国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

反對(duì)稱Spin-1/2阻挫鉆石鏈的基態(tài)和磁化行為研究?

2017-10-23 07:17趙陽齊巖杜安劉佳肖瑞單瑩吳憂楊思浩
物理學(xué)報(bào) 2017年19期
關(guān)鍵詞:基態(tài)鐵磁磁化

趙陽 齊巖? 杜安 劉佳 肖瑞 單瑩 吳憂 楊思浩

1)(大連民族大學(xué)物理與材料工程學(xué)院,大連 116600)

2)(東北大學(xué)物理系,沈陽 110819)

反對(duì)稱Spin-1/2阻挫鉆石鏈的基態(tài)和磁化行為研究?

趙陽1)齊巖1)?杜安2)?劉佳1)肖瑞1)單瑩1)吳憂1)楊思浩1)

1)(大連民族大學(xué)物理與材料工程學(xué)院,大連 116600)

2)(東北大學(xué)物理系,沈陽 110819)

對(duì)含有次近鄰節(jié)點(diǎn)自旋交換耦合的自旋-1/2伊辛-海森伯鉆石鏈體系進(jìn)行了研究,利用矩陣對(duì)角化和傳遞矩陣方法對(duì)基態(tài)磁相和宏觀熱力學(xué)量進(jìn)行了嚴(yán)格求解,重點(diǎn)探討了所有交換耦合均為反鐵磁耦合時(shí),體系節(jié)點(diǎn)伊辛自旋間次近鄰相互作用的影響.研究結(jié)果表明次近鄰節(jié)點(diǎn)伊辛自旋存在反鐵磁耦合時(shí)會(huì)增強(qiáng)系統(tǒng)的阻挫效應(yīng),引入破壞平移對(duì)稱性的經(jīng)典亞鐵磁相,使基態(tài)呈現(xiàn)出上上上下上上的自旋構(gòu)型以及磁化曲線新穎的2/3磁化平臺(tái),豐富了體系的基態(tài)相圖和宏觀磁性行為.

伊辛-海森伯模型,傳遞矩陣,嚴(yán)格解,基態(tài)相圖

1 引 言

低維量子自旋系統(tǒng)由于新穎的基態(tài)相以及豐富的磁學(xué)行為,在過去的三十年受到了廣泛研究,其中具有鉆石鏈拓?fù)浣Y(jié)構(gòu)的量子海森伯模型備受研究者的青睞[1?3].1996年,Takano等[4]首次從理論上預(yù)測(cè)了自旋S=1/2鉆石鏈自旋體系基態(tài)存在奇特的二聚化-單態(tài)相和四聚化-二聚態(tài)相.這一發(fā)現(xiàn)促進(jìn)了對(duì)具有鉆石形結(jié)構(gòu)單元的一維量子自旋模型的研究,以期對(duì)這類體系的阻挫磁性行為獲得更深刻的理解.通過零場(chǎng)基態(tài)性質(zhì)的計(jì)算,研究者一致認(rèn)同自旋-1/2扭曲鉆石鏈海森伯模型存在復(fù)雜的基態(tài)相圖,由亞鐵磁相、多個(gè)量子二聚態(tài)和元格態(tài)組成[5].

最近實(shí)驗(yàn)上在絕緣磁性材料Cu3(CO3)2(OH)2中取得了突破性進(jìn)展,引起了理論工作者的極大研究興趣. Kikuchi等[6]指出藍(lán)銅礦Cu3(CO3)2(OH)2是具有鉆石形拓?fù)浣Y(jié)構(gòu)的阻挫自旋鏈模型材料,并通過磁化強(qiáng)度的高場(chǎng)測(cè)量獲得了與理論預(yù)測(cè)定性相符的結(jié)果,包括1/3磁化平臺(tái)、具有雙峰結(jié)構(gòu)的磁化率和磁比熱曲線等.隨后,理論工作者基于量子自旋模型對(duì)鉆石鏈及其擴(kuò)展體系的一系列關(guān)鍵物理問題進(jìn)行了細(xì)致和深入的研究,包括Dzyaloshinskii-Moriya相互作用對(duì)磁化過程的影響、磁化平臺(tái)現(xiàn)象、磁熱效應(yīng)、多自旋交換作用的影響以及局域磁振子激發(fā)等[7?12].

總體而言,量子鉆石鏈模型在數(shù)學(xué)上并不可積,因此獲得其嚴(yán)格動(dòng)力學(xué)行為及熱力學(xué)性質(zhì)將是一個(gè)非常難處理的問題.文獻(xiàn)[13—21]研究發(fā)現(xiàn),通過將其中部分海森伯作用鍵用伊辛作用鍵來替代,不僅能夠簡(jiǎn)化模型獲得體系所有熱力學(xué)量的嚴(yán)格解,而且有助于理解相應(yīng)的純量子模型的性質(zhì),甚至能夠闡明實(shí)際材料中的磁學(xué)行為,例如三金屬配位聚合物,由于Dy離子高度各向異性,用低維伊辛-海森伯交替鍵模型可以直觀地呈現(xiàn)出這些化合物的主要特征[22,23].本文采用文獻(xiàn)[13—21]提出的伊辛-海森伯交替鍵模型,對(duì)含多種磁耦合競(jìng)爭(zhēng)作用的自旋-1/2阻挫鉆石鏈系統(tǒng)展開細(xì)致的研究,結(jié)合嚴(yán)格對(duì)角化和傳遞矩陣解析法,對(duì)體系的基態(tài)磁有序、低溫磁化行為和熱力學(xué)性質(zhì)進(jìn)行嚴(yán)格解析和深入討論.

2 理論模型與方法

考慮由鉆石形結(jié)構(gòu)單元構(gòu)成的一維晶格體系,伊辛和海森伯兩種自旋在晶格上有規(guī)律地交替排列,如圖1所示,其中節(jié)點(diǎn)處的紫色實(shí)心圓表示伊辛自旋,間隙處的紅色實(shí)心圓表示海森伯自旋.為方便起見,將系統(tǒng)哈密頓量表示為子單元Hi求和的形式,其中Hi對(duì)應(yīng)兩個(gè)海森伯自旋和一個(gè)伊辛自旋構(gòu)成的結(jié)構(gòu)單元能量,并涵蓋了它們之間所有相互作用,表達(dá)式如下:

圖1 (網(wǎng)刊彩色)伊辛-海森伯鉆石鏈?zhǔn)疽鈭D 紅色和紫色實(shí)心圓分別代表伊辛和海森伯自旋,J1,J2,J3,Jm代表不同的磁性鍵Fig.1.(color online)Sketch of the Ising-Heisenberg diamond chain.The purple and red solid circles represent the Ising and Heisenberg spins,respectively;J1,J2,J3and Jmrepresent di ff erent magnetic bonds.

其中β=1/kBT,kB為玻爾茲曼常數(shù)并取其值為1,T為絕對(duì)溫度,和Trs表示對(duì)所有伊辛自旋和海森伯自旋自由度求和,Tri表示對(duì)自旋鏈上第i個(gè)單元內(nèi)的海森伯自旋自由度求跡.從方程(2)可以很明顯地看出,要進(jìn)一步計(jì)算必須先處理好后面的求跡部分.為此,我們以海森伯自旋的自旋態(tài)|↑,↑〉i=|↑〉a,i|↑〉b,i,|↓,↓〉i=|↓〉a,i|↓〉b,i,|↑,↓〉i=|↑〉a,i|↓〉b,i和|↓,↑〉i=|↓〉a,i|↑〉b,i作為基矢,對(duì)哈密頓量單元Hi進(jìn)行矩陣表示,并對(duì)其對(duì)角化獲得如下四個(gè)能量本征值解析表達(dá)式,最終完成對(duì)海森伯自旋自由度求跡.

同時(shí)相應(yīng)的本征態(tài)按照標(biāo)準(zhǔn)基{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}表示如下:

其中概率振幅R±的表達(dá)式為

完成對(duì)量子自由度跡的求解后,應(yīng)用傳遞矩陣法,將系統(tǒng)配分函數(shù)表示成類似經(jīng)典一維伊辛自旋鏈配分函數(shù)的形式,

這里T是一個(gè)2×2傳遞矩陣,Λ1,2是傳遞矩陣T的兩個(gè)本征值,Zμi,μi+1是第i個(gè)單元中的部分配分函數(shù):

結(jié)合方程(6)和(7)可以得到傳遞矩陣T的具體表達(dá)形式:

然后求解T的本征值,在熱力學(xué)極限下只有最大本征值保留下來,從而一個(gè)子單元的平均自由能表示為

至此完成了對(duì)自由能的嚴(yán)格求解,在此基礎(chǔ)上就可利用傳遞矩陣方法獲得任何熱力學(xué)函數(shù)的解析表達(dá)式,具體求解過程可參看文獻(xiàn)[11—13],這里不再贅述.

3 計(jì)算結(jié)果與討論

3.1 基態(tài)相圖

本部分對(duì)自旋?1/2阻挫鉆石鏈體系的有趣磁學(xué)行為進(jìn)行探討和分析.考慮到阻挫作用下體系的自旋幾何阻挫與局域量子漲落間的競(jìng)爭(zhēng)作用表現(xiàn)得最為顯著,因此著重考察所有交換耦合均為反鐵磁時(shí)阻挫存在的情況,即J1,J2,J3,Jm>0.為方便起見,選取J2作為約化單位并引進(jìn)一套無量綱參數(shù):j1=J1/J2,j3=J3/J2,jm=Jm/J2,h=μBgH/J2和t=kBT/J2.

首先討論系統(tǒng)基態(tài)可能存在的自旋構(gòu)型.根據(jù)哈密頓量子單元的本征值(3)式和本征態(tài)(4)式,可以構(gòu)建出阻挫鉆石鏈所有可能的基態(tài)自旋構(gòu)型并求得相應(yīng)的能量.考慮到自旋平移及反轉(zhuǎn)對(duì)稱性,在作用參數(shù)j1,j3,jm以及外磁場(chǎng)h的相互競(jìng)爭(zhēng)下,該體系在基態(tài)存在五個(gè)不同的自旋構(gòu)型:飽和順磁態(tài)SP,兩個(gè)經(jīng)典亞鐵磁態(tài)FRI1和FRI2,量子亞鐵磁態(tài)QFI和量子反鐵磁態(tài)QAF,具體表示如下:

上式中刃向量|±〉i和|ξ〉i表示子單元i中節(jié)點(diǎn)伊辛自旋指向,與兩海森伯自旋相關(guān)的態(tài)矢量則由方程(4)給出.

相應(yīng)的基態(tài)能為:

圖2 jm-h平面內(nèi)基態(tài)相圖,其中j1=j3=1Fig.2.Ground-state phase diagram in the jm-h plane for j1=j3=1.

結(jié)合方程式(10)和(11)中給出的自旋構(gòu)型和基態(tài)能,構(gòu)建了阻挫鉆石鏈體系在jm-h平面內(nèi)的基態(tài)相圖,如圖2所示.可以看到所有可能的磁相都呈現(xiàn)在圖中,展示了單體伊辛自旋間耦合作用的影響.同時(shí),由于反對(duì)稱交換作用j1=j3=1,使自旋態(tài)處于高度競(jìng)爭(zhēng),從而導(dǎo)致了FRI2和QFI相具有相同的能量,共同存在于相圖中的同一個(gè)區(qū)域.為了簡(jiǎn)便,在后面的討論中將該簡(jiǎn)并態(tài)簡(jiǎn)稱為FQ相.由圖2可知,在高磁場(chǎng)下,自旋處于全部極化態(tài),均朝向外磁場(chǎng)方向,基態(tài)表現(xiàn)為飽和順磁相SP.當(dāng)磁場(chǎng)相對(duì)較小時(shí),基態(tài)展現(xiàn)了多樣化的自旋構(gòu)型,具體表現(xiàn)為亞鐵磁態(tài)(FRI1,FRI2或QFI)或獨(dú)一無二的量子反鐵磁態(tài)QAF.其中基態(tài)FRI2對(duì)應(yīng)經(jīng)典亞鐵磁自旋構(gòu)型,即所有海森伯自旋沿外磁場(chǎng)方向排列,而所有節(jié)點(diǎn)伊辛自旋由于它們間的反鐵磁耦合反平行于外磁場(chǎng)方向.但當(dāng)海森伯自旋間的反鐵磁耦合比較強(qiáng)時(shí),能量上海森伯自旋對(duì)更傾向形成單-二聚態(tài).在這種情況下,體系將處于量子亞鐵磁基態(tài)QFI,表現(xiàn)為伊辛自旋朝向外磁場(chǎng)方向,表明自旋阻挫有效地消除了近鄰間隙自旋和節(jié)點(diǎn)自旋耦合的影響.當(dāng)磁場(chǎng)值非常小時(shí),節(jié)點(diǎn)伊辛自旋間的次近鄰反鐵磁耦合將引起伊辛自旋間的反鐵磁排列,從而使體系基態(tài)表現(xiàn)為量子反鐵磁態(tài)QAF.除此之外,節(jié)點(diǎn)自旋間的次近鄰耦合還會(huì)引入不具備平移對(duì)稱性的FRI1基態(tài),具體表現(xiàn)為海森伯自旋朝向外磁場(chǎng)方向,節(jié)點(diǎn)伊辛自旋互相反平行排列.為了討論的完整性,將各基態(tài)相間的邊界方程列于表1中.

表1 邊界兩側(cè)的磁有序相及邊界方程Table 1.Magnetic order phases and their boundary equations.

3.2 低溫磁化行為和熱力學(xué)性質(zhì)

基于構(gòu)建的基態(tài)相圖,對(duì)體系的低溫磁化過程進(jìn)行了分析和討論.圖3描述了典型阻挫參數(shù)jm=0.75和jm=1.25分別作用下,系統(tǒng)總磁化強(qiáng)度隨外磁場(chǎng)的變化行為.總體上看,當(dāng)系統(tǒng)處于零溫時(shí),所有磁場(chǎng)誘導(dǎo)的零溫相變呈現(xiàn)陡峭的跳躍,相應(yīng)磁化曲線表現(xiàn)為完美階梯狀.當(dāng)溫度為有限值時(shí),磁化曲線開始變得平滑,并伴隨著臺(tái)階寬度的收縮.對(duì)于不同伊辛自旋次近鄰耦合jm,系統(tǒng)將經(jīng)歷不同的磁化路徑,從而展現(xiàn)出不同的磁化平臺(tái),其中磁化平臺(tái)的寬度對(duì)應(yīng)著基態(tài)相存在的場(chǎng)區(qū)間.

當(dāng)jm=0.75時(shí),從圖3(a)中可以看到,磁化曲線展現(xiàn)了1/3,2/3和1磁化平臺(tái),反映出磁場(chǎng)分別在臨界場(chǎng)hc1=0.75,hc2=1.25以及hc3=2.75處誘導(dǎo)的連續(xù)相變QAF-FQ,FQ-FRI1和FRI1-SP.當(dāng)jm=1.25時(shí),如圖3(b)所示,1/3磁化平臺(tái)消失,2/3磁化平臺(tái)加寬,與零溫的QAF-FRI1相變相呼應(yīng).值得一提的是,由于次近鄰交換耦合jm的存在,低溫磁化曲線展現(xiàn)了與基態(tài)FRI1相密切關(guān)聯(lián)的新穎的2/3磁化平臺(tái).同時(shí),以上這些磁化平臺(tái)值滿足Oshikawa-Yamanaka-Affleck條件n(Stot?m)=integer,其中n表示由哈密頓量的空間結(jié)構(gòu)決定的基態(tài)周期,Stot和m分別表示基本單元的總自旋和磁化強(qiáng)度.此外,從圖中還可以看出低溫磁化曲線緊密跟隨零溫磁化曲線,(如t=0.01時(shí)的磁化曲線),證明了圖2所構(gòu)建基態(tài)相圖的正確性.

圖4給出了與圖3參數(shù)條件相同,總磁化強(qiáng)度在不同外磁場(chǎng)作用下隨溫度的變化行為.可以看到,當(dāng)外磁場(chǎng)非常接近臨界場(chǎng)時(shí),磁化強(qiáng)度展現(xiàn)了溫度引起的顯著變化.當(dāng)磁場(chǎng)略低于(高于)臨界場(chǎng)時(shí),磁化強(qiáng)度在強(qiáng)烈地?zé)釢q落誘導(dǎo)下呈現(xiàn)增加(減小)趨勢(shì);而當(dāng)磁場(chǎng)的值處于相應(yīng)磁化平臺(tái)中間區(qū)域或是大于飽和磁場(chǎng)值時(shí),磁化強(qiáng)度隨著溫度的增加呈現(xiàn)了穩(wěn)定的下降趨勢(shì).值得注意的是當(dāng)磁場(chǎng)處于臨界場(chǎng)時(shí)(除了臨界場(chǎng)hc1=0.75處),磁化強(qiáng)度隨著溫度的上升也呈現(xiàn)了單調(diào)遞減的變化行為.

圖3 當(dāng)j1=j3=1時(shí),磁化強(qiáng)度在不同溫度下隨外磁場(chǎng)的變化 (a)jm=0.75;(b)jm=1.25.Fig.3.The total magnetization as a function of external magnetic fi eld with j1=j3=1 at several di ff erent temperatures for two representative cases:(a)jm=0.75;(b)jm=1.25.

圖4 當(dāng)j1=j3=1時(shí)磁化強(qiáng)度在不同外磁場(chǎng)下隨溫度的變化 (a)jm=0.75;(b)jm=1.25;其中深紅色菱形表示不同基態(tài)共存的臨界場(chǎng)Fig.4.Temperature dependence of the magnetization per site with j1=j3=1 at several magnetic fi elds for two representative cases:(a)jm=0.75;(b)jm=1.25.The rhombus symbols in black red denote critical fi elds at which di ff erent ground states coexist together.

由于系統(tǒng)中多種磁耦合作用的存在以及鉆石鏈本身的幾何阻挫結(jié)構(gòu),因此來自不同相互作用項(xiàng)的能量將會(huì)產(chǎn)生微妙的競(jìng)爭(zhēng)關(guān)系,從而使系統(tǒng)展現(xiàn)出豐富的熱力學(xué)行為.圖5給出了不同次近鄰節(jié)點(diǎn)伊辛自旋相互作用下,零場(chǎng)磁比熱隨溫度的變化曲線.由圖5(a)可以看到,當(dāng)jm=0時(shí),磁比熱曲線在低溫區(qū)僅呈現(xiàn)出一個(gè)寬闊的圓形單峰.當(dāng)jm存在且其值比較小時(shí),磁比熱展現(xiàn)出雙峰結(jié)構(gòu),具體表現(xiàn)為極低溫區(qū)的高尖峰和低溫區(qū)的駝峰,表明次近鄰伊辛自旋間的交換耦合增強(qiáng)了體系的阻挫效應(yīng),誘導(dǎo)了磁比熱極低溫區(qū)的尖峰.隨著jm的增加,尖峰和駝峰峰寬加寬并互相靠攏,其中尖峰向高溫區(qū)移動(dòng),駝峰則向低溫區(qū)靠近.當(dāng)繼續(xù)增加jm,如圖5(b)所示,兩峰匯聚在一起形成一個(gè)圓峰,此時(shí)磁比熱又恢復(fù)為單峰結(jié)構(gòu),其峰值隨著jm增強(qiáng)而變大.磁比熱曲線所展現(xiàn)的復(fù)雜和多樣化變化行為,反映了體系自旋阻挫與溫度熱漲落引起的局域自旋激發(fā)態(tài)的相互競(jìng)爭(zhēng).

圖5 不同交換耦合jm作用下零場(chǎng)磁比熱隨溫度的變化,其中j1=j3=1Fig.5.Temperature variations of the zero- fi eld speci fi c heat for various exchange couplings jmunder j1=j3=1.

4 結(jié) 論

研究了節(jié)點(diǎn)伊辛自旋間的次近鄰交換耦合對(duì)伊辛-海森伯鉆石鏈體系的基態(tài)性質(zhì)和熱力學(xué)行為的影響.利用傳遞矩陣方法嚴(yán)格求解了體系的磁化強(qiáng)度、磁化率和磁比熱,著重探討了所有交換耦合為反鐵磁時(shí),幾何阻挫和局域量子漲落相互競(jìng)爭(zhēng)下體系有趣的磁學(xué)行為.研究結(jié)果顯示,節(jié)點(diǎn)次近鄰交換耦合的引入,豐富了體系的基態(tài)相和磁化平臺(tái),使體系展現(xiàn)出飽和順磁態(tài)SP、亞鐵磁態(tài)FRI1和FRI2,量子亞鐵磁基態(tài)QFI以及獨(dú)一無二的量子反鐵磁基態(tài)QAF五個(gè)不同基態(tài)相.其中量子亞鐵磁態(tài)FRI2和QFI對(duì)應(yīng)著1/3磁化平臺(tái),經(jīng)典亞鐵磁態(tài)FRI1對(duì)應(yīng)著新穎的2/3磁化平臺(tái).值得注意的是,在不考慮次近鄰交換耦合時(shí),該平臺(tái)在鉆石鏈體系中并沒有出現(xiàn).此外,還展示了零場(chǎng)磁化率和磁比熱與溫度間的多樣化依賴關(guān)系,其中零場(chǎng)磁比熱隨次近鄰伊辛反鐵磁耦合的變化呈現(xiàn)豐富的雙峰結(jié)構(gòu).

[1]Kikuchi H,Fujii Y,Chiba M,Mitsudo S,Idehara T,Kuwai T 2004J.Magn.Magn.Mater.272 900

[2]Rule K C,Wolter A U B,Süllow S,Tennant D A,Brühl A,K?hler S,Wolf B,Lang M,Schreuer J 2008Phys.Rev.Lett.100 117202

[3]Jeschke H,Opahle I,Kandpal H,Valentí R,Das H,Dasgupta T S,Janson O,Rosner H,Brühl A,Wolf B,Lang M,Richter J,Hu S,Wang X,Peters R,Pruschke T,Honecker A 2011Phys.Rev.Lett.106 217201

[4]Takano K,Kubo K,Sakamoto H 1996J.Phys.:Condens.Matter8 6405

[5]Okamoto K,Tonegawa T,Kaburagi M 2003J.Phys.:Condens.Matter15 5979

[6]Kikuchi H,Fujii Y,Chiba M,Mitsudo S,Idehara T,Tonegawa T,Okamoto K,Sakai T,Kuwai T,Ohta H 2005Phys.Rev.Lett.94 227201

[7]Ivanov N B,Richter J,Schulenburg J 2009Phys.Rev.B79 104412

[8]Aimo F,Kr?mer S,Klanj?ek M,Horvati? M,Berthier C 2011Phys.Rev.B84 012401

[9]Takano K,Suzuki H,Hida K 2009Phys.Rev.B80 104410

[10]Gu B,Su G 2007Phys.Rev.B75 174437

[11]Verkholyak T,Stre?ka J 2013Phys.Rev.B88 134419

[12]Pereira M S S,de Moura F A B F,Lyra M L 2008Phys.Rev.B77 024402

[13]Rojas O,de Souza S M,Ohanyan V,Khurshudyan M 2011Phys.Rev.B83 094430

[14]Pereira M S S,de Moura F A B F,Lyra M L 2009Phys.Rev.B79 054427

[15]Stre?ka J,Ja??ur M 2003J.Phys.:Condens.Matter15 4519

[16]?anová L,Stre?ka J,Ja??ur M 2006J.Phys.:Condens.Matter18 4967

[17]Valverde J S,Rojas O,de Souza S M 2008J.Phys.:Condens.Matter20 345208

[18]Torrico J,Rojas M,Pereira M S S,Stre?ka J,Lyra M L 2016Phys.Rev.B93 014428

[19]Ohanyan V,Honecker A 2012Phys.Rev.B86 054412

[20]Hovhannisyan V V,Ananikian N S,Kenna R 2016Physica A453 116

[21]Hovhannisyan V V,Stre?ka J,Ananikian N S 2016J.Phys.:Condens.Matter28 085401

[22]Visinescu D,Madalan A M,Andruh M,Duhayon C,Sutter J P,Ungur L,van den Heuvel W,Chibotaru L F 2009Chem.Eur.J15 11808

[23]van den Heuvel W,Chibotaru L F 2010Phys.Rev.B82 174436

Ground-state and magnetization behavior of the frustrated spin-1/2 antisymmetric diamond chain?

Zhao Yang1)Qi Yan1)?Du An2)?Liu Jia1)Xiao Rui1)Shan Ying1)Wu You1)Yang Si-Hao1)
1)(School of Physics and Materials Engineering,Dalian Minzu University,Dalian 116600,China)
2)(College of Physics,Northeastern University,Shenyang 110819,China)

The low-dimensional quantum spin systems have been extensively studied in the past three decades due to the novel ground states and rich magnetic behaviors,especially the quantum spin chain with diamond topology structure.Motivated by recent experimental success in Cu3(CO3)2(OH)2compound,which is regarded as a model material of spin-1/2 diamond chain,researchers have paid a lot of attention to various variants of diamond spin chains.In this paper,we mainly examine the magnetic properties of an antisymmetric spin-1/2 Ising-Heisenberg diamond chain with the secondneighbor interaction between nodal spins.By using exact diagonalization and transfer-matrix methods,the ground-state phase diagram,magnetization behavior and macroscopic thermodynamics are exactly solved for the particular case that all magnetic bonds yield antiferromagnetic couplings,which usually shows the most interesting magnetic features closely related to a striking interplay between geometric frustration and quantum fl uctuations.To clearly illustrate the e ff ect of second-neighbor interaction item,we consider a highly frustrated situation that all Ising-Heisenberg bonds and Heisenberg bonds possess the same interaction strength.The calculation results indicate that the second-neighbor interaction item will enrich ground states and magnetization plateaus.A classical ferrimagnetic phase FRI1corresponding to a novel two-thirds of intermediate plateau with translationally broken symmetry is introduced,manifesting itself as up-up-up-down-up-up spin con fi guration at a ground-state.In addition,there are other four distinct ground states which can be identi fi ed from the phase diagram,i.e.,one saturated paramagnetic phase SP,one classical ferrimagnetic phase FRI2,one quantum ferrimagnetic phase QFI and the unique quantum antiferromagnetic phase QAF.The classical phase FRI2and quantum phase QFI both generate one-third of magnetization plateau.It is worth mentioning that all the values of these magnetization plateaus satisfy the Oshikawa-Yamanaka-Affleck condition.Besides,the results also have shown a rich variety of temperature dependence of total magnetization and speci fi c heat.The magnetization displays the remarkable thermal-induced changes as the external fi eld is sufficiently close to critical value where two or more than two di ff erent ground states coexist.At the critical fi eld relevant to a coexistence of two di ff erent states,the total magnetization displays a monotonic decrease trend.The thermal dependence of zero- fi eld speci fi c heat displays relative complex variations for di ff erent second-neighbor interactions between nodal spins.At fi rst,the speci fi c heat presents only a single rounded Schottky-type maximum.Using the second-neighbor interaction,another sharp peak arises at low-temperature and is superimposed on this round maximum,and the speci fi c heat exhibits a double-peak structure.On further strengthening,the low-temperature one keeps its height shifting towards high temperature,while the hightemperature round peak su ff ers great enhancement and moves in an opposite direction.Finally,the low temperature peak entirely merges with the Schottky-type peak at a certain value of second-neighbor interaction,and above this value,the speci fi c curve recovers its single peak structure.The observed double-peak speci fi c heat curves mainly originate from thermal excitations between the ground-state spin con fi guration QAF and the ones close enough in energy to the ground state.

Ising-Heisenberg model,transfer-matrix method,exact solution,ground-state phase diagram

14 May 2017;revised manuscript

4 July 2017)

(2017年5月14日收到;2017年7月4日收到修改稿)

10.7498/aps.66.197501

?國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):11547236)、遼寧省教育廳一般項(xiàng)目(批準(zhǔn)號(hào):L2015130)、大連民族大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(批準(zhǔn)號(hào):201712026371)和中央高?;究蒲袠I(yè)務(wù)費(fèi)(批準(zhǔn)號(hào):DC201501065,DCPY2016014)資助的課題.

?通信作者.E-mail:qiyan@dlnu.edu.cn

?通信作者.E-mail:duan@mail.neu.edu.cn

?2017中國(guó)物理學(xué)會(huì)Chinese Physical Society

PACS:75.10.Pq,75.30.Kz,75.40.Cx

10.7498/aps.66.197501

*Project supported by the National Natural Science Foundation of China(Grant No.11547236),the General Project of the Education Department of Liaoning Province,China(Grant No.L2015130),and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Dalian Minzu University,China(Grant No.201712026371),and the Fundamental Research Funds for the Central Universities,China(Grant Nos.DC201501065,DCPY2016014).

?Corresponding author.E-mail:qiyan@dlnu.edu.cn

?Corresponding author.E-mail:duan@mail.neu.edu.cn

猜你喜歡
基態(tài)鐵磁磁化
關(guān)于兩類多分量海森堡鐵磁鏈模型的研究
一種無磁化的5 T磁共振射頻功率放大器設(shè)計(jì)
一類非線性Choquard方程基態(tài)解的存在性
擬相對(duì)論薛定諤方程基態(tài)解的存在性與爆破行為
一類反應(yīng)擴(kuò)散方程的Nehari-Pankov型基態(tài)解
非線性臨界Kirchhoff型問題的正基態(tài)解
東北豐磁化炭基復(fù)合肥
雙色球磁化炭基復(fù)合肥
500kV GIS變電站調(diào)試過程中鐵磁諧振分析
你好,鐵磁