李晨晨 周再知 梁坤南 黃桂華 楊 光
(中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)研究所,廣州 510520)
南藥立體經(jīng)營(yíng)模式土壤質(zhì)量綜合評(píng)價(jià)
李晨晨 周再知*梁坤南 黃桂華 楊 光
(中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)研究所,廣州 510520)
為篩選優(yōu)化的南藥立體經(jīng)營(yíng)模式,本試驗(yàn)選用適宜南方種植的4種藥用植物,采用隨機(jī)區(qū)組設(shè)計(jì),在已有的杉木林下,構(gòu)建4種林藥立體經(jīng)營(yíng)模式,分別是杉木(Cunninghamialanceolata)+梅葉冬青(Ilexasprella)+艾納香模式(Blumeabalsamifera)(簡(jiǎn)稱SMA)、杉木+梅葉冬青+廣金錢草(Desmodiumstyracifolium)模式(簡(jiǎn)稱SMG),杉木+梅葉冬青+草珊瑚(Sarcandraglabra)模式(簡(jiǎn)稱SMC),杉木+梅葉冬青模式(SM)),以杉木純林(簡(jiǎn)稱CK)為對(duì)照,分析不同模式內(nèi)0~20和20~40 cm土層土壤理化性質(zhì)和土壤酶活性變化,并運(yùn)用主成分分析法綜合評(píng)價(jià)模式對(duì)林地土壤質(zhì)量的影響。結(jié)果表明(1)與對(duì)照(純林)相比,4種林藥模式下的土壤容重均顯著下降,且隨土層深度的增加而增加。0~20 cm土層各模式土壤容重降幅分別為:模式SMA13.4%、模式SMG 14.1%、模式SMC 20.8%和模式SM 22.3%、;20~40 cm土層的土壤容重各處理降幅為7.0%~15.5%。各模式土壤質(zhì)量含水量、田間持水量、毛管持水量、毛管孔隙度和總孔隙度均顯著提高(P<0.05),且隨土層深度的增加而減小,0~20 cm土層,均是以模式SM最大,分別比對(duì)照提高54.9%、100.1%、88.6%、44.9%和36.8%;20~40 cm土層,均以模式SMG最大,分別是對(duì)照的61.5%、67.6%、69.7%、43.4%和44.0%。(2)0~20 cm土層pH呈下降趨勢(shì),降幅0.7%~6.2%,20~40 cm土層中各處理pH差異較大,但均未達(dá)到顯著水平。除全鉀外,其余土壤養(yǎng)分含量各模式均隨著土層深度的增加而降低。0~20 cm土層中,有機(jī)質(zhì)、全氮、全磷、速效氮磷鉀、交換性鈣和鎂以及陽(yáng)離子交換量均以模式SMC含量最高,分別比對(duì)照提高79.7%、69.5%、30.3%、91.4%、279.4%、166.1%、91.6%、677.0%和70.3%。全鉀含量以模式SMG最高,比對(duì)照增加了26.9%。(3)各處理土壤酶活性均隨著土層深度的增加而降低。在0~20 cm土層中,與對(duì)照相比,各模式土壤的脲酶、蔗糖酶、多酚氧化酶和酸性磷酸活性差異顯著(P<0.05),其中脲酶和多酚氧化酶活性以模式SMC活性最高,分別是對(duì)照的1.7倍和1.6倍,蔗糖酶活性各模式皆低于對(duì)照,降幅59.3%~69.4%;酸性磷酸酶活性模式SMA最高,比對(duì)照提高78.7%。20~40 cm土層中,各模式及對(duì)照間僅酸性磷酸酶活性差異達(dá)到顯著水平。(4)南藥立體經(jīng)營(yíng)模式對(duì)土壤質(zhì)量影響的綜合排序?yàn)椋J絊MC(2.811)>模式SMG(1.293)>模式SMA(0.111)>模式SM(-1.544)>CK(-2.671)。
南藥;立體經(jīng)營(yíng);土壤質(zhì)量;綜合評(píng)價(jià);主成分分析
杉木(Cunninghamialanceolata)是我國(guó)特有的速生用材樹種,栽培歷史悠久,用途廣泛。連栽和單一化經(jīng)營(yíng)以及自毒作用,導(dǎo)致出現(xiàn)土壤地力衰退和產(chǎn)量下降等現(xiàn)象,主要表現(xiàn)在土壤物理性質(zhì)[1~2]、化學(xué)性質(zhì)[3~4]、微生物區(qū)系及生化活性方面[5~6]。針對(duì)杉木人工林衰退現(xiàn)象,許多學(xué)者對(duì)其衰退機(jī)理進(jìn)行了研究[7~9],并提出了構(gòu)建杉木混交林、保護(hù)和恢復(fù)林下植被的解決方法。大量研究表明[10~12]選擇適當(dāng)?shù)臉浞N和植被與杉木進(jìn)行混交或者間作,能夠增加生物多樣性,提高群落結(jié)構(gòu)穩(wěn)定性,增加林地凋落物量,加速其分解速度,提高林地土壤質(zhì)量。
林藥復(fù)合經(jīng)營(yíng)模式是將適宜林下生長(zhǎng)的藥用植物重新引種到自然環(huán)境下進(jìn)行野生化栽培,在充分利用林地資源的同時(shí),使野生藥用植物資源得到恢復(fù),是一種科學(xué)合理的種植模式[13~14]。杉—藥模式便是其中典型的一種,一方面考慮到復(fù)合經(jīng)營(yíng)對(duì)退化杉木林地的生態(tài)效益,另一方面也能兼顧到藥用植物的經(jīng)濟(jì)效益,是我國(guó)南方地區(qū)杉木人工林可持續(xù)經(jīng)營(yíng)的一種重要經(jīng)營(yíng)模式。前人對(duì)此也做了一些研究,張鼎華等[15]和Yang等[16]研究發(fā)現(xiàn)杉木林下種植砂仁(Amomumvillosum)后,土壤容重減小,土壤孔隙度和持水能力、有機(jī)質(zhì)、全氮、全磷、速效磷、速效鉀的含量有不同程度的增加,各種土壤酶活性均大于未種植林地,土壤微生物含量增加。林慶富[17]對(duì)福建地區(qū)杉木林下種植草珊瑚(Sarcandraglabra)研究后發(fā)現(xiàn),間種草珊瑚四年后0~20 cm土層中有機(jī)質(zhì)、全氮、全磷、水解性氮、速效磷、速效鉀分別增加8.0%、19%、10.4%、8.6%、8.5%、19.9%,20~40 cm土層也有不同程度的提高。目前多數(shù)研究主要針對(duì)單一藥用植物及模式,而對(duì)多層立體復(fù)合經(jīng)營(yíng)模式研究甚少,本試驗(yàn)通過選取適應(yīng)南方生長(zhǎng)的4種藥用植物,構(gòu)建喬木+灌+草立體經(jīng)營(yíng)模式,探究不同林藥立體經(jīng)營(yíng)模式對(duì)退化杉木林地土壤質(zhì)量的影響,綜合篩選適宜的林藥立體經(jīng)營(yíng)模式,為高效林藥培育體系的建立及林下經(jīng)濟(jì)的發(fā)展提供科學(xué)依據(jù)。
1.1 研究地區(qū)概況
試驗(yàn)地位于廣東省惠州市惠東縣國(guó)營(yíng)梁化林場(chǎng)內(nèi)(114°42′25″~114°51′5″E,23°8′13″~23°13′34″N,海拔60~1 100 m)。屬南亞熱帶季風(fēng)氣候,雨量充沛,氣候溫暖。年平均氣溫為22.0℃,最低2.9℃,最高氣溫36.4℃,全年降水量在1 800 mm左右,全年平均相對(duì)濕度81%。植被類型為南亞熱帶常綠闊葉林,喬木種類主要為樟科、殼斗科和茶科。1956年,林場(chǎng)砍伐原生植被后種植杉木。所選試驗(yàn)地為2001年第二次砍伐后的天然萌芽更新林,林分郁閉度0.45~0.5,平均高8.1 m,平均胸徑11.2 cm。試驗(yàn)地成土母質(zhì)為花崗巖,土壤屬南亞熱帶赤紅壤且試驗(yàn)區(qū)距離較近,土壤性質(zhì)基本能保持一致。坡度5~8°,坡向?yàn)殛?yáng)坡,坡位為中坡。
1.2 試驗(yàn)設(shè)計(jì)與方法
1.2.1 試驗(yàn)設(shè)計(jì)
采用隨機(jī)區(qū)組設(shè)計(jì),5個(gè)處理,3次重復(fù),每個(gè)試驗(yàn)小區(qū)面積240 m2(長(zhǎng)20 m×寬12 m),試驗(yàn)設(shè)計(jì)如圖1所示,于2013年4月,將灌木型藥用植物梅葉冬青(Ilexasprella)按照1.5 m×2.0 m的株行距,挖穴種植于杉木萌芽林內(nèi),構(gòu)建杉木+梅葉冬青復(fù)合模式。小區(qū)邊緣橫行和豎行不種植,每個(gè)小區(qū)70株(10×7),種植時(shí)苗均高40 cm。2015年3月,按0.3 cm×0.4 cm株行距將廣金錢草(Desmodiumstyracifolium)、艾納香(Blumeabalsamifera)和草珊瑚(Sarcandraglabra)套種于梅葉冬青下,構(gòu)成喬灌草三層立體復(fù)合經(jīng)營(yíng)模式。試驗(yàn)處理包括模式SMA(杉木+梅葉冬青+艾納香),模式SMG(杉木+梅葉冬青+廣金錢草),模式SMC(杉木+梅葉冬青+草珊瑚),模式SM(杉木+梅葉冬青),所有小區(qū)常規(guī)化管理,每2~3個(gè)月除草一次,每年施肥2次。
圖1 試驗(yàn)設(shè)計(jì)Fig.1 Layout of the experimental design
1.2.2 土壤取樣方法
于2016年8月,種植小區(qū)內(nèi)沿對(duì)角線,在兩頭和中間位置,挖取土壤剖面,用環(huán)刀分別取0~20和20~40 cm的土樣用于土壤物理性質(zhì)的測(cè)定。同時(shí)用土鉆多點(diǎn)采集0~20和20~40 cm深度的土壤,土樣混勻后用四分法取對(duì)角線土樣作為一份測(cè)定土樣,3次重復(fù)。土樣經(jīng)自然分干后,揀去動(dòng)植物殘?bào)w、石塊等。研磨后分別過60目和100目篩,裝袋保存,用于土壤養(yǎng)分和土壤酶活性的測(cè)定。杉木純林則隨機(jī)選取采樣點(diǎn),取樣方法同上。
1.2.3 土壤理化性質(zhì)和酶活性分析
土壤物理性質(zhì)采用環(huán)刀法,具體參見《LY/T 1215-1999森林土壤水分—物理性質(zhì)的測(cè)定》。土壤pH、有機(jī)質(zhì)、全氮、全磷、全鉀、有效氮、有效磷、速效鉀、交換性鈣、交換性鎂、陽(yáng)離子交換量的分析測(cè)定參考魯如坤[18]的《土壤農(nóng)業(yè)化學(xué)分析方法》。土壤過氧化氫酶活性、土壤脲酶活性、土壤蔗糖酶活性參考楊蘭芳等[19]《紫外分光光度法測(cè)定土壤過氧化氫酶活性》和關(guān)松蔭[20]《土壤酶及其研究法》,土壤過氧化氫酶采用紫外分光光度法,單位以[mg H2O2·g-1DW·1/3 h-1]表示,土壤脲酶活性采用采用苯酚—次氯酸鈉比色法,單位為[μg NH4-N·g-1DW·h-1]表示;土壤蔗糖酶采用3,5-二硝基水楊酸比色法,單位為[mg glucose·g-1DW·d-1]表示。多酚氧化酶活性采用L-DOPA法,參見Richard P.Dick[21]所著的《Methods of Soil Enzymology》,單位為[μmol product fromed·g-1DW·h-1];酸性磷酸酶活性采用對(duì)硝基苯磷酸二鈉比色法,單位為[μg p-Np·g-1·h-1],參見吳金水[22]《土壤微生物生物量測(cè)定方法及其應(yīng)用》。
1.2.4 數(shù)據(jù)分析
采用Excel 2007進(jìn)行數(shù)據(jù)整理、SPASS 19.0軟件進(jìn)行統(tǒng)計(jì)分析、Duncan多重比較。主成分分析法綜合評(píng)價(jià),首先對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,再運(yùn)用SPASS 19.0統(tǒng)計(jì)軟件對(duì)標(biāo)準(zhǔn)化數(shù)據(jù)進(jìn)行分析,計(jì)算各因子的貢獻(xiàn)率和累積貢獻(xiàn)率。提取累計(jì)貢獻(xiàn)率大于85%的前n個(gè)因子作為主成分,計(jì)算各處理各主成分得分Wk。將各指標(biāo)公因子方差占總公因子方差的比例作為各主成分權(quán)重Yk,構(gòu)建綜合評(píng)價(jià)函數(shù)
F=∑WkYk(k=1,2,3,…,n)
(1)
2.1 南藥立體模式對(duì)土壤物理性質(zhì)的影響
由表1可知,與對(duì)照相比,4種林藥模式的土壤容重均顯著下降,且隨土層深度的增加而增加。0~20 cm土層的土壤容重降幅分別為:模式SM 22.3%、模式SMA 13.4%、模式SMG 14.1%、模式SMC 20.8%;20~40 cm土層的土壤容重各處理降幅為7.0%~15.5%。4種林藥經(jīng)營(yíng)模式2個(gè)土層的土壤質(zhì)量含水量、田間持水量、毛管持水量、毛管孔隙度和總孔隙度均顯著提高(P<0.05),且隨土層深度的增加而減??;0~20 cm土層,均是以模式SM最大,分別比對(duì)照提高54.9%、100.1%、88.6%、44.9%和36.8%;20~40 cm土層,以模式SMG優(yōu)化,分別比對(duì)照提高61.5%、67.6%、69.7%、43.4%和44.0%。土壤非毛管孔隙度各模式2個(gè)土層之間差異均未達(dá)到顯著水平。
表1 不同南藥立體經(jīng)營(yíng)模式土壤水分—物理性質(zhì)比較
注:均值±標(biāo)準(zhǔn)誤差 同一土層數(shù)據(jù)后不同小寫字母表示不同模式之間差異達(dá)顯著水平(P<0.05)。
Note:Mean±SE Data followed by different letters within column within a treatment were significantly different atP<0.05.
2.2 南藥立體經(jīng)營(yíng)模式對(duì)土壤養(yǎng)分的影響
由圖2可以看出,構(gòu)建林藥復(fù)合模式后,0~20 cm土層pH出現(xiàn)下降趨勢(shì),降幅0.7%~6.2%,而20~40 cm土層各模式差異很大,其中模式SM和模式SMC減小,其余增大,但是各土層各模式之間差異均未達(dá)到顯著水平。土壤有機(jī)質(zhì)含量2土層中均以模式SMC最大,分別比對(duì)照提高79.7%和5.6%,且隨著土層深度的增加而減小,但在20~40 cm土層中各模式差異未達(dá)到顯著水平。
土壤全量養(yǎng)分方面(圖3),土壤全氮和全磷含量隨著土層深度的增加而減小,全鉀相反。在0~20 cm土層各模式以及對(duì)照之間土壤全氮、全鉀含量差異達(dá)到顯著水平(P<0.05),全磷含量各模式間差異不顯著。其中全氮和全磷以模式SMC含量最高,是對(duì)照的1.7和1.3倍。全鉀含量以模式SMG最高,比對(duì)照增加了26.9%。20~40 cm土層,土壤全氮、全鉀和全鉀含量均以模式SMC含量最高,但各模式以及對(duì)照之間差異均未達(dá)到顯著水平。
速效養(yǎng)分方面(圖4),速效氮、磷、鉀含量均隨著土層深度的增加后降低。在0~20cm土層中各模式的速效養(yǎng)分含量均顯著(P<0.05)高于對(duì)照,且均以模式SMC的改良效果最好,比對(duì)照提高了91.4%、279.4%和166.1%。20~40cm土層中,各模式間差異較大,其中有效氮和有效磷含量各模式以及對(duì)照之間差異均未達(dá)到顯著水平,速效鉀以模式SMC含量最高,比對(duì)照提高了103.2%。
圖2 不同南藥立體經(jīng)營(yíng)模式土壤酸堿度和有機(jī)質(zhì)比較 均值±標(biāo)準(zhǔn)誤差 同一土層數(shù)據(jù)后不同小寫字母表示不同模式之間差異達(dá)顯著水平(P<0.05),下同。Fig.2 Comparison of soil pH and organic matter in different patters Mean±SE Data followed by different letters within column within a treatment were significantly different at P<0.05,the same as below.
圖3 不同南藥立體經(jīng)營(yíng)模式土壤全量養(yǎng)分比較Fig.3 Comparison of soil total nutrient in different patters
圖4 不同南藥立體經(jīng)營(yíng)模式土壤速效養(yǎng)分比較Fig.4 Comparison of soil available nutrient in different patters
圖5 不同南藥立體模式土壤交換性養(yǎng)分和陽(yáng)離子交換量比較Fig.5 Comparison of soil exchangeable nutrient and CEC in different patters
交換性養(yǎng)分和陽(yáng)離子交換量方面(圖5),0~20 cm土層中,各處理交換性鈣含量在18.52~35.49 g·kg-1,交換性鎂含量在4.39~34.11 g·kg-1,陽(yáng)離子離子交換量8.15~12.95 cmol·kg-1,且各模式之間差異顯著(P<0.05),均以模式SMC最大,分別比對(duì)照提高91.6%、677.0%和70.3%。在20~40 cm土層中各模式交換性養(yǎng)分和陽(yáng)離子交換量差異均未達(dá)到顯著水平。
2.3 南藥立體經(jīng)營(yíng)模式對(duì)土壤酶活性的影響
從圖6可以看出,各處理土壤酶活性均隨著土層深度的增加而減小。在0~20 cm土層中,各模式以及對(duì)照間的土壤的脲酶、蔗糖酶、多酚氧化酶和酸性磷酸活性差異達(dá)顯著水平(P<0.05),過氧化氫酶活性各模式間差異不顯著,其中脲酶多酚氧化酶活性以模式SMC活性最高,是對(duì)照的1.7倍和1.6倍;蔗糖酶活性各模式皆低于對(duì)照,降幅59.3%~69.4%;酸性磷酸酶活性模式SMA最高,比對(duì)照提高78.7%。20~40 cm土層中,各模式及對(duì)照間僅酸性磷酸酶活性差異達(dá)到顯著水平(P<0.05),且各模式活性均高于對(duì)照,其中又以模式SMG活性最高,比對(duì)照提高71.8%。
2.4南藥立體經(jīng)營(yíng)模式對(duì)土壤質(zhì)量影響綜合評(píng)價(jià)
選取各模式0~20 cm土層的差異顯著的18個(gè)土壤指標(biāo)進(jìn)行主成分分析,結(jié)果見表2,由表可知,一共提取3個(gè)主成分,3個(gè)主成分累計(jì)貢獻(xiàn)率為88.260%,包含了原始數(shù)據(jù)的絕大部分信息,也符合主成分分析累積貢獻(xiàn)率≥85%的條件。
由表3可知不同林藥復(fù)合經(jīng)營(yíng)模式對(duì)土壤質(zhì)量影響綜合評(píng)價(jià)得分大小排序?yàn)镾MC(2.811)>SMG(1.293)>SMA(0.111)>SM(-1.544)>CK(-2.671)。
前人的大量研究結(jié)果表明,復(fù)合經(jīng)營(yíng)模式土壤結(jié)構(gòu)、水分條件和養(yǎng)分條件要優(yōu)于單一模式,能夠起到改良土壤的作用[23~26]。但是前人對(duì)該現(xiàn)象的解釋很少也不詳盡,理論上來說單位面積土地上,所種植的植物越多,其對(duì)養(yǎng)分和水分的消耗就越大,而復(fù)合經(jīng)營(yíng)所得出的結(jié)論看上去似乎與之矛盾,這該如何解釋呢?對(duì)于本研究來說,較之對(duì)照,林藥立體復(fù)合經(jīng)營(yíng)模式對(duì)土壤結(jié)構(gòu)、水分含量以及養(yǎng)分含量都有不同程度的改善,可以考慮以下幾個(gè)方面的原因:首先從復(fù)合模式內(nèi)部環(huán)境來說,林藥立體復(fù)合經(jīng)營(yíng)模式相對(duì)于純林經(jīng)營(yíng)模式能夠產(chǎn)生更多凋落物,具有更高的土壤酶活性,凋落物的大量分解有助于土壤中可利用養(yǎng)分動(dòng)態(tài)循環(huán)量的增加[27~28]。有研究發(fā)現(xiàn),在一些森林生態(tài)系統(tǒng)中,有超過90%的氮和磷以及超過60%的其他營(yíng)養(yǎng)元素是通過養(yǎng)分循環(huán)從植物體內(nèi)進(jìn)入到土壤中的[29]。凋落物分解產(chǎn)生的大量有機(jī)質(zhì)也有助于優(yōu)質(zhì)土壤團(tuán)粒結(jié)構(gòu)的形成,良好的土壤物理結(jié)構(gòu),具有更好的通氣保水功能[30]。另外立體經(jīng)營(yíng)模式各土層的土壤根系含量要大于純林模式,根系的一些翻轉(zhuǎn)運(yùn)動(dòng)和穿插運(yùn)動(dòng),使得土壤更加疏松多孔隙,這對(duì)于土壤水分和養(yǎng)分的保持是很有利的。此外根系的死亡分解也能夠?yàn)橥寥婪颠€養(yǎng)分,提高養(yǎng)分循環(huán)量。同時(shí)一些豆科植物能夠通過固定N2來獲得養(yǎng)分,例如本試驗(yàn)中的廣金錢草便是豆科植物,可能存在固氮作用。立體經(jīng)營(yíng)模式相對(duì)于純林模式來說,植被覆蓋度大,空間利用率更高,遮蔭程度更高,能夠很好的改變林地表面微環(huán)境,能夠起到降溫保濕的作用[31~32]。外部環(huán)境條件上,主要考慮施肥和降水兩個(gè)因素,從施肥的角度來說,與純林模式相比,立體經(jīng)營(yíng)模式良好的土壤物理結(jié)構(gòu)有助于施加的養(yǎng)分的保留,同時(shí)土層中大量的根系能夠提高養(yǎng)分的吸收效率。另外土壤有機(jī)質(zhì)含量與陽(yáng)離子交換量呈現(xiàn)顯著正相關(guān),大量的凋落物能夠保持土壤中較高有機(jī)質(zhì)水平,提高陽(yáng)離子交換量,因此能夠降低淋溶作用,提高無機(jī)肥料的施用效果[33]。也有研究發(fā)現(xiàn)復(fù)合經(jīng)營(yíng)系統(tǒng)中,樹木的根系能夠重新獲取在深土層中被淋溶作用流失的超過作物根系吸收范圍的養(yǎng)分,再通過凋落物和根系翻轉(zhuǎn)運(yùn)動(dòng)重新加入養(yǎng)分循環(huán)中,供給作物生長(zhǎng)需要[34]。降水方面,復(fù)合經(jīng)營(yíng)模式中,各植物對(duì)水分的競(jìng)爭(zhēng)的程度主要取決于該地區(qū)的降水模式,尤其是缺乏灌溉的干旱地區(qū)[35]。然而本試驗(yàn)區(qū)氣候?qū)儆趤啛釒Ъ撅L(fēng)氣候,年降雨量在1 800 mm以上,水分十分充足的,能夠很好的滿足植物生長(zhǎng)對(duì)水分的需求,因此植物對(duì)水分的競(jìng)爭(zhēng)程度應(yīng)該是較小的。另一方面考慮到試驗(yàn)采樣時(shí)間是在8月底,正好是在臺(tái)風(fēng)雨過后,可能對(duì)試驗(yàn)結(jié)果也會(huì)產(chǎn)生一定的影響。
表2主成分分析載荷矩陣和公因子方差
Table2Theprincipalcomponentmatrixandcommunalityofeachindicator
指標(biāo)Index主成分Principalcomponent123公因子方差σ2ofcommonfactor質(zhì)量含水量Masswatercontent0.748-0.596-0.1050.926容重Bulkdensity0.689-0.6880.0970.958毛管持水量Capillarymoisturecapacity0.677-0.725-0.0190.984田間持水量Fieldmoisturecapacity0.669-0.731-0.0230.983毛管孔隙度Capillaryporosity0.692-0.688-0.1350.970總孔隙度Totalporosity0.707-0.667-0.1300.961有機(jī)質(zhì)Organicmatter0.9130.3160.1790.966全氮TotalN0.7680.3520.3190.815全鉀TotalK0.7170.393-.2330.723有效氮AvailableN0.8110.4210.0700.840有效磷AvailableP0.8720.324-.0600.870速效鉀AvailableK0.7600.553-.2160.930交換性鎂ExchangeableMg0.7010.6130.0770.873交換性鈣ExchangeableCa0.8880.3890.1280.957陽(yáng)離子交換量CEC0.617-.2350.7080.936脲酶Urease0.8010.509-.1000.911蔗糖酶Invertase-.5410.5220.2060.607酸性磷酸酶Acidphosphatase0.5840.352-0.4610.677特征根Eigenvalue9.7895.0101.088貢獻(xiàn)率Proportion(%)54.38427.8346.043累計(jì)貢獻(xiàn)Cumulativeproportion(%)54.38482.21788.260
表3南藥立體經(jīng)營(yíng)模式土壤質(zhì)量綜合評(píng)價(jià)結(jié)果
Table3Comprehensiveevaluationresultsofsoilqualityindifferentpatterns
選擇適當(dāng)?shù)乃幱弥参?,合理?gòu)建林藥復(fù)合經(jīng)營(yíng)模式對(duì)加快人工林生態(tài)系統(tǒng)的養(yǎng)分循環(huán)和地力維護(hù)具有重要的意義。不同林藥立體復(fù)合模式間也存在土壤水分和養(yǎng)分含量的差異,前人研究認(rèn)為這主要是因?yàn)榉N植品種的不同而引起的差異[36]。高喜榮[37]進(jìn)行了太行山低山丘陵區(qū)的中藥材品種篩選試驗(yàn),結(jié)果表明蘋果與太子參、半夏、白芨等復(fù)合經(jīng)營(yíng)能夠改良果園土壤理化性質(zhì),增加肥力,提高果品產(chǎn)量和質(zhì)量。閆法領(lǐng)等[38]對(duì)退化馬尾松林內(nèi)植被恢復(fù)模式研究后發(fā)現(xiàn),馬尾松林內(nèi)種植梔子(Gardeniajasminoides)+大青(Cleredendrumcwtophyllum)+淡竹葉(Lophatherumsinense)等耐陰性藥用植物,土壤中的有機(jī)質(zhì)、速效鉀與全鉀分別增加了67.35%、32.71%、31.25%。本研究發(fā)現(xiàn),不同林藥立體復(fù)合模式土壤結(jié)構(gòu)、水分條件、有機(jī)質(zhì)、全量養(yǎng)分和速效養(yǎng)分等都存在顯著差異,這主要可能是因?yàn)椴煌瑥?fù)合模式地上部分凋落物和地下部分根系死亡量、分泌物、微生物區(qū)系組成等不同,造成的土壤改良效果差異不同,這與Wang等[39]對(duì)不同銀杏復(fù)合經(jīng)營(yíng)模式的土壤肥力研究結(jié)果相似。但是整體來說復(fù)合經(jīng)營(yíng)模式土壤養(yǎng)分水平均要好于杉木純林。至于在20~40 cm土層中,大部分養(yǎng)分指標(biāo)差異不顯著,可能與藥用植物種植時(shí)間較短,根系生長(zhǎng)慢,分布較淺,短期內(nèi)凋落物分解量對(duì)較深土層影響程度較小有關(guān)。
土壤酶活性在土壤物質(zhì)循環(huán)和能量轉(zhuǎn)化過程中起著重要的催化作用,其活性的高低反映了土壤中各種生物化學(xué)反應(yīng)的強(qiáng)度與方向[40]。由土壤酶活性和養(yǎng)分含量相關(guān)性分析可以發(fā)現(xiàn)(表4),除蔗糖酶外,其余酶活性均與土壤中各養(yǎng)分含量表現(xiàn)出良好的相關(guān)性,表明土壤酶能夠催化土壤中各種有機(jī)化合物的分解,是土壤中養(yǎng)分轉(zhuǎn)化的基礎(chǔ),例如多酚氧化酶能分解土壤中的芳香族有機(jī)化合物,將其氧化為醌,在適宜的條件下,醌與土壤中的蛋白質(zhì)、氨基酸和糖類等物質(zhì)反應(yīng)可生成大小分子量不一的有機(jī)質(zhì)和色素,也可將木質(zhì)素經(jīng)微生物分解產(chǎn)生的酚類物質(zhì)氧化成醌。脲酶能分解土壤中施加的有機(jī)尿素類物質(zhì),將植物所需要養(yǎng)分轉(zhuǎn)化為有效態(tài),提高氮素利用率。酸性磷酸酶能夠分解磷酸脂類,加速有機(jī)磷的脫磷速度,為植物提供磷素。本研究發(fā)現(xiàn)在0~20 cm土層中,復(fù)合經(jīng)營(yíng)模式下土壤過氧化氫酶、脲酶、多酚氧化酶和酸性磷酸酶活性與對(duì)照相比都呈現(xiàn)上升的趨勢(shì),這與Wang等[39]、蔡麗平等[41]研究結(jié)果相似。但與柴強(qiáng)等[42]的研究結(jié)果差異較大,這表明不同復(fù)合系統(tǒng)其種間關(guān)系差異較大,不同的品種搭配對(duì)土壤酶活性的影響程度存在差異。研究表明復(fù)合經(jīng)營(yíng)模式具有更高的酶活性,主要是在于凋落物種類、數(shù)量和根系分泌物的不同[43~44]。Hu等[45]對(duì)杉木林下凋落物分解研究發(fā)現(xiàn),多種類混合葉凋落物有利于提高土壤質(zhì)量,它比單一杉木葉凋落物分解具有更大的微生物量和更高的土壤酶活性,土壤微生物特性和土壤酶活性對(duì)葉凋落物特性變化的敏感性要高于土壤化學(xué)性質(zhì)。前人研究還發(fā)現(xiàn)在復(fù)合系統(tǒng)中,種間的相互作用主要分為相互促進(jìn)和相互競(jìng)爭(zhēng),這兩種作用同時(shí)存在只是表現(xiàn)為強(qiáng)弱程度不同[46]。林藥復(fù)合模式中蔗糖酶活性呈現(xiàn)下降趨勢(shì),這與張萌萌等[47]對(duì)桑樹和苜蓿復(fù)合系統(tǒng)的研究結(jié)果相似,這可能是因?yàn)槎鄶?shù)藥用植物具有化感作用[48],可能會(huì)向所在土壤中釋放一些次生代謝產(chǎn)物,對(duì)土壤中蔗糖酶活性產(chǎn)生了抑制作用,導(dǎo)致其活性降低。
表4土壤養(yǎng)分與土壤酶活性相關(guān)性分析
Table4Thecorrelationanalysisofsoilnutrientandenzymeactivity
過氧化氫酶Catalase土壤脲酶Urease蔗糖酶Invertase多酚氧化酶Polyphenol酸性磷酸酶Acidphosphatase有機(jī)質(zhì)Organicmatter0.690??0.886??-0.3260.724??0.574?全氮TotalN0.729??0.739??-0.0360.847??0.619?全磷TotalP0.4130.701??-0.150.607?0.745??全鉀TotalK0.4450.817??-0.3850.4610.497有效氮AvailableN0.599?0.880??-0.2750.699??0.555?有效磷AvailableP0.670??0.855??-0.290.490.525?速效鉀AvailableK0.712??0.889??-0.0690.605?0.715??
注:*.在0.05水平(雙側(cè))上顯著相關(guān);**.在0.01水平(雙側(cè))上顯著相關(guān)
Note:*.Means significant correlation atP<0.05;**.Means significant correlation atP<0.01
主成分分析結(jié)果表明,林藥立體經(jīng)營(yíng)模式能夠明顯提升土壤綜合質(zhì)量,選擇不同品種搭配對(duì)土壤質(zhì)量的改良效果存在差異,對(duì)土壤質(zhì)量改良效果表現(xiàn)為喬灌草三層模式>喬灌兩層模式>純林,其中模式SMC較優(yōu),可以推廣。本文僅從土壤理化性質(zhì)和酶活性變化角度,評(píng)價(jià)不同南藥立體復(fù)合經(jīng)營(yíng)模式的效果,另有研究發(fā)現(xiàn)復(fù)合經(jīng)營(yíng)模式中上層樹木的種植密度對(duì)下層作物的產(chǎn)量的和土壤養(yǎng)分的影響并不具有一致性,種植密度大時(shí),系統(tǒng)對(duì)土壤的有機(jī)質(zhì)和氮輸入增多,土壤養(yǎng)分增加,但是作物產(chǎn)量卻降低[49]。因此后續(xù)研究尚需從藥用植物合適的種植密度、產(chǎn)量和活性物質(zhì)含量等方面進(jìn)行綜合評(píng)價(jià),有待進(jìn)一步研究。
1.邱仁輝,楊玉盛,俞新妥.不同栽植代數(shù)杉木林土壤結(jié)構(gòu)特性的研究[J].北京林業(yè)大學(xué)學(xué)報(bào),1998,20(4):6-11.
Qiu R H,Yang Y S,Yu X T.Soil structure characteristics in the plantations of Cunninghamia lanceolata on different rotations[J].Journal of Beijing Forestry University,1998,20(4):6-11.
2.俞元春,鄧西海,盛煒彤,等.杉木連栽對(duì)土壤物理性質(zhì)的影響[J].南京林業(yè)大學(xué)學(xué)報(bào),2000,24(6):36-40.
Yu Y C,Deng X H,Sheng W T,et al.Effects of continuous plantation of Chinese fir on soil physical properties[J].Journal of Nanjing Forestry University,2000,24(6):36-40.
3.Ding Y X,Chen J L.Effect of continuous plantation of Chinese fir on soil fertility[J].Pedosphere,1995,5(1):57-66.
4.馬祥慶,范少輝,劉愛琴,等.不同栽植代數(shù)杉木人工林土壤肥力的比較研究[J].林業(yè)科學(xué)研究,2000,13(6):557-582.
Ma X Q,Fan S H,Liu A Q,et al.A comparison on soil fertilities of Chinese fir plantations of different generations[J].Forest Research,2000,13(6):577-582.
5.楊承棟,張小泉,焦如珍,等.杉木連栽土壤組成、結(jié)構(gòu)、性質(zhì)變化及其對(duì)林木生長(zhǎng)的影響[J].林業(yè)科學(xué),1996,32(2):175-181.
Yang C D,Zhang X Q,Jiao R Z,et al.Variations of chemical properties,biochemical,microoganism activities and function in soil of successive rotation of Chinese fir and their influences on growing[J].Scientia Silvae Sinicae,1996,32(2):175-181.
6.楊玉盛,邱仁輝,俞新妥,等.杉木連栽土壤微生物及生化特性的研究[J].生物多樣性,1999,7(1):1-7.
Yang Y S,Qiu R H,Yu X T,et al.Study on soil microbes and biochemical activity in the continuous plantations ofCunninghamialanceolata[J].Chinese Biodiversity,1999,7(1):1-7.
7.俞新妥.論杉木人工林的回歸——從杉木林地力衰退的因果談杉木林的可持續(xù)經(jīng)營(yíng)[J].世界林業(yè)研究,1999,12(5):15-19.
Yu X T.On the regression of Chinese fir plantation-discussion on the sustainable management of Chinese fir in terms of the cause and effect of soil degradation[J].World Forestry Research,1999,12(5):15-19.
8.林開敏,俞新妥.杉木人工林地力衰退與可持續(xù)經(jīng)營(yíng)[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2001,9(4):39-42.
Lin K M,Yu X T.Soil degradation and sustainable management of Chinese fir plantation[J].Chinese Journal of Eco-Agriculture,2001,9(4):39-42.
9.陳龍池,汪思龍,陳楚瑩.杉木人工林衰退機(jī)理探討[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(10):1953-1957.
Chen L C,Wang S L,Chen C Y.Degradation mechanism of Chinese fir plantation[J].Chinese Journal of Applied Ecology,2004,15(10):1953-1957.
10.王光玉.杉木混交林水源涵養(yǎng)和土壤性質(zhì)研究[J].林業(yè)科學(xué),2003,39(S1):15-20.
Wang G Y.Study on water conservation and soil properties of Chinese fir mixed stands[J].Scientia Silvae Sinicae,2003,39(S1):15-20.
11.杜國(guó)堅(jiān),張浦山,黃天平,等.杉木混交林土壤微生物及生化特征和肥力[J].浙江農(nóng)林大學(xué)學(xué)報(bào),1995,12(4):347-352.
Du G J,Zhang P S,Huang T P,et al.Studies on soil microoganisms and biochemical properties in mixed forests of Chinese Fir[J].Journal of Zhejiang Forestry College,1995,12(4):347-352.
12.張任好.福建含笑—杉木混交林生長(zhǎng)狀況及生態(tài)效益[J].林業(yè)科學(xué)研究,1999,12(5):544-547.
Zhang R H.Stand characteristics in mixed stand ofMicheliafujianensisand Chinese fir[J].Forest Research,1999,12(5):544-547.
13.邵方麗.林藥復(fù)合模式研究綜述[J].林業(yè)建設(shè),2014(5):15-19.
Shao F L.Research overview on forest-medicinal herb composite pattern[J].Forestry Construction,2014(5):15-19.
14.李遠(yuǎn)菊,張霽,王元忠,等.藥用植物復(fù)合種植研究進(jìn)展[J].世界科學(xué)技術(shù)—中醫(yī)藥現(xiàn)代化,2013,15(9):1941-1947.
Li Y J,Zhang J,Wang Y Z,et al.Advances in research on multiple cropping of medicinal plants[J].Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2013,15(9):1941-1947.
15.張鼎華,楊玉盛,鄒雙全.杉木套種砂仁土壤微生物區(qū)系及其生化特性和肥力變化的研究[J].林業(yè)科學(xué),1988,24(4):458-465.
Zhang D H,Yang Y S,Zou S Q.A study on the microflora and biochemical properties of soil microorganisms and the soil fertility of interplanted forest ofCunninghamialanceolataandAmomunvillosum[J].Scientia Silvae Sinicae,1988,24(4):458-465.
16.Yang Y S,Chen G S,Yu X T.Soil fertility in agroforestry system of Chinese fir and villous amomum in subtropical China[J].Pedosphere,2001,11(4):341-348.
17.林慶富.套種草珊瑚的杉木林生長(zhǎng)和土壤肥力狀態(tài)變量分析[J].林業(yè)科技,2015,40(5):26-30.
Lin Q F.The Analysis of the growth and soil fertility variables ofCunninghamialanceolataforest with interplantedSarcandraglaberinside[J].Forestry Science & Technology,2015,40(5):26-30.
18.魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].中國(guó)農(nóng)業(yè)科技出版社,2000.
Lu R K.Analysis methods of soil agricultral chenical[M].Beijing:China Agriculture Scientech Press,2000.
19.楊蘭芳,曾巧,李海波,等.紫外分光光度法測(cè)定土壤過氧化氫酶活性[J].土壤通報(bào),2011,42(1):207-210.Yang L F,Zeng Q,Li H B,et al.Measurement of catalase activity in soil by ultraviolet spectrophotometry[J].Chinese Journal of Soil Science,2011,42(1):207-210.
20.關(guān)松萌.土壤酶及其研究法[M].北京:農(nóng)業(yè)出版社,1986.
Guan S M.Research methods of soil enzymes[M].Beijing:China Agriculture Press,1986.
21.Dick R P.Methods of soil enzymology[M].Madison,WI:Soil Science Society of America,2011.
22.吳金水,林啟美,黃巧云,等.土壤微生物生物量測(cè)定方法及其應(yīng)用[M].北京:氣象出版社,2006.
Wu J S,Lin Q M,Huang Q Y,et al.The measurement of soil microbial biomass and application[M].Beijing:China Meteorological Press,2006.
23.Paudel B R,Udawatta R P,Kremer R J,et al.Soil quality indicator responses to row crop,grazed pasture,and agroforestry buffer management[J].Agroforestry Systems,2011,84(2):311-323.
24.Udawatta R P,Kremer R J,Nelson K A,et al.Soil quality of a mature alley cropping agroforestry system in temperate North America[J].Communications in Soil Science and Plant Analysis,2014,45(19):1539-2551.
25.Wang Q K,Wang S L.Soil microbial properties and nutrients in pure and mixed Chinese fir plantations[J].Journal of Forestry Research,2008,19(2):131-135.
26.韋鑠星,劉曉蔚,張燁,等.桉樹—藥材復(fù)合經(jīng)營(yíng)模式生態(tài)經(jīng)濟(jì)效益研究[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2014(11):84-89.
Wei S X,Liu X W,Zhang Y,et al.Study on ecology and economy benefit ofEucalyptusand medical plant intercropping models ofEucalyptusplantation[J].Journal of Central South University of Forestry & Technology,2014(11):84-89.
27.Glover N,Beer J.Nutrient cycling in two traditional Central American agroforestry systems[J].Agroforestry Systems,1986,4(2):77-87.
28.Lin H,Hong T,Wu C Z,et al.Monthly variation in litterfall and the amount of nutrients in anAleuritesmontanaplantation[J].Forest Studies in China,2012,14(1):30-35.
29.Chapin F S,Matson P A,Mooney H A.Principles of terrestrial ecosystem ecology[M].New York,USA:Springer-Verlag,2002.
30.Craswell E T,Lefroy R D B.The role and function of organic matter in tropical soils[J].Nutrient Cycling in Agroecosystems,2001,61(1-2):7-18.
31.Schroth G,Sinclair F L.Impacts of trees on the fertility of agricultural soils[M].//Trees,Crops and Soil Fertility-Concepts and Research Methods.Wallingford:CABI Publishing,2003:1-11.
32.Wang Q B,Shogren J F.Characteristics of the crop-paulownia system in China[J].Agriculture Ecosystems & Environment,1992,39(3-4):145-152.
33.Beer J.Litter production and nutrient cycling in coffee(Coffeaarabica) or cacao(Theobromacacao) plantations with shade trees[J].Agroforestry Systems,1988,7(2):103-114.
34.Allen S C,Jose S,Nair P K R,et al.Safety-net role of tree roots:evidence from a pecan(CaryaillinoensisK.Koch)-cotton(GossypiumhirsutumL.) alley cropping system in the southern United States[J].Forest Ecology and Management,2004,192(2-3):395-407.
35.Miller A W,Pallardy S G.Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri[J].Agroforestry Systems,2001,53(3):247-259.
36.閆德仁,劉永軍,馮立嶺,等.農(nóng)林復(fù)合經(jīng)營(yíng)土壤養(yǎng)分的變化[J].東北林業(yè)大學(xué)學(xué)報(bào),2001,29(1):53-56.
Yan D R,Liu Y J,Feng L L,et al.Variation of soil nutrient in the combination of forestry and agricultural crops[J].Journal of Northeast Forestry University,2001,29(1):53-56.
37.高喜榮.太行山低山丘陵區(qū)復(fù)合農(nóng)林業(yè)優(yōu)良喬、灌、草選擇的研究[J].林業(yè)科學(xué)研究,2004,17(2):241-245.
Gao X R.Screening trial on the superior plant adaptable for agroforestry in the hilly region in Taihang Mountain[J].Forest Research,2004,17(2):241-245.
38.閆法領(lǐng),劉君昂,譚益民,等.馬尾松人工林林下植被恢復(fù)模式對(duì)土壤微生態(tài)的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2013,33(7):50-55.
Yan F L,Liu J A,Tan Y M,et al.Effects of different recovery modes of undergrowth forPinusmassonianaplantation on soil micro-ecology[J].Journal of Central South University of Forestry & Technology,2013,33(7):50-55.
39.Wang G B,Cao F L.Integrated evaluation of soil fertility in Ginkgo(GinkgobilobaL.) agroforestry systems in Jiangsu,China[J].Agroforestry Systems,2011,83(1):89-100.
40.葉協(xié)鋒,楊超,李正,等.綠肥對(duì)植煙土壤酶活性及土壤肥力的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(2):445-454.
Ye X F,Yang C,Li Z,et al.Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils[J].Plant Nutrition and Fertilizer Science,2013,19(2):445-454.
41.蔡麗平,陳光水,謝錦升,等.杉木、油桐、仙人草復(fù)合模式的根際土壤肥力[J].東北林業(yè)大學(xué)學(xué)報(bào),2001,29(2):51-54.
Cai L P,Chen G S,Xie J S,et al.Rhizospheric soil fertility under compound pattern ofCunninghamialanceolata-Aleuritesfordii-Mesorachinensis[J].Journal of Northeast Forestry University,2001,29(2):51-54.
42.柴強(qiáng),黃鵬,黃高寶.間作對(duì)根際土壤微生物和酶活性的影響研究[J].草業(yè)學(xué)報(bào),2005,14(5):105-110.
Chai Q,Huang P,Huang G B.Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J].Acta Pratacultural Science,2005,14(5):105-110.
43.Mungai N W,Motavalli P P,Kremer R J,et al.Spatial variation of soil enzyme activities and microbial functional diversity in temperate alley cropping systems[J].Biology and Fertility of Soils,2005,42(2):129-136.
44.Myers R T,Zak D R,White D C,et al.Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems[J].Soil Science Society of America Journal,2001,65(2):359-367.
45.Hu Y L,Wang S L,Zeng D H.Effects of single Chinese fir and mixed leaf litters on soil chemical,microbial properties and soil enzyme activities[J].Plant and Soil,2006,282(1-2):379-386.
46.Power A G.The ecology of intercropping:by John Vandermeer,Cambridge University Press,1989.?30.00/$59.50 hbk(xi+237 pages)ISBN 0 521 345928[J].Trends in Ecology & Evolution,1989,4(10):324-325.
47.張萌萌,敖紅,李鑫,等.桑樹/苜蓿間作對(duì)根際土壤酶活性和微生物群落多樣性的影響[J].草地學(xué)報(bào),2015,23(2):302-309.
Zhang M M,Ao H,Li X,et al.Effects of intercropping between mulberry and alfalfa on soil enzyme activities and microbial community diversity in rhizophere[J].Acta Agrestia Sinica,2015,23(2):302-309.
48.柴強(qiáng),黃高寶.植物化感作用的機(jī)理、影響因素及應(yīng)用潛力[J].西北植物學(xué)報(bào),2003,23(3):509-515.
Chai Q,Huang G B.Review on action mechanism affecting factors and applied potential of allelopathy[J].Acta Botanica Boreali-occidentalia Sinica,2003,23(3):509-515.
49.Chander K,Goyal S,Nandal D P,et al.Soil organic matter,microbial biomass and enzyme activities in a tropical agroforestry system[J].Biology and Fertility of Soils,1998,27(2):168-172.
This study was supported by National Key Technologies R&D Program of China(2012BAD22B0504)
introduction:LI Chen-Chen(1991—),male,master,mainly engaged in the cultivation of medicinal plants.
date:2017-03-14
ComprehensiveEvaluationofSoilQualityonAgroforestryStereoscopicManagementPatternsofSouthernMedicine
LI Chen-Chen ZHOU Zai-Zhi*LIANG Kun-Nan HUANG Gui-Hua YANG Guang
(Research Institute of Tropical Forestry,Chinese Academy of Forestry,Guangzhou 510520)
In order to select optimum stereoscopic management patterns of southern medicine, we chose four kinds of medicinal plants which were suitable for growth in south area, using completely randomized block design to establish four agroforestry stereoscopic management patterns(SM, SMA, SMC, SMG) in 15-year old third generation Chinese fir plantation, and seven physical indexes, eleven chemical indexes and five enzyme activity indexes at 0-20 and 20-40 cm soil layers were determined. By the principal component analysis, we evaluated the effect of these patterns on soil quality. Compared to control, four patterns can significantly reduce soil bulk density and increased with increasing soil depth. In 0-20 cm soil layer, soil bulk density dropped, respectively, SM by 22.3%, SMA by 13.4%, SMG by 14.1%, and SMC by 20.8% while decreased by 7.0%-15.5% in 20-40 cm soil layer. The soil mass water content, field moisture capacity, capillary moisture capacity, capillary porosity and total porosity were significantly increased(P<0.05) and decreased with increasing soil depth. The maximum of these indexes all appeared in SM, respectively, increased by 55.0%, 88.7%, 100.1% and 88.7% than control in 0-20 cm soil layer while in 20-40 cm soil layer was SMG, respectively, increased by 61.5%, 67.6%, 69.7%, 43.4% and 44.0%. In 0-20 cm soil layer, pH dropped by 0.7%-6.2%, while in 20-40 cm soil layer it did not reach significant levels among treatments. The soil nutrient content decreased with increasing soil depth. In 0-20 cm soil layer, the contents of organic matter, total nitrogen, total phosphorus, available N, available P, available K, exchangeable calcium and magnesium, and cation exchange capacity reached maximum in model SMC, and increased by 79.7%,69.5%, 30.3%, 91.4%, 30.3%, 166.1%, 91.6%, 166.1% and 91.6%, respectively. The highest content of total potassium appeared in SMG, increased by 26.9% than control, while in 20-40 cm soil layer, most chemical indicators between models did not reach significant differences except available potassium. As to the soil enzyme activity, in 0-20 cm soil layer, the activities of soil urease, invertase, polyphenol oxidase and acid phosphatase activity among models and control had significant difference(P<0.05). The activities of urease and polyphenol oxidase of SMC were highest, 1.7 and 1.6 times higher than that of control, respectively. The activity of invertase of models were lower than control, decreased by 59.3%-69.4%. The maximum of acid phosphatase activity appeared in SMA, which was 1.38 times of the control. In 20-40 cm soil layer, only acid phosphatase activity of models and control had significant difference(P<0.05), and it reached maximum in SMA, which increased by 78.7% than control. The descending order of improvement effect of four agroforestry stereoscopic management patterns on soil quality were SMC(2.811), SMG(1.293), SMA(0.111), SM(-1.544) and CK(-2.671).
southern medicine;stereoscopic management;soil quality;comprehensive evaluation;principal component analysis
“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD22B0504)資助
李晨晨(1991—),男,碩士研究生,主要從事藥用植物栽培方面的研究。
* 通信作者:E-mail:zzzhoucn@126.com
2017-03-14
* Corresponding author:E-mail:zzzhoucn@126.com
S727.34
A
10.7525/j.issn.1673-5102.2017.05.019