甘亦凡 成慶林 孫 巍 蘇文坤 劉 揚(yáng)
(東北石油大學(xué)提高油氣采收率教育部重點(diǎn)實(shí)驗(yàn)室)
甘亦凡 成慶林 孫 巍 蘇文坤 劉 揚(yáng)
(東北石油大學(xué)提高油氣采收率教育部重點(diǎn)實(shí)驗(yàn)室)
(1)
(2)
圖1 各油田原油化學(xué)反應(yīng)計(jì)算結(jié)果對(duì)比
(3)
(4)
在計(jì)算含蠟原油活度系數(shù)時(shí),可采用較為精確的正規(guī)溶液理論模型,即:
(5)
其中,Vi為組分摩爾體積,δi為組分溶解度參數(shù),T為溶液溫度,溶解度參數(shù)δm=∑δiφi,φi=xiVi(∑xiVi)-1。因此,只要計(jì)算出組分i的溶解度參數(shù)和摩爾體積就可以得到活度系數(shù)。對(duì)于溶解度參數(shù),Riazi M R和Al-Sahhaf T A提出了一個(gè)正構(gòu)烷烴液相溶解度參數(shù)的關(guān)系式[38],Leelavanichkul P等建立了一個(gè)異構(gòu)環(huán)烷烴、芳香烴和組分i固相溶解度參數(shù)的表達(dá)式[39]。對(duì)于組分i的液相摩爾體積,可以由ViL=Mi/di25和Leelavanichkul P等建立的各碳?xì)浠衔镆合嗝芏惹蟮?。?duì)于組分i的固相摩爾體積,當(dāng)體系中組分碳數(shù)不小于7時(shí),可從相關(guān)化工手冊(cè)查詢(xún),當(dāng)碳數(shù)大于7時(shí),可由經(jīng)驗(yàn)公式計(jì)算。
[1] 萬(wàn)宇飛,鄧道明,劉霞,等.稠油摻稀管道輸送工藝特性[J].化工進(jìn)展,2014,33(9):2293~2297.
[2] 鄭志,王樹(shù)立,武玉憲,等.改善油氣管道輸送性能的相關(guān)技術(shù)[J].油氣儲(chǔ)運(yùn),2010,29(2):100~106.
[3] 侯磊,齊世明,李靜.原油管道輸送系統(tǒng)節(jié)能降耗工作的若干思考[J].油氣田地面工程,2008,27(11):62~63.
[4] Mohammadi A,Mehrpooya M.Exergy Analysis and Optimization of an Integrated Micro Gas Turbine,Compressed Air Energy Storage and Solar Dish Collector Process[J].Journal of Cleaner Production,2016,139(15):372~383.
[5] Ameri M,Askari M.Enhancing the Efficiency of Crude Oil Transportation Pipeline:A Novel Approach[J].International Journal of Exergy,2013,13(4):523~542.
[6] Pal R.Exergy Destruction in Pipeline Flow of Surfactant Stabilized Oil-in-Water Emulsions[J].Energies,2014,7(11): 7602~7619.
[11] 日本能量變換懇話會(huì)編.能量有效利用技術(shù)[M].北京:化學(xué)工業(yè)出版社,1984:131~139.
[14] Szargut J.International Progress in Second Law Analysis[J].Energy,1980,5(8-9):709~718.
[16] Rickert L.The Efficiency of Energy-Utilization in Chemical Process[J].Chemical Engineering Science,1974,29(7): 1613~1620.
[17] 袁一,胡德生.化工過(guò)程熱力學(xué)分析法[M].北京:化學(xué)工業(yè)出版社,1985:177~216.
[20] Szargut J,Styrylska T.Angenaherte Bestimmung der Exergie von Brennostoffen[J].Brennst W?rme Kraft,1964,16(12): 589~596.
[21] Shich J H,Fan L T.Estimation of Energy(Enthalpy) and Exergy(Availability) Contents in Structurally Complicated Materials[J].Energy Soures,1982,6(1-2):l~46.
[24] Song G,Xiao J,Zhao H,et al.A Unified Correlation for Estimating Specific Chemical Exergy of Solid and Liquid Fuels[J].Energy,2012,40(1):164~173.
[25] Kaushik S C,Singh O K.Estimation of Chemical Exergy of Solid,Liquid and Gaseous Fuels Used in Thermal Power Plants[J].Journal of Thermal Analysis &Calorimetry,2014,115(1):903~908.
[27] Nishida K,Takagi T,Kinoshita S.Analysis of Entropy Generation and Exergy Loss during Combustion[J].Proceedings of the Combustion Institute,2002,29(1):869~874.
[30] 張晉.以煤氣化為核心的多聯(lián)產(chǎn)系統(tǒng)的能量分析[D].北京:清華大學(xué),2003.
[31] Lior N,Sarmiento W.The Exergy Fields in Transport Processes:Their Calculation and Use[J].Energy,2006,31(5): 553~578.
[32] Ji H Y,Tohidi B,Danesh A,et al.Wax Phase Equilibria:Developing a Thermodynamic Model Using a Systematic Approach[J].Fluid Phase Equilibria,2004,216(2):201~207.
[33] 陳五花.原油中石蠟沉積的熱力學(xué)研究[D].大連:大連理工大學(xué),2006.
[34] Broadhurst M G.An Analysis of the Solid Phase Behavior of the Normal Paraffins[J].Journal of Research of the National Bureau of Standards A,1962,66(3):241~249.
[35] Lira-Galeana C,Firoozabadi A,Prausnitz J M.Thermodynamics of Wax Precipitation in Petroleum Mixtures[J].Aiche Journal,1996,42(1):239~248.
[36] Pan H,Firoozabadi A,Fotland P.Pressure and Composition Effect on Wax Precipitation:Experimental Data and Model Results[J].SPE Production &Facilities,1997,12(4):579~592.
[37] Won K W.Thermodynamics for Solid Solution-Liquid-Vapor Equilibria:Wax Phase Formation from Heavy Hydrocarbon Mixtures[J].Fluid Phase Equilibria,1986,30(15):265~279.
[38] Riazi M R,Al-Sahhaf T A.Physical Properties of Heavy Petroleum Fractions and Crude Oils[J].Fluid Phase Equilibria,1996,117(1-2):217~224.
[39] Leelavanichkul P,Deo M D,Hanson F V.Crude Oil Characterization and Regular Solution Approach to Thermodynamic Modeling of Solid Precipitation at Low Pressure[J].Petroleum Science and Technology,2004,22(7-8):973~990.
[40] Gaggioli R A.The Concept of Available Energy[J].Chemical Engineering Science,1961,16(1-2):87~96.
[41] Gaggioli R A.The Concepts of Thermodynamic Friction,Thermal Available Energy,Chemical Available Energy and Thermal Energy[J].Chemical Engineering Science,1962,17(7):523~530.
[42] Soma J.The New Energy Hyperequation and Its Implications[J].Energy Engineering,1985,82(2):139~145.
[43] Soma J.Exergy Transfer:A New Field of Energy Endeavor[J].Energy Engineering,1985,82(4):219~225.
[44] 第六屆全國(guó)熱力學(xué)學(xué)術(shù)會(huì)議委員會(huì).熱力學(xué)分析與節(jié)能:論文集[M].北京:科學(xué)出版社,1993:75~81.
[52] Wang S P,Chen Q L,Yin Q H,et al.A Phenomenological Equation of Exergy Transfer and Its Application[J].Energy,2005,30(1):85~95.
[53] Acevedo L,Usón S,Uche J.Exergy Transfer Analysis of Microwave Heating Systems[J].Energy,2014,68(3):349~363.
ResearchProgressintheChemicalExergyCompositionandApplicationinWaxyCrudeOilPipelineTransportationProcess
GAN Yi-fan,CHENG Qing-lin,SUN Wei,SU Wen-kun,LIU Yang
(MOEKeyLaboraryforEnhancingOilandGasRecoveryRatio,NortheastPetroleumUniversity)
The theoretical achievements and development status of chemical exergy reference environment’s selection,chemical reaction exergy,chemical diffusion exergy and chemical exergy transfer at home and abroad were reviewed;through considering the actual application of chemical exergy analysis and chemical exergy transfer in engineering,the main problems existed in this field were indicated.
waxy crude oil pipeline transportation process,reaction exergy,diffusion exergy,chemical exergy transfer
國(guó)家自然科學(xué)基金項(xiàng)目(51534004);黑龍江省普通高??萍紕?chuàng)新團(tuán)隊(duì)基金項(xiàng)目(2009td08)
甘亦凡(1992-),博士研究生,從事熱力學(xué)分析與油氣儲(chǔ)運(yùn)系統(tǒng)綜合節(jié)能的研究,2905818298@qq.com。
TQ051.21
A
0254-6094(2017)04-0375-07
2017-01-19)