吳小紅,王衛(wèi)*,侯海軍,謝小立
稻草還田方式對(duì)不同水分類型稻田土壤N2O排放的影響
吳小紅1,2,王衛(wèi)2*,侯海軍2,謝小立2
1. 中南林業(yè)科技大學(xué)生命科學(xué)與技術(shù)學(xué)院,湖南 長(zhǎng)沙 410004;
2. 中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所//亞熱帶農(nóng)業(yè)生態(tài)過程重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410125
稻田是重要的N2O排放源,而稻田N2O排放與土壤水分和施肥密切相關(guān)。南方丘陵區(qū)是中國(guó)水稻的重要生產(chǎn)地,然而由于地形海拔的差異,稻田的水分條件相差很大。該地域典型的稻田水分包括持續(xù)淹水、中期曬田(除中期曬田和收獲前落干外,保持淹水)以及耕灌雨養(yǎng)(灌水整地插秧,水稻分蘗盛期后不灌溉,依靠自然降水)。稻草還田為土壤微生物提供了大量的碳、氮基質(zhì),不同的稻草還田方式(深施、表施)會(huì)影響微生物對(duì)稻草中的碳、氮的利用,從而可能會(huì)影響 N2O排放。采用靜態(tài)箱-氣象色譜法研究了南方丘陵區(qū)稻田土壤在不同水分條件(持續(xù)淹水、常規(guī)灌溉和耕灌雨養(yǎng))下,秸稈還田方式(無稻草、稻草翻耕入土、稻草覆蓋)對(duì)N2O排放的影響。當(dāng)土壤有水層時(shí),N2O排放微乎其微;當(dāng)水層落干后,N2O排放快速上升。耕灌雨養(yǎng)的N2O累積排放通量顯著高于常規(guī)灌溉和持續(xù)淹水處理的N2O累積排放通量。在耕灌雨養(yǎng)條件下,稻草翻耕入土處理下N2O排放為2.566 kg?hm-2,比無稻草處理增加54%,而稻草覆蓋處理對(duì)N2O排放影響很小。在常規(guī)灌溉和持續(xù)淹水條件下,無論是否進(jìn)行稻草還田,N2O排放均很弱,僅為-0.003~0.030 kg?hm-2。研究結(jié)果表明,水分是調(diào)控稻田N2O排放的主要因子,在田間無水層條件下,稻草翻耕入土有促進(jìn)N2O排放的潛力。
N2O;水分管理;秸稈還田;稻草覆蓋
N2O是一種重要的溫室氣體,至2015年,N2O在大氣中的體積分?jǐn)?shù)達(dá)到328 nL·L-1,最近10年平均每年上升0.89 nL·L-1(WMO,2016)。據(jù)估算,農(nóng)田土壤N2O排放占全球人為排放的50%(Smith et al.,2007)。中國(guó)水稻種植面積世界第二,總產(chǎn)量世界第一,對(duì)中國(guó)糧食生產(chǎn)起到了重要作用,但稻田也是重要的N2O排放源,并且N2O排放受田間水分管理和施肥影響(Ma et al.,2009;Shang et al.,2011;Zou et al.,2005)。
南方丘陵區(qū)是中國(guó)水稻的重要生產(chǎn)地,然而由于地形海拔的差異,稻田的水分條件相差很大。隨著海拔的降低,稻田能夠蓄積較多的徑流和壤中流,并且擁有較多的灌溉水源,所以低處的稻田幾乎一直淹水,而高處的稻田缺乏灌溉條件,主要依靠降雨。為了防備可能的干旱,農(nóng)民一般不會(huì)隨意排水,除非水層過深或需中期曬田促進(jìn)水稻生長(zhǎng)。該地域典型的稻田水分包括持續(xù)淹水、中期曬田以及耕灌雨養(yǎng)。稻草是水稻生產(chǎn)的主要副產(chǎn)品,約占水稻地上生物量的50%。由于稻草的資源化利用水平較低、政府禁止焚燒秸稈以及維持土壤肥力等原因,稻草還田成了農(nóng)民處理稻草的主要選擇。
土壤微生物的硝化反硝化過程是產(chǎn)生 N2O的主要途徑,該過程受土壤碳、氮水平以及土壤水分條件影響(Bateman et al.,2005;Dobbie et al.,2003;Oertel et al.,2016)。前人的研究表明,淹水狀態(tài)下的稻田很少排放N2O,而土壤的干濕交替過程促進(jìn)稻田 N2O 的排放(Liu et al.,2012;Zou et al.,2005;Zou et al.,2009),N2O排放與土壤水分含量也存在顯著相關(guān)關(guān)系(Chen et al.,2014;Yan,2013)。稻草還田為土壤微生物提供了大量的碳、氮基質(zhì),可能會(huì)對(duì)稻田 N2O排放產(chǎn)生消極或積極的影響(Huang et al.,2004;Swerts et al.,1996;Zou et al.,2005)。一方面,添加稻草會(huì)增加微生物的活性和土壤氧氣消耗,進(jìn)而導(dǎo)致更強(qiáng)烈的土壤厭氧環(huán)境(Miller et al.,2008;Swerts et al.,1996;Zou et al.,2005)。另一方面,稻草所含有機(jī)氮的礦化可以釋放出銨態(tài)氮,促進(jìn)土壤硝化作用,產(chǎn)生N2O(Charles et al.,2017)。同時(shí),不同的稻草還田方式(深施、表施)會(huì)影響微生物對(duì)稻草中的碳、氮的利用,從而可能會(huì)影響N2O排放。有研究表明,水分和秸稈對(duì)N2O排放沒有顯著交互作用(Kim et al.,2014;Wang et al.,2011)。為探明不同水分條件下稻草還田方式對(duì)N2O排放的影響,本研究設(shè)置了秸稈還田方式(不還田、翻耕入土、覆蓋還田)和水分條件(長(zhǎng)期淹水、曬田、耕灌雨養(yǎng))交叉分組實(shí)驗(yàn),并監(jiān)測(cè)了稻田N2O通量,以期為稻田水分與秸稈管理提供科學(xué)依據(jù)。
1.1 試驗(yàn)區(qū)域概況
試驗(yàn)在中國(guó)科學(xué)院桃源農(nóng)業(yè)生態(tài)試驗(yàn)站進(jìn)行。該地處于 111°27′E,28°55′N,年平均氣溫為16.5 ℃,年降水量為1448 mm,年日照時(shí)數(shù)為1531 h,年太陽輻射總量為427.5 kJ?cm-2。土壤為第四紀(jì)紅色黏土發(fā)育而成的水稻土。
1.2 試驗(yàn)設(shè)計(jì)
2014年7月23日—10月24日,在稻田長(zhǎng)期水分管理定位試驗(yàn)田開展試驗(yàn),其部分土壤理化性質(zhì)見表1。本研究利用長(zhǎng)期定位試驗(yàn)的3個(gè)水分處理的原位土壤及水分條件,監(jiān)測(cè)稻草還田方式對(duì)不同水分類型稻田土壤溫室氣體的排放規(guī)律。處理I持續(xù)淹水(F,周年淹灌2~10 cm水層,代表水資源富余的低洼稻田)、處理Ⅱ常規(guī)灌溉(FDF,休閑期田間排水,除中期曬田和收獲前落干外,水稻大田期保持淹水,代表灌排條件良好的高產(chǎn)稻田)和處理Ⅲ耕灌雨養(yǎng)(FR,灌水整地插秧,水稻分蘗盛期后不灌溉,依靠自然降水,代表灌溉條件差的高岸水田)。研究期間田間具體水分狀況見圖1。本研究采用交叉分組的兩因素?zé)o重復(fù)試驗(yàn)設(shè)計(jì)。在同一水分處理的 3個(gè)重復(fù)小區(qū)內(nèi)分別設(shè)置不同稻草還田方式的微區(qū),分別為稻草覆蓋(SM,水稻移栽后第10天開始覆蓋,模擬在水稻返青后進(jìn)行稻草覆蓋)、稻草翻耕入土(SI,整田時(shí)將稻草翻耕入土)和不還田(NS)。稻草添加量為 5000 kg?hm-2。所有處理的尿素添加量折算為純氮 101 kg?hm-2。
表1 耕層土壤(0~20 cm)基本理化性質(zhì)Table 1 Properties of top soil (0~20 cm) under different water treatments
圖1 試驗(yàn)期間不同水分處理田間水位變化Fig. 1 Variation of water depth under different water treatments during experimental period
1.3 測(cè)定項(xiàng)目
1.3.1 N2O的采集與測(cè)定
利用采氣箱采集氣體樣品。采氣箱為圓柱形,底座直徑45 cm,箱體高15 cm。一般每隔3~4 d采集1次氣體樣品,采樣時(shí)間在上午9:20—10:40之間。具體操作為:分別在第 0、15、30、45和 60分鐘時(shí),使用注射器抽取30 mL箱體內(nèi)氣體注入真空瓶?jī)?nèi),同時(shí)記錄箱體內(nèi)氣溫、土溫及土壤水分狀況。帶回實(shí)驗(yàn)室使用Agilent 7890A氣相色譜儀測(cè)定氣體濃度,進(jìn)而利用氣體濃度的變化速率以及箱體的高度和氣溫計(jì)算排放通量。氣體排放通量計(jì)算公式為 F=ρ×h×dc/dt×273/(273+T)。公式中 F 為氣體排放通量,ρ為標(biāo)準(zhǔn)狀態(tài)下氣體的密度,h為采樣箱內(nèi)的凈高度,dc/dt為單位時(shí)間內(nèi)采樣箱內(nèi)氣體的濃度變化率,T為采樣過程中采樣箱內(nèi)的平均溫度???N2O累積排放通量為每相鄰兩次測(cè)定時(shí)間段內(nèi)的N2O排放累積通量相加(Zou et al.,2005)。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用 Microsoft excel 2013和 SPSS 16.0統(tǒng)計(jì)軟件進(jìn)行整理與分析。采用交叉分組的兩因素?zé)o重復(fù)觀察值方差分析方法進(jìn)行方差分析(S-N-K,P<0.05)。
2.1 N2O排放動(dòng)態(tài)
所有處理在施肥后N2O達(dá)到一個(gè)排放峰值(圖2)。在耕灌雨養(yǎng)條件下,當(dāng)水層逐漸落干時(shí),N2O排放快速上升,當(dāng)降雨使田間淹水時(shí),N2O排放急劇降低。在常規(guī)灌溉條件下,經(jīng)歷短暫曬田后N2O排放沒有明顯上升,田間復(fù)水后N2O排放接近于0,收獲前數(shù)天排水使N2O排放上升。在持續(xù)淹水條件下,除施肥后有峰值出現(xiàn)外,N2O排放接近于0。在整個(gè)研究期間,F(xiàn)R+NS、FR+SI和FR+SM的N2O平均排放速率分別為 74.0、113.8 和 69.5 μg?m-2?h-1;FDF+NS、FDF+SI和FDF+SM的N2O平均排放速率分別為 1.2、1.3 和 0.2 μg?m-2?h-1;F+NS、F+SI和F+SM的N2O平均排放速率分別為0.4、0.4和-0.1 μg?m-2?h-1。
2.2 N2O累積排放
在整個(gè)研究期間,F(xiàn)R+NS、FR+SI和FR +SM的N2O累積排放通量分別為1.669、2.566和1.567 kg?hm-2;FDF+NS、FDF+SI和 FDF+SM 的 N2O 累積排放通量分別為0.027、0.030和0.004 kg?hm-2;F+NS、F+SI和F+SM的N2O累積排放通量分別為0.009、0.009和-0.003 kg?hm-2。在耕灌雨養(yǎng)條件下,稻草翻耕入土處理使N2O排放增加54%,而稻草覆蓋處理對(duì)N2O排放影響很小。在常規(guī)灌溉和持續(xù)淹水條件下,無論是否進(jìn)行稻草還田,N2O排放均很弱,僅為-0.003~0.030 kg?hm-2。方差分析表明,耕灌雨養(yǎng) N2O累積排放通量顯著高于常規(guī)灌溉和持續(xù)淹水處理的 N2O累積排放通量,而稻草還田對(duì)N2O影響不明顯,稻草翻耕入土、稻草覆蓋和對(duì)照之間的 N2O累積排放未達(dá)到顯著性差異(表 2),這說明稻田N2O排放主要受田間水分影響,但稻草翻耕入土有促進(jìn)N2O排放的潛力。
表2 不同處理下N2O累積排放量Table 2 Cumulative emission of N2O under different treatments
圖2 不同水分管理?xiàng)l件和稻草還田方式下稻田N2O排放通量Fig. 2 N2O fluxes under different straw treatments and water treatments
土壤水分條件是調(diào)控土壤硝化與反硝化過程的重要因素(Oertel et al.,2016)。非淹水狀態(tài)有利于硝化和反硝化反應(yīng)同時(shí)進(jìn)行,促進(jìn)N2O產(chǎn)生和排放,而淹水使土壤處于極端還原狀態(tài),生成的 N2O被進(jìn)一步還原為氮?dú)?,抑制了N2O產(chǎn)生(Liu et al.,2012)。本研究表明,在淹水狀態(tài)下,N2O排放微弱,而當(dāng)水層落干后,N2O排放大幅增加,這與前人的研究結(jié)論類似(Cai et al.,1997;Zou et al.,2005;Zou et al.,2009)。Zou et al.(2005)曾報(bào)道,在淹水—中期曬田—淹水—濕潤(rùn)灌溉制度下,N2O排放速率為 342 μg?m-2?h-1。Li et al.(2014)曾報(bào)道,在中期曬田條件下 N2O 排放速率為 78~132 μg?m-2?h-1。與之相比,本研究中的N2O排放速率較低。
稻草是稻田重要的養(yǎng)分和有機(jī)物質(zhì)來源之一,稻草還田為微生物提供了大量碳、氮基質(zhì)。在本研究中,稻草還田處理對(duì)N2O排放的影響未達(dá)到顯著性水平。在淹水條件下稻草翻耕入土對(duì)N2O排放的影響很小,而在耕灌雨養(yǎng)條件下,稻草翻耕入土還田有促進(jìn)N2O排放的趨勢(shì),這與一些研究的結(jié)論較一致(Cai et al.,1997;Lou et al.,2007;Kim et al.,2014)。在稻麥輪作系統(tǒng),小麥秸稈還田會(huì)降低N2O排放(Ma et al.,2007;Ma et al.,2009;Wang et al.,2010;Wang et al.,2011),這可能是因?yàn)樾←溄斩挼腃∶N值較高,導(dǎo)致氮相對(duì)缺乏,從而促進(jìn)非自養(yǎng)微生物與自養(yǎng)硝化菌之間對(duì)NH4+產(chǎn)生競(jìng)爭(zhēng)(Chen et al.,2013),從而表現(xiàn)出 N2O排放與添加物的 C∶N值呈負(fù)相關(guān)關(guān)系(Huang et al.,2004;Toma et al.,2007)。然而,也有研究表明,持續(xù)多年的秸稈還田會(huì)促進(jìn)N2O排放(Li et al.,2005;Shang et al.,2011),可能是因?yàn)殚L(zhǎng)期秸稈還田使土壤積累了更多的氮、碳基質(zhì)。
綜上,稻草覆蓋還田對(duì)N2O排放無明顯影響,而在土壤通氣條件較好的狀態(tài)下稻草翻耕入土還田具有促進(jìn)N2O排放的潛力。為了節(jié)約水資源,濕潤(rùn)灌溉、中期烤田、干濕交替灌溉等灌溉技術(shù)得到廣泛應(yīng)用。因此,與稻草翻耕入土相比,推薦稻草覆蓋還田,一方面對(duì)N2O排放影響很小,另一方面可以大幅降低CH4排放(Ma et al.,2009)。
田間水分條件對(duì)N2O排放有顯著的調(diào)控作用。當(dāng)土壤處于淹水狀態(tài)時(shí),N2O排放微乎其微;當(dāng)土壤落干后,N2O排放快速上升。耕灌雨養(yǎng)的N2O累積排放通量顯著高于常規(guī)灌溉和持續(xù)淹水處理的N2O累積排放通量。在耕灌雨養(yǎng)條件下,稻草翻耕入土處理下N2O排放為2.566 kg?hm-2,比無稻草處理增加 54%,而稻草覆蓋處理對(duì) N2O排放影響很小。在常規(guī)灌溉和持續(xù)淹水條件下,無論是否進(jìn)行稻草還田,N2O 排放均很弱,僅為-0.003~0.030 kg?hm-2。稻草翻耕入土、稻草覆蓋與無稻草還田處理對(duì)N2O排放的影響未達(dá)到顯著性水平,但在長(zhǎng)時(shí)間無水層條件下(如耕灌雨養(yǎng)后期),稻草翻耕入土有促進(jìn)N2O排放的潛力。
BATEMAN E J, BAGGS E M. 2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space [J]. Biology and Fertility of Soils, 41(6): 379-388.
CAI Z C, XING G X, YAN X Y, et al. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant and Soil, 196(1): 7-14.
CHARLES A, ROCHETTE P, WHALEN J K, et al. 2017. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis [J]. Agriculture, ecosystems &environment, 236: 88-98.
CHEN C, CHEN D L, PAN J J, et al. 2014. Analysis of factors controlling soil N2O emission by principal component and path analysis method[J]. Environmental earth sciences, 72(5): 1511-1517.
CHEN H, LI X, HU F, et al. 2013. Soil nitrous oxide emissions following crop residue addition: a meta-analysis [J]. Global change biology,19(10): 2956-2964.
DOBBIE K E, SMITH K A. 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables [J]. Global change biology, 9(2):204-218.
HUANG Y, ZOU J W, ZHENG X H, et al. 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C∶N ratios[J]. Soil Biology and Biochemistry, 36(6): 973-981.
KIM G Y, GUTIERREZ J, JEONG H C, et al. 2014. Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation [J].Journal of the Korean Society for Applied Biological Chemistry, 57(2):229-236.
LI C S, FROLKING S, BUTTERBACH-BAHL K. 2005. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing [J].Climatic Change, 72(3): 321-338.
LIU J B, HOU H J, SHENG R, et al. 2012. Denitrifying communities differentially respond to flooding drying cycles in paddy soils [J].Applied Soil Ecology, 62: 155-162.
奇納馬薩說,津巴布韋化肥生產(chǎn)商面臨的挑戰(zhàn)是缺乏外匯。自2017年底以來,津巴布韋一直受美元短缺困擾?!敖虬筒柬f境內(nèi)保稅區(qū)提供了生產(chǎn)化肥所需原材料,但這需要6132萬美元外匯?!?/p>
LOU Y S, REN L X, LI Z P, et al. 2007. Effect of rice residues on carbon dioxide and nitrous oxide emissions from a paddy soil of subtropical China [J]. Water, Air & Soil Pollution, 178(1-4): 157-168.
MA J, LI X L, XU H, et al. 2007. Effects of nitrogen fertilizer and wheat straw application on CH4and N2O emissions from a paddy rice field[J]. Australian Journal of Soil Research, 45(5): 359-367.
MA J, MA E D, XU H, et al. 2009. Wheat straw management affects CH4and N2O emissions from rice fields [J]. Soil Biology & Biochemistry,41(5): 1022-1028.
MILLER M N, ZEBARTH B J, DANDIE C E, et al. 2008. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil [J]. Soil Biology and Biochemistry, 40(10):2553-2562.
OERTEL C, MATSCHULLAT J, ZIMMERMANN F, et al. 2016.Greenhouse gas emissions from soils——A review [J]. Chemie der Erde-Geochemistry, 76(3): 327-352.
SHANG Q Y, YANG X X, GAO C M, et al. 2011. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments [J]. Global Change Biology 17(6): 2196-2210.
SWERTS M, MERCKX R, VLASSAK K. 1996. Influence of carbon availability on the production of NO, N2O, N2and CO2by soil cores during anaerobic incubation [J]. Plant and Soil 181(1): 145-151.
TOMA Y, HATANO R. 2007. Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan [J].Soil Science & Plant Nutrition, 53(2): 198-205.
WANG J Y, JIA J X, XIONG Z Q, et al. 2011. Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China [J]. Agriculture Ecosystems & Environment, 141(3-4): 437-446.
WANG Y, HU C, ZHU B, et al. 2010. Effects of wheat straw application on methane and nitrous oxide emissions from purplish paddy fields [J].Plant Soil and Environment, 56(1): 16-22.
WMO (World Meteorological Organization). 2016. WMO Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on observations through 2015 [R/OL](2017-04-12). http://library.wmo.int/opac/doc_num.php?explnum_id=3084.
YAN G. 2013. Two-year simultaneous records of N2O and no fluxes from a farmed cropland in the northern china plain with a reduced nitrogen addition rate by one-third [J]. Agriculture, ecosystems & environment,178: 39-50.
ZOU J W, HUANG Y, JIANG J Y. 2005. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime, crop residue, and fertilizer application [J].Global Biogeochemical Cycles, 19: GB2021, doi:10.1029/2004GB002401.
ZOU J W, HUANG Y, QIN Y M, et al. 2009. Changes in fertilizer-included direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s [J]. Global change Biology, 15(1):229-242.
Abstract: Paddy is an important source of N2O, the emissions of which from rice paddies are closely related to soil moisture and fertilizer application. Low hilly areas of southern China play an important role in rice production. However, water conditions in paddy systems vary greatly, due to their differences in topography and altitude. Typical water conditions in this area include continuous flooding (F, soil was continuously flooded), mid-season drainage (FDF, soil was flooded except drainage in mid-season and harvest time), and flooding - rainfed (FR, irrigation was implemented for field preparation and transplanting, no more irrigation after active tillering stage). Straw application supplies plenty of readily available carbon and nitrogen for soil microorganisms. The modes of straw application (straw incorporation and straw mulch) may exert an impact on microbial utilization of carbon and nitrogen from straw, and further alter N2O emissions. The present study investigated the emissions of N2O under different field water conditions (F, FDF, and FR) and different straw return methods (none straw return (NS), straw incorporation into soil (SI), and straw mulch (SM)) using static chamber-gas chromatography method. N2O fluxes were negligible when soils were flooded. However, N2O fluxes increased sharply when water layer disappeared. Cumulative N2O fluxes under FR condition was significantly higher than those under FDF and F conditions. Under FR condition, cumulative N2O fluxes from FR+SI was 2.566 kg?hm-2, 54% higher than that from FR+NS, whereas FR+SM had little effect on N2O emissions. Under both F and FDF conditions, cumulative N2O fluxes were negligible (-0.003~0.030 kg?hm-2), irrespective of straw application. The results indicated that soil water conditions were the main factor that regulated N2O emissions in rice paddies, and straw incorporation into soil had potential to increase N2O emissions when soil was unflooded.
Key words: N2O; filed water management; straw return; straw mulch
Effects of Straw Return Methods on N2O Emissions from Paddy Soils under Different Water Managements
WU Xiaohong1,2, WANG Wei2*, HOU Haijun2, XIE Xiaoli2
1. Faculty of Life Science and Technology, Central-South University of Forestry and Technology, Changsha 410004, China;2. Key Laboratory of Agro-Ecological Process in Subtropical Region//Institute of Subtropical Agriculture, Chinese Academy of Sciences,Changsha 410125, China
10.16258/j.cnki.1674-5906.2017.09.007
X144; S153
A
1674-5906(2017)09-1501-05
吳小紅, 王衛(wèi), 侯海軍, 謝小立. 2017. 稻草還田方式對(duì)不同水分類型稻田土壤N2O排放的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),26(9): 1501-1505.
WU Xiaohong, WANG Wei, HOU Haijun, XIE Xiaoli. 2017. Effects of straw return methods on N2O emissions from paddy soils under different water managements [J]. Ecology and Environmental Sciences, 26(9): 1501-1505.
國(guó)家自然科學(xué)基金項(xiàng)目(41401292;41503081);國(guó)際科技合作項(xiàng)目(2015DFA90450)
吳小紅(1985年生),女,講師,研究方向?yàn)橥寥郎鷳B(tài)學(xué)。E-mail: wxh16403@163.com*通信作者。王衛(wèi),E-mail: wangw@isa.ac.cn
2017-07-20