賈舒安 王旭哲
(1.新疆維吾爾自治區(qū)動物衛(wèi)生監(jiān)督所,新疆烏魯木齊 530000;2.新疆石河子大學(xué)動物科技學(xué)院,新疆石河子 532000)
豬的營養(yǎng)應(yīng)激與腸道免疫應(yīng)答
賈舒安1,2王旭哲2
(1.新疆維吾爾自治區(qū)動物衛(wèi)生監(jiān)督所,新疆烏魯木齊 530000;2.新疆石河子大學(xué)動物科技學(xué)院,新疆石河子 532000)
現(xiàn)代畜牧生產(chǎn)更趨向于高度密集和大規(guī)模,來提高生產(chǎn)效率。這種生產(chǎn)環(huán)境的變化會影響動物健康和加劇生長的應(yīng)激。主要的應(yīng)激源包括環(huán)境(空氣質(zhì)量和溫度)、營養(yǎng)和感染。這些應(yīng)激可以降低生長性能同時改變家畜全身和局部免疫系統(tǒng)的水平,包括胃腸道等。熱應(yīng)激會增加腸道的通透性、氧化應(yīng)激和炎癥反應(yīng);營養(yǎng)應(yīng)激是由空腹、抗?fàn)I養(yǎng)化合物、毒素作用,引起腸道緊密連接蛋白(TJ蛋白)的泄漏表達(dá)。禁食是能夠抑制促炎性細(xì)胞因子,而脫氧雪腐鐮刀菌烯醇能增加腸促炎性細(xì)胞因子在腸道中的淋巴細(xì)胞水平。疾病或病毒的感染如腸毒性大腸桿菌(ETEC)和病毒和豬流行性腹瀉病毒可以導(dǎo)致腸上皮細(xì)胞屏障失效。另一方面,有研究添加乳酸桿菌或釀酒酵母可降低ETEC傳染力。有研究指出,主要的應(yīng)激源改變了腸道屏障的通透性和在豬粘膜系統(tǒng)中的促炎性細(xì)胞因子和趨化因子的基因和蛋白質(zhì)的表達(dá)。但目前還不能解釋,在應(yīng)激條件下,豬腸道免疫系統(tǒng)的作用機(jī)制。在主要應(yīng)激源下,腸道和全身免疫系統(tǒng)之間的相互作用有待進(jìn)一步揭示。
營養(yǎng);應(yīng)激;腸道免疫;豬
腸黏膜是機(jī)體內(nèi)部與外界環(huán)境之間的屏障。一般家畜和人類的腸粘膜對大部分的食物抗原消化和吸收是免疫耐受的。由于食物成分的改變,腸道黏膜形態(tài)和特征與腸道免疫細(xì)胞也在不斷變化。當(dāng)大量病原體通過腸道黏膜進(jìn)入機(jī)體,保護(hù)性黏膜免疫迅速反應(yīng),清除病原體。然而腸道內(nèi)有許多不同的共生菌,腸道免疫系統(tǒng)必須能夠區(qū)分無害的與有害的抗原[1]。
豬腸道免疫系統(tǒng)在出生時處于不成熟狀態(tài),在圍產(chǎn)期進(jìn)一步發(fā)展,在5~7周時達(dá)到成年水平。腸道上皮細(xì)胞與腸道固有免疫系統(tǒng)關(guān)聯(lián),對食物和病原體抗原形成功能屏障。Toll 樣受體(TLR)作為一類新興的膜和胞漿受體,在識別先天免疫調(diào)節(jié)的病原體中具有重要作用。適應(yīng)性免疫應(yīng)答的誘導(dǎo)開始由專門的抗原呈遞細(xì)胞加工提呈抗原[2],在小腸組織的淋巴結(jié)或腸系膜淋巴結(jié)集結(jié)[3]。IgA反應(yīng)是一種自適應(yīng)的腸道免疫系統(tǒng)最重要的部分,這需要在腸道相關(guān)淋巴組織之間的T和B淋巴細(xì)胞相互作用[4]。
家畜一直接受著各種應(yīng)激,比如飲食,溫度,斷奶和感染等。這些應(yīng)激因素的突然變化對動物健康會產(chǎn)生負(fù)面影響,導(dǎo)致生產(chǎn)力下降。這種應(yīng)激往往影響動物的穩(wěn)態(tài),誘導(dǎo)全身或局部炎癥反應(yīng),并造成神經(jīng)內(nèi)分泌的改變。由于胃腸道是由免疫系統(tǒng)和神經(jīng)內(nèi)分泌系統(tǒng)共同作用的[5],故降低應(yīng)激能顯著提高家畜腸道穩(wěn)態(tài)平衡。
腸道免疫是家畜的免疫前線,關(guān)系到家畜的生長性能和健康。本文主要探討應(yīng)激對豬腸道健康和免疫狀態(tài)的影響。
氣候變暖引起的氣候變化不僅迫使熱帶地區(qū)的環(huán)境溫度升高,而且使溫帶地區(qū)溫度升高。因此熱應(yīng)激(HS)已成為養(yǎng)豬業(yè)健康的臨界應(yīng)激因子[7]。HS 每年在美國已經(jīng)影響了經(jīng)濟(jì)損失超過3億美元,在全球范圍內(nèi)數(shù)十億美元的損失[8]。因此,在營養(yǎng)和免疫相關(guān)研究中,重要的是要了解是HS如何涉及動物的生長性能和健康狀況。
已有報道發(fā)現(xiàn),破壞緊密連接蛋白(TJ蛋白),如1/3緊密連接蛋白,會導(dǎo)致豬腸道上皮細(xì)胞通透性增加[9];然而,HS誘導(dǎo)的腸道通透性并未增加,而上調(diào) GLUT-2蛋白表達(dá)改變的TJ[10]。但是激活SGLT 1,Na+和葡萄糖共轉(zhuǎn)運,會導(dǎo)致通透性增加[11]。因此,HS對豬上皮細(xì)胞葡萄糖轉(zhuǎn)運蛋白的表達(dá)與滲透性有直接影響。雖然,HS使通透性增加,從而血液中內(nèi)毒素的濃度會超標(biāo)三倍,但炎性細(xì)胞因子,如白細(xì)胞介素(IL)-1β、IL-8、腫瘤壞死因子(TNF)-α,但沒有增多[10]。脂多糖(LPS)是公認(rèn)的炎性細(xì)胞因子誘導(dǎo)劑,但研究表明,HS也可能引起動物免疫抑制,[12]或LPS沒有增高,是因為①技術(shù)錯誤,②的結(jié)構(gòu)差異[13],③微分組成[14],④脂多糖結(jié)合蛋白[15]。這很可能是HS與LPS不誘導(dǎo)促炎細(xì)胞因子或者是與特定的細(xì)胞因子有關(guān),如IL-17或轉(zhuǎn)化生長因子(TGF-β)。有試驗表明,在HS條件下,豬腸道的熱休克蛋白70和髓過氧化物酶活性,中性粒細(xì)胞活化標(biāo)志物[16]會增加。這也表明,在HS誘導(dǎo)下,會引起豬腸道的炎性反應(yīng)。
兩者合計,HS可以改變豬腸道屏障功能,誘導(dǎo)炎癥反應(yīng)。如何克服HS對豬的免疫系統(tǒng)的全身和局部炎癥的影響,有待應(yīng)進(jìn)一步研究。
生長性能是養(yǎng)豬業(yè)生產(chǎn)者最關(guān)鍵的因素。因此,營養(yǎng)應(yīng)激是養(yǎng)豬業(yè)生產(chǎn)者最關(guān)心的問題[1718]。一般來說,空腹對健康豬腸道的生理和免疫學(xué)均會產(chǎn)生負(fù)面影響。給斷奶仔豬禁食或禁水24h,會提高了血液中的皮質(zhì)醇水平,并抑制空腸中TNF-α的表達(dá)。但是,并沒有中斷TJ蛋白的表達(dá),比如在空腸和回腸中的claudin-1、zonula occludens protein- 1(ZO-1)[19]。缺乏甘氨酸可以降低細(xì)胞增殖和蛋白質(zhì)合成,會使豬腸上皮細(xì)胞凋亡加速,而且,會減少Akt通路和激活哺乳動物雷帕霉素靶蛋白(M-TOR)的激活[20]。
霉菌毒素是造成飼料污染的主要原因之一[21]。脫氧雪腐鐮刀菌烯醇(DON,嘔吐毒素)會影響TJ蛋白如ZO-1的表達(dá),緊密聯(lián)系蛋白和緊密聯(lián)系蛋白-3,以及豬腸道上皮細(xì)胞在48h內(nèi)的通透性[9,22]。DON 刺激的促炎性細(xì)胞因子如TNF-α和IL-6,IL-1β在空腸和回腸中表達(dá)[23]同時,增加淋巴細(xì)胞的數(shù)目[24]。很明顯,TLR2配體可以預(yù)防豬腸道上皮細(xì)胞不受損傷[23]。伏馬菌素B1(FB1)刺激10d后可增加豬空腸通透性[25],然而 DON 也只需要2天,滲透率就可達(dá)到類似水平[9]。FB1的刺激可下調(diào)IL-8的表達(dá),而不改變其他炎性細(xì)胞因子 IL-6,IL-1β,IL-12,and TNF-α的表達(dá)[26]。與 DON 相比FB1對豬腸道上皮細(xì)胞的免疫效果相對較弱。聯(lián)合飼喂黃曲霉毒素與嘔吐毒素(DON)33~42d,可以增血中高濃度TNF-α與單核細(xì)胞以及白細(xì)胞的數(shù)量,而單一處理并沒有出現(xiàn)這種現(xiàn)象[27,28]。值得注意的是,長期飼喂嘔吐毒素和玉米赤霉烯酮,可使8-羥基脫氧鳥苷氧化應(yīng)激水平增加一倍,造成DNA氧化損傷[29]。炎性細(xì)胞因子I包括L-12/Il-23和IL-1β,給豬飼喂玉米赤霉烯酮(0.1mg/kg)42d后,回腸淋巴中血管活性腸肽的含量增加[30]。同時喂玉米赤霉烯酮(0.1mg/kg),28d后,B細(xì)胞CD21 +干擾素(IFN)會減少,同時在回盲部淋巴結(jié)γ濃度增加,這可能會改變B細(xì)胞反應(yīng)。此外,T-2毒素在感染鼠傷寒沙門氏菌的豬上可降低小腸上皮細(xì)胞活力。雖然T-2毒素沒有改變豬
腸道上皮細(xì)胞的完整性,但是增加細(xì)菌易位[31]。通過飼喂21天低劑量T-2毒素,回腸淋巴結(jié)中CD21 + B細(xì)胞逐漸下降,此外,在T細(xì)胞細(xì)胞因子的基因表達(dá)譜在實驗組和隊長組中沒有區(qū)別,如IL-2,IL-4 和IFN-γ[32]。
表1 主要應(yīng)激對腸道免疫的影響
總之,營養(yǎng)缺乏或攝入污染的飼料均可引起豬的腸道炎性細(xì)胞因子的變化與功能調(diào)節(jié)障礙。營養(yǎng)應(yīng)激作用于亞健康宿主,誘導(dǎo)腸道免疫調(diào)節(jié)的免疫學(xué)機(jī)制尚不清楚。
腸道和呼吸道感染是養(yǎng)豬業(yè)最常見和頻發(fā)的疾病。尤其是,腸道感染是已知的能抑制飼料轉(zhuǎn)化率,造成家畜生產(chǎn)率降低的主要誘因[34,35]。不同于其他誘因,由于感染應(yīng)激的不受控性,故其常造成長期經(jīng)濟(jì)損失。由于現(xiàn)在大多數(shù)集約化動物養(yǎng)殖場飼養(yǎng)密度大,一旦疾病爆發(fā),動物群內(nèi)和批次之間的傳播速度非常快,此時,如若不進(jìn)行大規(guī)模屠宰,是很難從現(xiàn)場和爆發(fā)區(qū)內(nèi)將病原體完全清除。
健康家畜感染數(shù)腸道病原體大多數(shù)都是接觸了感染動物的飲水、飼料或者糞便,腸道病原體進(jìn)入感染家畜腸道后,通常是破壞上皮屏障的穩(wěn)態(tài),一些病原體(包括大腸桿菌)引起腸道損傷的機(jī)理是通過改變滲透壓而引起分泌性腹瀉,還有一些是通過上調(diào)促炎性細(xì)胞因子,產(chǎn)生所謂的炎癥性腹瀉[36]。腸道病原體可以抑制飼料的攝入和飼料的轉(zhuǎn)化,激活免疫系統(tǒng)從而導(dǎo)致機(jī)體不必要的能量損失。養(yǎng)豬業(yè)內(nèi)引起腸道疾病的主要原因有:大腸桿菌,豬流行性腹瀉病毒(PEDV),豬三角冠狀病毒(PDCoV),和豬傳染性胃腸炎病毒(TGEV)。
大腸桿菌指的是一組革蘭氏陰性腸道菌群,有些是致病的,并且它們大多數(shù)是共生的。Pathogenic E. coli,也叫產(chǎn)腸毒素大腸桿菌(ETEC),已知其是引起家畜脫水性腹瀉,降低飼料轉(zhuǎn)化率和生長性能的細(xì)菌。有報道,ETEC能縮短絨毛長度和小腸隱窩深度,它還可通過放寬上皮屏障從而抑制腸上皮細(xì)胞的TJ表達(dá)。已有研究報道通過補充植物乳桿菌[37],釀酒酵母[38],殼聚糖[39]和血管活性腸肽[40],能降低ETEC感染。
豬流行性腹瀉病毒是一種冠狀病毒,曾只在東亞傳播,但2013以后在美國頻發(fā)。一旦病毒爆發(fā),由于沒有有效治療方案,即使使用抗生素也無效,導(dǎo)致養(yǎng)殖場損失慘重[41]。現(xiàn)有專家建議PEDV通過改變上皮細(xì)胞的微絲,從而增加上皮屏障對TLR2、3、9的通透性[42]。不僅上皮細(xì)胞,免疫細(xì)胞也可以對這種病毒產(chǎn)生免疫細(xì)胞表達(dá)TLRs。B細(xì)胞位于粘膜組織如十二指腸黏膜固有層,能產(chǎn)生比脾臟、血液和全身淋巴組織更多的IgG和IgA[43]。感染PEDV病毒的豬,單核細(xì)胞來源的樹突狀細(xì)胞產(chǎn)生大量的炎性細(xì)胞因子,包括IL-12,并增強(qiáng)T細(xì)胞增殖[44]。
PDCoV和TGEV比大腸桿菌或豬流行性腹瀉病毒沒有那么大的感染率,但他們?nèi)匀皇怯绊戰(zhàn)B豬業(yè)的重要腸道冠狀病毒。PDCoV曾在香港(2009)和美國(2014)發(fā)現(xiàn)。pdcov病理學(xué)癥狀包括脫水、體重減輕,相比其他病原體感染,癥狀不明顯[45]。但是,當(dāng)同時感染PEDV和pdcov是會呈協(xié)同病理。豬傳染性胃腸炎病毒經(jīng)常在亞洲和美國引起仔豬嘔吐,嚴(yán)重時可引起死亡,據(jù)推測,這種病毒與豬呼吸道冠狀病具有同源性[46]。
總之,當(dāng)發(fā)生感染,尤其是慢性感染,會導(dǎo)致養(yǎng)豬業(yè)持續(xù)性的經(jīng)濟(jì)損失。鑒于目前也沒有辦法提高家畜對感染的耐受性,現(xiàn)在治療和消滅病原體的方法只能是使用抗生素或疫苗,所以現(xiàn)在我們應(yīng)該繼續(xù)努力,來研究感染力對家畜健康和生長性能產(chǎn)生的影響。
現(xiàn)在多種因素都阻礙家畜生長性能,威脅著家畜健康。本文重點研究了豬腸道免疫系統(tǒng)的主要應(yīng)激因素,包括溫度、營養(yǎng)、感染等。大量的研究集中在豬腸道的結(jié)合力檢查TJ蛋白的通透性,促炎細(xì)胞因子或基因型(表1)。然而,現(xiàn)今我們還不能解釋應(yīng)激條件下豬腸道免疫系統(tǒng)的確切機(jī)制,加之豬的免疫系統(tǒng)不能直接外推到人類和小鼠上,例如,CD4CD8+T細(xì)胞在外周免疫系統(tǒng)[47]。在不久的將來,以下幾點將成為主要研究方向:1.免疫細(xì)胞的識別和功能性研究,如小腸先天淋巴樣細(xì)胞;2.免疫細(xì)胞和腸上皮細(xì)胞的交叉免疫作用;3.系統(tǒng)免疫應(yīng)答和腸道免疫系統(tǒng)的改變;4.多條件刺激下,宿主腸道免疫系統(tǒng)的研究。
[1]Wilson AD,Haverson K,Southgate K,Bland PW,Stokes CR,Bailey M. Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium[J].Immunology,1996,(88):98-103.
[2]Lee IK,Son YM,Ju YJ,Song SK,Gu M,Song KD,Lee HC,Woo JS,Seol JG,Park SM,Han SH,Yun CH.Survival of porcine fibroblasts enhanced by human FasL and dexamethasone-treated human dendritic cells in vitro[J]. Transpl Immunol,2014,(30):99-106.
[3]Gebert A,Rothkotter HJ,Pabst R. M cells in Peyer’s patches of the intestine[J].Int Rev Cytol,1996,(167):91-159.
[4]Cheon IS,Park SM,Lee HJ,Hong JE,Ji SY,Shim BS,Kim KH,Heo PS,Kim YY,Jung HJ,Ka H,Han SH,Song M,Yun CH. Functional characteristics of porcine peripheral T cells stimulated with IL-2 or IL-2 andPMA[J].Res Vet Sci,2014,(96):54-61.
[5]Kayama H,Takeda K. Regulation of intestinal homeostasis by innate and adaptive immunity[J].Int Immunol,2012,(24):673-680.
[6]Hayes MR,Mietlicki-Baase EG,Kanoski SE,De Jonghe BC.Incretins and amylin:Neuroendocrine communication between the gut,pancreas,and brain in control of food intake and blood glucose[J].Annu Rev Nutr,2014,(34):237-260.
[7]Upadhyay RC. Impact of climate change on livestock production and health[M].Proceeding of the ICICCA;Sri Lanka,2011:19-39.
[8]St-Pierre NR,Cobanov B,Schnitkey G. Economic Losses from Heat Stress by US Livestock Industries[J].J Dairy Sci,2003,(86):52-77.
[9]Gu MJ,Song SK,Park SM,Lee IK,Yun CH. Bacillus subtilis protects porcine intestinal barrier from deoxynivalenol via improved zonula occludens-1 expression[J].Asian Australas J Anim Sci,2014,(27):580-586.
[10]Pearce SC,Mani V,Boddicker RL,Johnson JS,Weber TE,Ross JW,Rhoads RP,Baumgard LH,Gabler NK.Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs[J]. PLoS One,2013,(8):70215.
[11]Turner JR,Rill BK,Carlson SL,Carnes D,Kerner R,Mrsny RJ,Madara JL. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation[J].Am J Physiol-Cell Phys,1997,(273):C1378-C1385.
[12]Meng D,Hu Y,Xiao C,Wei T,Zou Q,Wang M. Chronic heat stress inhibits immune responses to H5N1 vaccination through regulating CD4(+)CD25(+)Foxp3(+)Tregs[J].Biomed Res Int,2013,(16):859.
[13]Trent MS,Stead CM,Tran AX,Hankins JV. Diversity of endotoxin and its impact on pathogenesis[J].J Endotoxin Res,2006,(12):205-223.
[14]Im J,Baik JE,Kim KW,Kang SS,Jeon JH,Park OJ,Kim HY,Kum KY,Yun CH,Han SH. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells[J].Int Immunol,2015,(27):381-391.
[15]Lam JS,Taylor VL,Islam ST,Hao Y,Kocincova D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide[J].Front Microbiol,2011,(2):118.
[16]Pearce SC,Sanz-Fernandez MV,Hollis JH,Baumgard LH,Gabler NK. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs[J].J Anim Sci,2014,(92):5444-5454.
[17]Shen YB,Weaver AC,Kim SW. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine[J].J Anim Sci,2014,(92):5530-5539.
[18]Zhao Y,Weaver AC,F(xiàn)ellner V,Payne RL,Kim SW. Amino acid fortified diets for weanling pigs replacing fish meal and whey protein concentrate:Effects on growth,immune status,and gut health[J].J Anim Sci Biotechnol,2014,(5):57.
[19]Horn N,Ruch F,Miller G,Ajuwon KM,Adeola O. Impact of acute water and feed deprivation events on growth performance,intestinal characteristics,and serum stress markers in weaned pigs[J].J Anim Sci,2014,(92):4407-4416.
[20]Wang W,Wu Z,Lin G,Hu S,Wang B,Dai Z,Wu G. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells[J].J Nutr,2014,(144):1540-1548.
[21]Weaver AC,Campbell JM,Crenshaw JD,Polo J,Kim SW. Efficacy of dietary spray dried plasma protein to mitigate the negative effects on performance of pigs fed diets with corn naturally contaminated with multiple mycotoxins[J].J Anim Sci,2014,(92):3878-3886.
[22]Gu MJ,Song SK,Lee IK,Ko S,Han SE,Bae S,Ji SY,Park BC,Song KD,Lee HK,Han SH,Yun CH. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol[J].Vet Res,2016,(47):25.
[23]Bracarense AP,Lucioli J,Grenier B,Drociunas Pacheco G,Moll WD,Schatzmayr G,Oswald IP. Chronic ingestion of deoxynivalenol and fumonisin,alone or in interaction,induces morphological and immunological changes in the intestine of piglets[J].Br J Nutr,2012,(107):1776-1786.
[24]Wu L,Liao P,He L,Ren W,Yin J,Duan J,Li T. Growth performance,serum biochemical profile,jejuna morphology,and the expression of nutrients transporter genes in deoxynivalenol(DON)-challenged growing pigs[J].BMC Vet Res,2015,(11):144.
[25]Bouhet S,Hourcade E,Loiseau N,F(xiàn)ikry A,Martinez S,Roselli M,Galtier P,Mengheri E,Oswald IP. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells[J].Toxicol Sci,2004,(77):165-171.
[26]Bouhet S,Le Dorze E,Peres S,F(xiàn)airbrother JM,Oswald IP.Mycotoxin fumonisin B1 selectively downregulates the basal IL-8 expression in pig intestine:in vivo and in vitro studies[J].Food Chem Toxicol,2006,(44):1768-1773.
[27]Chaytor AC,See MT,Hansen JA,de Souza AL,Middleton TF,Kim SW. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs[J].J Anim Sci,2011,(89):124-135.
[28]Weaver AC,See MT,Hansen JA,Kim YB,De Souza ALP,Middleton TF,Kim SW. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth,organ health and immune status during chronic exposure[J].Toxins,2013,(5):1261-1281.
[29]Weaver AC,See MT,Kim SW. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone[J].Toxins,2014,(6):3336-3353.
[30]Obremski K,Gonkowski S,Wojtacha P. Zearalenone-induced changes in the lymphoid tissue and mucosal nerve fibers in the porcine ileum[J]. Pol J Vet Sci,2015,(18):357-365.
[31]Obremski K,Wojtacha P,Podlasz P,Zmigrodzka M. The influence of experimental administration of low zearalenone doses on the expression of Th1 and Th2 cytokines and on selected subpopulations of lymphocytes in intestinal lymph nodes[J].Pol J Vet Sci,2015,(18):489-497.
[32]Verbrugghe E,Vandenbroucke V,Dhaenens M,Shearer N,Goossens J,De Saeger S,Eeckhout M,D’Herde K,Thompson A,Deforce D,Boyen F,Leyman B,Van Parys A,De Backer P,Haesebrouck F,Croubels S,Pasmans F. T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs,despite marked effects on Salmonella-host cell interactions[J].Vet Res,2012,(43):22.
[33]Obremski K,Podlasz P,Zmigrodzka M,Winnicka A,Wozny M,Brzuzan P,Jakimiuk E,Wojtacha P,Gajecka M,Zielonka L,Gajecki M. The effect of T-2 toxin on percentages of CD4+,CD8+,CD4+ CD8+ and CD21+ly mphocytes,and mRNA expression levels of selected cytokines in porcine ileal Peyer’s patches[J].Pol J Vet Sci,2013,(16):341-349.
[34]Kiarie E,Bhandari S,Scott M,Krause DO,Nyachoti CM. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli(K88)[J].J Anim Sci,2011,(89):1062-1078.
[35]Yang KM,Jiang ZY,Zheng CT,Wang L,Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J].J Anim Sci,2014,(92):1496-1503.
[36]Fairbrother JM,Nadeau E,Gyles CL. Escherichia coli in postweaning diarrhea in pigs:An update on bacterial types,pathogenesis,and prevention strategies[J].Anim Health Res Rev,2005,(6):17-39.
[37]Yang KM,Jiang ZY,Zheng CT,Wang L,Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J].J Anim Sci,2014,(92):1496-1503.
[38]Collier CT,Carroll JA,Ballou MA,Starkey JD,Sparks JC. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs[J].J Anim Sci,2011,(89):52-58.
[39]Xiao D,Tang Z,Yin Y,Zhang B,Hu X,F(xiàn)eng Z,Wang J.Effects of dietary administering chitosan on growth performance,jejunal morphology,jejunal mucosal sIgA,occludin,claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli[J].Int Immunopharmacol,2013,(17):670-676.
[40]Xu C,Wang Y,Sun R,Qiao X,Shang X,Niu W. Modulatory effects of vasoactive intestinal peptide on intestinal mucosal immunity and microbial community of weaned piglets challenged by an enterotoxigenic Escherichia coli(K88)[J].PLoS One,2014,(9):104183.
[41]Song D,Park B. Porcine epidemic diarrhoea virus:A comprehensive review of molecular epidemiology,diagnosis,and vaccines[J].Virus Genes,2012,(44):167-175.
[42]Cao L,Ge X,Gao Y,Ren Y,Ren X,Li G. Porcine epidemic diarrhea virus infection induces NF-kappaB activation through the TLR2,TLR3,and TLR9 pathways in porcine intestinal epithelial cells[J].J Gen Virol,2015,(96):1757-1767.
[43]de Arriba ML,Carvajal A,Pozo J,Rubio P. Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV[J].Vet Immunol Immunopathol,2002,(84):1-16.
[44]Gao Q,Zhao S,Qin T,Yin Y,Yang Q. Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells[J].Vet Microbiol,2015,(179):131-141.
[45]Chen Q,Gauger P,Stafne M,Thomas J,Arruda P,Burrough E,Madson D,Brodie J,Magstadt D,Derscheid R,Welch M,Zhang J. Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets[J].Virology,2015,(482):51-59.
[46]Kim L,Hayes J,Lewis P,Parwani AV,Chang KO,Saif LJ. Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus(TGEV)and porcine respiratory coronavirus(PRCV)field isolates cocirculating in a swine herd[J].Arch Virol,2000,(145):1133-1147.
[47]Cheon IS,Park SM,Lee HJ,Hong JE,Ji SY,Shim BS,Kim KH,Heo PS,Kim YY,Jung HJ,Ka H,Han SH,Song M,Yun CH. Functional characteristics of porcine peripheral T cells stimulated with IL-2 or IL-2 and PMA[J]. Res Vet Sci,2014,(96):54-61.