0.10% for methyl caprate and 0.15% for methyl myristate.
biodiesel; speed of sound; Brillouin light scattering; measurement
TK 6
A
0438—1157(2017)11—4054—07
10.11949/j.issn.0438-1157.20170312
2017-03-28收到初稿,2017-06-05收到修改稿。
聯(lián)系人:何茂剛。
陳玉田(1989—),男,碩士研究生。
國家自然科學(xué)基金項目(51576161)。