沙月霞
(寧夏植物病蟲(chóng)害防治重點(diǎn)實(shí)驗(yàn)室, 寧夏農(nóng)林科學(xué)院植物保護(hù)研究所, 銀川 750002)
生物農(nóng)藥在稻瘟病防治中的應(yīng)用及前景分析
沙月霞
(寧夏植物病蟲(chóng)害防治重點(diǎn)實(shí)驗(yàn)室, 寧夏農(nóng)林科學(xué)院植物保護(hù)研究所, 銀川 750002)
稻瘟病是一種世界性稻作病害,是影響高產(chǎn)、穩(wěn)產(chǎn)的重要因素。目前利用抗病品種和化學(xué)農(nóng)藥是防治稻瘟病的主要措施,但是稻瘟病菌生理小種易變異,抗病品種選育時(shí)間較長(zhǎng),化學(xué)農(nóng)藥的殘留污染環(huán)境,尋找有效的生物防治途徑對(duì)于水稻產(chǎn)業(yè)可持續(xù)發(fā)展迫在眉睫。生物農(nóng)藥具有低殘留、高效、對(duì)環(huán)境無(wú)污染、病原菌不易產(chǎn)生抗藥性等優(yōu)點(diǎn),是防治稻瘟病的重要?dú)⒕鷦?。在稻瘟病防治中常用的生物農(nóng)藥包括微生物源農(nóng)藥、植物源農(nóng)藥和植保素。本文主要綜述了生物農(nóng)藥在稻瘟病防治中的生防機(jī)制與應(yīng)用研究現(xiàn)狀,分析生物農(nóng)藥在稻瘟病防治中的前景。
生物農(nóng)藥; 稻瘟病; 生物防治; 稻瘟病菌
水稻是世界上最重要的糧食作物,是全球近50%人口的主糧作物[1-2]。稻瘟病是世界性真菌病害,也是最嚴(yán)重的水稻病害之一,具有突發(fā)性強(qiáng)、易于流行和分布廣泛的特點(diǎn)。稻瘟病菌無(wú)性時(shí)期為絲孢目梨孢屬的灰梨孢Pyricularia(=Piricularia)grisea(Cooke)Sacc.。有性時(shí)期為子囊菌門巨座殼目巨座殼屬的Magnaportheoryzae(Hebert) Yaegashi & Udagawa。稻種和稻草中越冬的病原菌在翌年條件適宜的時(shí)候萌發(fā)產(chǎn)生分生孢子,借氣流和雨水傳播,在水稻的各個(gè)生育期和植株的各個(gè)組織部位均可發(fā)生侵染。稻瘟病根據(jù)癥狀不同分為苗瘟、葉瘟、節(jié)瘟、枝梗瘟、穗頸瘟和谷粒瘟等。
稻瘟病分布極其廣泛,在全世界85個(gè)國(guó)家有發(fā)生,亞洲和非洲稻區(qū)較為嚴(yán)重,其中日本、韓國(guó)、印度和中國(guó)最為嚴(yán)重[3]。稻瘟病每年造成30%的水稻產(chǎn)量損失——可以養(yǎng)活6千萬(wàn)人口[4-5],經(jīng)濟(jì)損失超過(guò)700億美元[5],嚴(yán)重的田塊顆粒無(wú)收[6]。1975-1990年全球由稻瘟病引起的糧食損失高達(dá)1.6億t,1975-2000年間全世界11%~30%的稻田因稻瘟病而顆粒無(wú)收[3]。采用抗病品種和化學(xué)農(nóng)藥是防治稻瘟病的主要方式,但是抗病品種存在選育時(shí)間長(zhǎng)和抗病性易喪失的問(wèn)題,化學(xué)殺菌劑的殘留會(huì)對(duì)大米和生態(tài)環(huán)境造成污染,病原菌也容易產(chǎn)生抗藥性[7-8]。因此,利用生物農(nóng)藥防治稻瘟病是水稻產(chǎn)業(yè)可持續(xù)發(fā)展的需要。
生物防治通常是指利用活體微生物或者其代謝活性物質(zhì)防治病原菌、害蟲(chóng)和雜草以及調(diào)節(jié)植物生長(zhǎng)的措施[9-11]。Bacon等報(bào)道內(nèi)生枯草芽胞桿菌Bacillussubtilis可以與串珠鐮孢菌Fusariummoniliforme競(jìng)爭(zhēng)玉米植株體內(nèi)的侵入位點(diǎn),從而抑制病害的發(fā)生[9]。Manikandan和Sathiyabama[12]研究報(bào)道了殼聚糖在離體葉片上對(duì)稻瘟病菌表現(xiàn)出良好的抑菌效果。用于稻瘟病防治的生物農(nóng)藥主要有微生物源農(nóng)藥、植物源農(nóng)藥和植保素。本文主要綜述了生物農(nóng)藥在稻瘟病防治中的生防機(jī)制和應(yīng)用現(xiàn)狀,展望生物農(nóng)藥在稻瘟病防治中的前景。
1.1 真菌防治稻瘟病的生防機(jī)制
真菌在防治稻瘟病中的生防機(jī)制包括重寄生作用、交叉保護(hù)作用、產(chǎn)生拮抗物質(zhì)和競(jìng)爭(zhēng)作用等。生防真菌可以產(chǎn)生具有抑菌活性的次生代謝產(chǎn)物,抑制稻瘟病菌侵入結(jié)構(gòu)的形成;也可以分泌纖維素酶、果膠酶、葡聚糖酶、幾丁質(zhì)酶等水解酶,溶解稻瘟病菌細(xì)胞壁的主要成分幾丁質(zhì)和纖維素。Ali等[13]研究發(fā)現(xiàn)木霉TrichodermaT2可以溶解稻瘟病菌菌絲壁,并且致使部分菌絲卷曲,從而降低稻瘟病菌的致病性。Zhang等[14]分離的彎孢霉Curvulanasp. FH01產(chǎn)生鄰苯二甲酸丁基異丁酯(phthalic acid butyl isobutyl ester)和根生素(radicinin)對(duì)稻瘟病菌具有顯著抑菌活性。部分真菌可以引起寄主植物產(chǎn)生誘導(dǎo)抗病性,例如誘導(dǎo)水稻植株體內(nèi)的植物保衛(wèi)素、活性氧、植物防御酶系發(fā)生相應(yīng)變化,形成阻礙稻瘟病菌入侵的物理結(jié)構(gòu)屏障如乳突和酚類化合物等[11-12,15]。在溫室條件下,哈茨木霉NF9菌株浸種可增強(qiáng)水稻品種‘原豐早’幼苗對(duì)稻瘟病的抗性[16]。Su等[17]研究發(fā)現(xiàn)暗色有隔內(nèi)生真菌稻鐮狀瓶霉Harpophoraoryzae可以成功在水稻根部定殖,并通過(guò)水楊酸(salicylic acid,SA)介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路誘導(dǎo)水稻產(chǎn)生抗病性,提高了抗稻瘟病的能力。
1.2 細(xì)菌防治稻瘟病的生防機(jī)制
細(xì)菌來(lái)源的生物農(nóng)藥一般抗菌譜比較廣,其生防機(jī)制多樣化,包括抗生作用、溶菌作用、空間位點(diǎn)競(jìng)爭(zhēng)、營(yíng)養(yǎng)競(jìng)爭(zhēng)、誘導(dǎo)抗病性等。生防菌與病原菌之間拮抗作用的強(qiáng)度與二者在宿主表面共生時(shí)的生物量相關(guān),即拮抗菌需要在病原菌侵染水稻前搶占生存空間并長(zhǎng)期定殖,才能有效地抑制病原菌。生防細(xì)菌的競(jìng)爭(zhēng)作用主要包括營(yíng)養(yǎng)競(jìng)爭(zhēng)和空間位點(diǎn)競(jìng)爭(zhēng)。營(yíng)養(yǎng)競(jìng)爭(zhēng)是指生防細(xì)菌在微生態(tài)環(huán)境中與其他微生物(包括病原菌)在其定殖部位爭(zhēng)奪生長(zhǎng)發(fā)育必需的氨基酸、無(wú)機(jī)鹽、碳水化合物、維生素、鐵元素等營(yíng)養(yǎng)元素。Chaiharn等[18]篩選的堅(jiān)強(qiáng)芽胞桿菌B.firmus同稻瘟病菌競(jìng)爭(zhēng)水稻周圍的營(yíng)養(yǎng)物質(zhì),并分泌一種嗜鐵素,增強(qiáng)其在水稻根部的定殖能力,從而達(dá)到生防效果??臻g位點(diǎn)競(jìng)爭(zhēng)是指生防細(xì)菌在植物根際、體表或體內(nèi)與稻瘟病菌爭(zhēng)奪侵入位點(diǎn)??莶菅堪麠U菌CB-R05可以在水稻皮層細(xì)胞內(nèi)、細(xì)胞間隙、木質(zhì)部和維管束系統(tǒng)中大量定殖[19],搶占稻瘟病菌的侵入位點(diǎn)。GFP標(biāo)記的枯草芽胞桿菌SYX04和SYX20可以大量定殖在水稻根、莖和葉片的表皮和維管束中[20]。
拮抗作用是指一種生物產(chǎn)生抗生物質(zhì)或有毒代謝物對(duì)另一種生物的生長(zhǎng)發(fā)育的抑制作用。生防細(xì)菌一般可產(chǎn)生抗菌脂肽、水解酶等多種胞外代謝物質(zhì)導(dǎo)致稻瘟病菌菌絲畸形、原生質(zhì)濃縮、抑制分生孢子萌發(fā)以及菌絲端破裂。甲基營(yíng)養(yǎng)型芽胞桿菌BacillusmethylotrophicusBC79產(chǎn)生抗菌活性物質(zhì)啉氨甲基醋酸(phenaminomethylacetic acid)抑制稻瘟病菌菌絲生長(zhǎng)和分生孢子萌發(fā),溫室條件下,菌株BC79發(fā)酵液對(duì)稻瘟病的防治效果達(dá)到89.87%[21]。枯草芽胞桿菌SYX20和SYX04發(fā)酵培養(yǎng)液能夠溶解稻瘟病菌菌絲細(xì)胞壁和分生孢子細(xì)胞壁,致使原生質(zhì)外滲,初步研究認(rèn)為是菌株產(chǎn)生了可以降解幾丁質(zhì)和β-1,3-葡聚糖的酶類物質(zhì)[22]。
熒光假單胞菌Pseudomonasfluorescenspf7-14對(duì)葉瘟和穗頸瘟的防效達(dá)到79%和82%,生防機(jī)制是其產(chǎn)生抗真菌抗生素phenazine-l-carboxylic acid(PCA),抑制了稻瘟病菌的生長(zhǎng)[23]。Yu等[24]從海水中分離的葡萄球菌Staphylococcussp. 菌株LZ16產(chǎn)生抑菌活性物質(zhì)嘌呤核苷磷酸化酶(purine nucleoside phosphorylase,PNP),顯著抑制分生孢子萌發(fā)、芽管發(fā)育和附著胞的形成,田間試驗(yàn)證實(shí)該菌培養(yǎng)液可顯著預(yù)防和減輕稻瘟病的發(fā)生。
生防細(xì)菌不但可以抑制稻瘟病菌的生長(zhǎng),而且其菌體及代謝產(chǎn)物能夠誘發(fā)水稻植株產(chǎn)生抗病性,即具有誘導(dǎo)植物抗病性作用。Jha等從水稻根系分離得到短小芽胞桿菌B.pumilus和類產(chǎn)堿假單胞菌P.pseudoalcaligenes,可以增強(qiáng)水稻防御相關(guān)酶如幾丁質(zhì)酶及多酚氧化酶(PPO)等的活性,誘導(dǎo)水稻植株的抗病性,從而降低稻瘟病的危害[25]。De Vleesschauwer等研究表明,熒光假單胞菌P.fluorescenswcs WCS374r分泌產(chǎn)生假單胞菌素型鐵載體,由茉莉酸(jasmonic acid,JA)/乙烯(ethylene, ETH)信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)節(jié)水稻植株產(chǎn)生誘導(dǎo)抗病性,增強(qiáng)抗葉瘟的能力[26]??莶菅堪麠U菌BBG111產(chǎn)生的環(huán)脂肽類抗生素、豐原素和表面活性劑既可以誘導(dǎo)水稻W(wǎng)CS374r抗病性,又促進(jìn)茉莉酸、乙烯、脫落酸(abscisic acid, ABA)和植物生長(zhǎng)素(Auxin, IAA)信號(hào)表達(dá),同時(shí)誘導(dǎo)幾丁質(zhì)酶的活性[27]。
1.3 放線菌防治稻瘟病的生防機(jī)制
放線菌是可以產(chǎn)生多種抗菌素的生防微生物,是一種防治稻瘟病的潛在資源,其生防機(jī)制主要包括促進(jìn)植物生長(zhǎng)、提高植株抗逆境能力和拮抗作用。李燕[28]篩選研究發(fā)現(xiàn)涂鏈霉菌StreptomycesendusOsiSh-2 產(chǎn)生幾丁質(zhì)酶、纖維素酶及鐵載體蛋白,可以溶解稻瘟病菌細(xì)胞壁;在含有 L-色氨酸的培養(yǎng)基中產(chǎn)生吲哚乙酸促進(jìn)水稻的生長(zhǎng),在防治水稻稻瘟病中具有多種生防機(jī)制協(xié)同控病的能力。Prabavathy等[29]從鏈霉菌PMS分離到抗真菌脂肽類化合物SPM5C-1和SPM5C-2,SPM5C-1對(duì)稻瘟病菌的菌絲生長(zhǎng)具有顯著抑制活性,溫室條件下對(duì)稻瘟病的防效達(dá)到76.1%,顯著增加水稻產(chǎn)量。Zhang等[30]從暗灰鏈霉菌S.canusBYB02中分離純化的活性代謝產(chǎn)物硫酸卡那霉素對(duì)稻瘟病菌菌絲生長(zhǎng)及分生孢子萌發(fā)具有很強(qiáng)的抑菌活性,對(duì)稻瘟病的防效達(dá)到66.8%。杜春梅等[31]采用菌絲生長(zhǎng)速率法和孢子萌發(fā)抑制法研究發(fā)現(xiàn)放線菌NK413菌株及其代謝產(chǎn)物對(duì)稻瘟病菌菌絲生長(zhǎng)和孢子萌發(fā)具有較明顯的抑制作用。
1.4 植物源殺菌劑防治稻瘟病的生防機(jī)制
植物源殺菌劑在防治水稻稻瘟病中的生防機(jī)制主要包括拮抗作用和誘導(dǎo)抗病性。拮抗作用表現(xiàn)在抑制稻瘟病菌菌絲生長(zhǎng)、分生孢子萌發(fā)、附著胞及侵入絲形成等,還有一些植物提取物可以破壞稻瘟病菌細(xì)胞壁的結(jié)構(gòu)。張翠榮[32]研究發(fā)現(xiàn)檸檬醛可以破壞稻瘟病菌細(xì)胞壁的多糖結(jié)構(gòu),不但稻瘟病菌菌絲形態(tài)發(fā)生了明顯的變化,其細(xì)胞超微結(jié)構(gòu)也受到了嚴(yán)重的破壞,尤其是菌絲細(xì)胞的滲透性、細(xì)胞質(zhì)、隔膜和線粒體等細(xì)胞器的結(jié)構(gòu)形態(tài)發(fā)生了明顯的改變。誘導(dǎo)抗病性主要表現(xiàn)在誘導(dǎo)水稻植株產(chǎn)生抗病性和增強(qiáng)植株的抗逆性。陳桂華等[15]利用中藥前胡提取物誘導(dǎo)水稻幼苗抗稻瘟病,誘導(dǎo)后的水稻植株苗瘟的發(fā)病率下降。
2.1 利用微生物農(nóng)藥防治稻瘟病
微生物農(nóng)藥包括活體微生物和農(nóng)用抗生素,用于防治農(nóng)作物的病、蟲(chóng)、草、鼠害或促進(jìn)作物生長(zhǎng)?;铙w微生物包括細(xì)菌、真菌、病毒。生物農(nóng)藥市場(chǎng)中微生物源農(nóng)藥大約占30%[33],用于防治稻瘟病的微生物源農(nóng)藥主要有真菌類、細(xì)菌類和放線菌類。
2.1.1 生防微生物
生防微生物是指用于生物防治的微生物,其具有特異性強(qiáng)、無(wú)殘留、不易產(chǎn)生抗藥性、與環(huán)境相容性好、利用空間大和防效好等特點(diǎn)。在水稻生產(chǎn)過(guò)程中經(jīng)常用于稻瘟病防治的生防微生物主要有木霉[13,16]、芽胞桿菌[19,21]、假單胞菌[23,26]和放線菌[28-31]、毛殼霉Chaetomium[34]、平臍蠕孢Bipolaris[35]和黏質(zhì)沙雷氏菌Serratiamarcescens[35-36]。
植物病害生物防治中,真菌是非常重要的生防微生物。Wang等[34]分離的根際真菌金黃毛殼菌ChaetomiumaureumMF-91及其代謝產(chǎn)物顯著抑制稻瘟病菌菌絲生長(zhǎng)、分生孢子萌發(fā)及附著胞形成,代謝產(chǎn)物對(duì)稻瘟病的田間防效達(dá)到66.07%。木霉具有顯著的生防與促生活性,在稻瘟病防治中是重要生防微生物。劉路寧等[37]研究發(fā)現(xiàn)綠木霉TrichodermavirensTY009產(chǎn)生抗菌素膠霉毒素,50 和10 μg/mL 膠霉毒素分別完全抑制稻瘟病菌分生孢子萌發(fā)和附著胞的形成;Chaudhary等[38]篩選的哈茨木霉T.harzianumIRRI-3和IRRI-4通過(guò)浸種方式可有效防治葉瘟的危害。
芽胞桿菌具有對(duì)人畜安全、不污染環(huán)境、病原菌不易產(chǎn)生抗藥性、抗逆性強(qiáng)和促進(jìn)植物生長(zhǎng)等優(yōu)點(diǎn),成為稻瘟病防治上的重要生防菌。Chaiharn等[18]從泰國(guó)北部的水稻根際和根圍土壤中分離的堅(jiān)強(qiáng)芽胞桿菌BacillusfirmusD4.1產(chǎn)生含鐵細(xì)胞,其培養(yǎng)濾液對(duì)稻瘟病的防治效果達(dá)70%以上。溫小紅等[39]從海洋細(xì)菌中分離的枯草芽胞桿菌HW-14對(duì)多個(gè)稻瘟病菌生理小種的抑菌圈直徑在18 mm 以上。Taguchi等[40]分離的枯草芽胞桿菌IK-1080培養(yǎng)濾液減輕葉瘟的發(fā)生率7.7%~13.8%,減少產(chǎn)量損失52.2%~73.5%。Shan等[21]分離自陜西秦嶺的甲基營(yíng)養(yǎng)型芽胞桿菌BC79培養(yǎng)濾液在溫室條件下對(duì)稻瘟病的防治效果達(dá)到89.9%。Hernandez-Rodriguez等[41]篩選的多株固氮型芽胞桿菌,具有明顯促生作用而且對(duì)稻瘟病防治效果良好。Meng等[42]研究發(fā)現(xiàn)枯草芽胞桿菌T429粉劑對(duì)稻瘟病的田間防治效果在77.6%~78.5%。Naureen等[43]從水稻根際分離出的枯草芽胞桿菌SPS2,假單胞菌WBPS1以及蠟樣芽胞桿菌B.cereusZ2對(duì)稻瘟病防效穩(wěn)定并對(duì)水稻植株具有顯著促生作用。沙月霞等[44]從水稻葉片表面分離獲得2株枯草芽胞桿菌其發(fā)酵液對(duì)葉瘟的田間防效為71.5%~85.1%,對(duì)穗瘟的田間防效為63.5%~85.6%。
假單胞菌分布廣、數(shù)量多、繁殖快、競(jìng)爭(zhēng)定殖能力強(qiáng),是非常重要的生防因子。用于稻瘟病防治的假單胞桿菌主要有熒光假單胞菌[43-46]、惡臭假單胞菌Pseudomonasputida[47]等。Prathuangwong等[48]分離的熒光假單胞菌SP007s對(duì)稻瘟病有防治效果,增產(chǎn)率達(dá)到52.1%。Amutharaj等[49]分離的假單胞菌EA105對(duì)稻瘟病菌附著胞的形成抑制率達(dá)到90%以上,菌落生長(zhǎng)抑制率達(dá)到76%。Gohel等[50]分離出2株熒光假單胞菌,可以有效防治稻瘟病兼具增產(chǎn)作用。
放線菌也是稻瘟病防治上比較重要的生防微生物。Oh和Lee[51]篩選的放線菌A5005、A5314發(fā)酵液在溫室條件下可以顯著減少葉瘟的病斑。宋永燕等[52]篩選的吸水鏈霉菌D-2在PDA平板上對(duì)稻瘟病菌的抑菌率達(dá)到92.2%,以甲醇作溶劑,吐溫80作乳化劑,對(duì)稻瘟病的田間防效達(dá)到65.69%。
Khalil等[53]從埃及水稻田土壤中分離篩選出50株對(duì)稻瘟病菌具有抑菌活性的放線菌。Thawai[54]從泰國(guó)香米的根和莖中分離得到38株放線菌,對(duì)稻瘟病有較好的防治效果。
2.1.2 農(nóng)用抗生素
滅瘟素S(blasctidini S)是灰色產(chǎn)色鏈霉菌StreptomycesgriseochromogenesFukun產(chǎn)生的核苷類抗生素,是第一個(gè)廣泛應(yīng)用的農(nóng)用抗生素,對(duì)水稻苗瘟、葉瘟、穗頸瘟等都有顯著的治療效果[55]。春雷霉素是春日鏈霉菌S.kasugaensis產(chǎn)生的氨基糖苷類農(nóng)用抗生素[56],對(duì)稻瘟病有很好的防治效果。馮東岳[57]由吸水鏈霉菌純化出波拉霉素(polaramycin),當(dāng)波拉霉素濃度為5 μg/mL和10 μg/mL時(shí),對(duì)稻瘟病菌孢子萌發(fā)抑制率分別為95.6%和99%,對(duì)菌絲生長(zhǎng)抑制率分別為69.5%和90%。吡咯假單胞菌P.pyrrocinia產(chǎn)生的硝吡咯菌素(pyrrolinitrin)對(duì)稻瘟病菌具有拮抗效果,在溫室盆栽條件下對(duì)稻瘟病表現(xiàn)出良好的防效[58]。葉亞軍等[59]從諾卡氏菌Norcardiasp. A11純化的農(nóng)用抗生素A211,其微乳劑200倍稀釋液對(duì)稻瘟病菌的抑菌效果在60%以上,對(duì)葉瘟的田間保護(hù)和治療效果分別是71.3%和61.7%,對(duì)穗瘟的防效是59.8%。羅楚平等[60]從枯草芽胞桿菌916純化出芽胞菌霉素bacillomycin L對(duì)稻瘟病的防效明顯。Xiong等[61]從稠李鏈霉菌S.padanusJAU4234分離純化的抗真菌霉菌素antifungalmycin 702強(qiáng)烈抑制稻瘟病菌附著胞形成和分生孢子萌發(fā),完全抑制附著胞形成,對(duì)分生孢子萌發(fā)抑制率達(dá)到95%~100%。Zhang等[30]從暗灰鏈霉菌S.canusBYB02純化出拒霉素(resistomycin),IC50=3.8 μg/mL時(shí)對(duì)稻瘟病菌菌絲生長(zhǎng)抑制效果良好,IC50=5.6 μg/mL時(shí)對(duì)分生孢子萌發(fā)抑制效果良好,在離體條件下對(duì)稻瘟病菌的抑菌效果為58.7%~66.8%?;尹S霉素(griseofulvin)是一種非多烯類的抗真菌抗生素,它能強(qiáng)烈抑制真菌細(xì)胞有絲分裂,干擾真菌DNA合成,抑制絲狀真菌的生長(zhǎng),是一類很好的抗真菌藥物。張傳能等[62]采用平板對(duì)峙法測(cè)定出產(chǎn)灰黃霉素的展青霉GM120-43對(duì)稻瘟病具明顯的抑制作用;在稻瘟病的防治中,灰黃霉素稀釋300倍時(shí)對(duì)葉瘟病與穗瘟病的預(yù)防效果分別為93.76%和53.79%,治療效果分別為89.2%和49.21%,是一種具有前景的生物農(nóng)藥。
2.2 利用植物源農(nóng)藥防治稻瘟病
植物源農(nóng)藥通常采用植物的某些部位或者從中提取的活性成分,以及分離純化的單體物質(zhì)為原料研制而成。利用植物源農(nóng)藥防治稻瘟病,在水稻生產(chǎn)中發(fā)揮著重要作用。Amadioha[63]從印楝Azadirachtaindica種子中提純出對(duì)稻瘟病具有明顯防治效果的浸提物。Lee等[64]利用蓽拔果Piperlongum的一種代謝產(chǎn)物——乙烷抽提物合成殺菌劑,對(duì)稻瘟病菌的抑制率為33%。Huo等[65]將木荷Schimasuperba葉和無(wú)患子Sapindusmukorossi果皮的皂苷抽提物以3∶4或者15∶8的質(zhì)量配比合成殺菌劑,具有明顯抗稻瘟病的作用。嚴(yán)偉[66]利用木荷、無(wú)患子、油茶、樟樹(shù)等代謝產(chǎn)物研制的殺菌劑能有效抑制稻瘟病菌菌絲的生長(zhǎng)和分生孢子的萌發(fā)。Rout等[67-68]利用木橘Aeglemarmelos提取物合成的殺菌劑對(duì)稻瘟病菌分生孢子萌發(fā)的抑制率達(dá)到81.9%,溫室條件下對(duì)稻瘟病的防效達(dá)到67%~80%,對(duì)葉瘟的田間防效達(dá)到76%~80%。
2.3 利用植保素防治稻瘟病
植物保衛(wèi)素(phytoalexins,簡(jiǎn)稱植保素)是指具有誘導(dǎo)活性和抗菌活性的一類低分子量物質(zhì),能夠抵御病原菌的侵染,受到生物或者非生物脅迫時(shí)在水稻植株體內(nèi)積累合成。已知的植保素包括櫻花素(sakuranetin)、柚皮素(naringenin)、稻殼酮(momilactone)A和B、水稻素(oryzalexin E)[69-70]。柚皮素和櫻花素混配后在培養(yǎng)基上可以抑制稻瘟病菌菌絲生長(zhǎng)[71-72]。稻瘟病菌侵染水稻葉片后誘導(dǎo)植株產(chǎn)生的植保素RF2,對(duì)稻瘟病菌分生孢子萌發(fā)和菌絲生長(zhǎng)具有較明顯的抑制作用[73]。Zhang 等[74]利用低聚糖誘導(dǎo)水稻植株防御酶活性,稻瘟病發(fā)生率降低10.8%~17.7%。
3.1 生物防治是綠色植保的重要內(nèi)容
由于對(duì)病害流行與藥劑作用機(jī)制等知識(shí)缺乏認(rèn)識(shí),大量化學(xué)藥劑被錯(cuò)誤使用、過(guò)量使用,這不僅對(duì)人類自身健康、畜禽安全直接造成危害,還對(duì)土壤、植被、水體等環(huán)境生態(tài)造成污染。隨著社會(huì)的發(fā)展和人民生活質(zhì)量的提高,人們對(duì)糧食安全的需求日漸增長(zhǎng),生態(tài)環(huán)境的惡化也迫使人類重視農(nóng)業(yè)的生物防治。生物農(nóng)藥不僅能夠有效控制稻瘟病的危害,同時(shí)對(duì)人畜以及環(huán)境沒(méi)有威脅,而且具有促進(jìn)植物生長(zhǎng)等優(yōu)點(diǎn),可滿足食品安全的要求。生態(tài)學(xué)一直是植物病害生物防治的重要基礎(chǔ),利用生物農(nóng)藥防治稻瘟病,更有利于從宏觀和微觀上恢復(fù)與重建以自然調(diào)控為核心的生態(tài)系統(tǒng),實(shí)現(xiàn)水稻植株微生態(tài)系統(tǒng)的平衡。探索、利用生物農(nóng)藥,達(dá)到以菌治菌的目的,在稻瘟病防治上具有廣闊的應(yīng)用前景和市場(chǎng)潛力。
3.2 應(yīng)用分子生物學(xué)技術(shù)發(fā)展攜帶抗性基因的新型生物農(nóng)藥
生物防治因其對(duì)環(huán)境和動(dòng)物安全而逐漸成為人們所關(guān)注的焦點(diǎn)和熱點(diǎn),但是,目前許多具有生防潛力的微生物在生產(chǎn)應(yīng)用中效果不理想、不穩(wěn)定,主要原因是對(duì)許多生防菌的生防機(jī)制不明確,制約了其發(fā)展。利用現(xiàn)代分子生物學(xué)技術(shù),不僅有利于揭示生物農(nóng)藥在水稻上定殖的分子機(jī)制,而且有助于深入研究生物農(nóng)藥的生防機(jī)理。黏質(zhì)沙雷氏菌SerratiamarcescensB2包含一系列幾丁質(zhì)酶基因,對(duì)稻瘟病菌具有較好的抑菌效果,該菌可以在水稻根際定殖,卻不能在水稻葉部有效定殖。Someya等[75]克隆了S.marcescensB2內(nèi)切幾丁質(zhì)酶基因chiA,利用遺傳轉(zhuǎn)化技術(shù)將克隆基因?qū)肓丝梢栽谒救~片有效定殖的菌株ErwiniaananasNR-1中,轉(zhuǎn)化后的E.ananasNR-1經(jīng)葉面噴霧處理能夠顯著降低葉瘟發(fā)病率。分子生物學(xué)的飛速發(fā)展為生物農(nóng)藥在稻瘟病防治上的發(fā)展提供了新的理論和技術(shù),提升了生防效果的穩(wěn)定性,使得生物農(nóng)藥的應(yīng)用前景更加廣闊。
3.3 具備商業(yè)化研發(fā)和工廠化生產(chǎn)的潛力
生物農(nóng)藥的來(lái)源廣泛,自然界中許多具有殺菌和抑菌效果的植物可以用于開(kāi)發(fā)植物源農(nóng)藥;在土壤、植物和海洋中分布著大量微生物,易于分離和純化,具有繁殖快、抗逆性強(qiáng)、抑菌能力強(qiáng)等特性,是理想的生防微生物。多種拮抗微生物可以協(xié)同互作,如將互融的2種以上的拮抗微生物(混用的不同抗生體之間沒(méi)有拮抗、寄生、溶解或競(jìng)爭(zhēng)等互斥關(guān)系) 混合,將有利于混合菌株對(duì)水稻不同部位的空間全面占領(lǐng),實(shí)現(xiàn)多種抗生菌功能互補(bǔ)、多種病害兼防,作用持久的協(xié)同控病效果。我國(guó)陳延熙教授等[76]曾從各種植物組織內(nèi)分離到多種有益的芽胞桿菌,進(jìn)而制成植物微生態(tài)制劑,并于1986年開(kāi)始在大田示范使用,發(fā)現(xiàn)其具有改善作物品質(zhì)、增產(chǎn)、防病等很多作用。在農(nóng)業(yè)生產(chǎn)中,生物農(nóng)藥可以實(shí)現(xiàn)商業(yè)化研發(fā)和工廠化生產(chǎn),很容易制成粉劑或者其他劑型,在貯藏、攜帶和運(yùn)輸方面也比較方便,具有很好的應(yīng)用潛力和市場(chǎng)前景。采用生物農(nóng)藥防治稻瘟病可以大幅度減少化學(xué)農(nóng)藥的施用和環(huán)境污染,提高水稻的產(chǎn)量和質(zhì)量,最終實(shí)現(xiàn)水稻產(chǎn)業(yè)的可持續(xù)發(fā)展。因此,發(fā)展新型用于稻瘟病防治的生物農(nóng)藥對(duì)于糧食安全至關(guān)重要。
[1] Gyaneshwar P, James E K, Mathan N, et al. Endophytic colonization of rice by a diazotrophic strain ofSerratiamarcescens[J]. Journal of Bacteriology, 2001, 183(8): 2634-2645.
[2] Muthayya S, Sugimoto J D, Montgomery S, et al. An overview of global rice production, supply, trade, and consumption[J]. Annals of the New York Academy of Sciences, 2014, 1324: 7-14.
[3] Spence C, Alff E, Johnson C, et al. Natural rice rhizospheric microbes suppress rice blast infections [J]. BMC Plant Biology, 2014, 14: 130.
[4] Dagadas Y F, Yoshinok K, Dagdas G, et al. Septin-mediated plant cell invasion by the rice blast fungus,Magnaportheoryzae[J]. Science, 2012, 336(6088): 1590-1595.
[5] Mahmut C. The molecular basis of plant genetic diversity [M]. Croatia: InTech, 2012: 331-356.
[6] Skamnioti P, Gurr S J. Against the grain: safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141-150.
[7] Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards [J]. Interdisciplinary Toxicology, 2009, 2(1): 1-12.
[8] Chuma I, Isobe C, Hotta Y, et al. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungusMagnaportheoryzaeand related species [J]. PLoS Pathogens, 2011, 7(7): e1002147.
[9] Bacon C W, Yates I E, Hinton D M, et al. Biological control ofFusariummoniliformein maize [J]. Environmental Health Perspectives, 2001, 109(2): 325-332.
[10] Prabavathy V R, Mathivanan N, Murugesan K. Control of blast and sheath blight diseases of rice using antifungal metabolites produced byStreptomycessp. PM5 [J]. Biological Control, 2006, 39(3): 313-319.
[11] Moreno A B, Martinez del Pozo A, San Segundo B. Biotechnologically relevant enzymes and proteins: antifungal mechanism of theAspergillusgiganteusAFP against the rice blast fungusMagnaporthegrisea[J]. Applied Microbiology and Biotechnology, 2006, 72(5): 883-895.
[12] Manikandan A, Sathiyabama M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected withPyriculariagrisea[J]. International Journal of Biological Macromolecules, 2016, 84: 58-61.
[13] Ali H, Nadarajah K. Evaluating the efficacy ofTrichodermaspp. andBacillussubtilisas biocontrol agents againstMagnaporthegriseain rice [J]. Australian Journal of Crop Science, 2014, 8(9): 1324-1335.
[14] Zhang Yinglao, Kong Lichun, Jiang Donghua, et al. Phytotoxic and antifungal metabolites fromCurvulariasp. FH01 isolated from the gut ofAtractomorphasinensis[J]. Bioresource Technology, 2011, 102(3): 3575-3577.
[15] 陳桂華, 肖艷松, 柏連陽(yáng). 中藥前胡提取物對(duì)水稻幼苗抗稻瘟病的誘導(dǎo)作用[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 33(5): 602-604.
[16] Jean-Berchmans N, 徐同, 宋鳳鳴,等. 哈茨木霉NF9 菌株對(duì)水稻的誘導(dǎo)抗病性[J]. 中國(guó)生物防治, 2003, 19(3): 111-114.
[17] Su Zhenzhu, Mao Lijuan, Li Na, et al. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyteHarpophoraoryzaeto rice blast disease [J]. PLoS ONE, 2013, 8(4): e61332.
[18] Chaiharn M, Chunhaleuchanon S, Lumyong S. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand [J]. World Journal of Microbiology and Biotechnology, 2009, 25(11): 1919-1928.
[19] Ji S H, Gururani M A, Chun S C. Expression analysis of rice pathogenesis-related proteins involved in stress response and endophytic colonization properties of gfp-taggedBacillussubtilisCB-R05[J]. Applied Biochemistry and Biotechnology, 2014, 174(1): 231-241.
[20] 沙月霞. 防治稻瘟病芽胞桿菌的篩選及生防機(jī)制研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2016.
[21] Shan Hongying, Zhao Mingmin, Chen Dexin,et al. Biocontrol of rice blast by the phenaminomethylacetic acid producer ofBacillusmethylotrophicusstrain BC79[J].Crop Protection, 2013, 44: 29-37.
[22] Sha Yuexia, Wang Qi, Li Yan. Suppression ofMagnaportheoryzaeand interaction betweenBacillussubtilisand rice plants in the control of rice blast [J]. SpringerPlus, 2016, 5: 1238.
[23] Valasubraxnanian R. Biological control of rice blast withPseudomonasfluorescensMigula: Role of antifungal antibiotic in disease suppression [D]. India: University of Madras, 1994.
[24] Yu Qin, Liu Zhu, Lin Derun, et al. Characterization and evaluation ofStaphylococcussp. strain LZ16 for the biological control of rice blast caused byMagnaportheoryzae[J]. Biological Control, 2013, 65 (3):338-347.
[25] Jha Y, Subramanian R B. EndophyticPseudomonaspseudoalcaligenesshows better response against theMagnaporthegriseathan a rhizosphericBacilluspumilusinOryzasativa(rice)[J]. Archives of Phytopathology and Plant Protection, 2011, 44 (6): 592-604.
[26] De Vleesschauwer D, Djavaheri M, Bakker P A H M, et al.PseudomonasfluorescensWCS374r-induced systemic resistance in rice againstMagnaportheoryzaeis based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response [J].Plant Physiology,2008,148(4):1996-2012.
[27] Suryadi Y, Susilowati D N, Kadir T S, et al. Bioformulation of antagonistic bacterial consortium for controlling blast, sheath blight and bacterial blight diseases on rice [J]. Asian Journal of Plant Pathology, 2013, 7(3): 92-108.
[28] 李燕. 水稻內(nèi)生放線菌OsiSh-2生物防治稻瘟病特性研究[D]. 長(zhǎng)沙:湖南大學(xué),2016.
[29] Prabavathy V R, Mathivanan N, Murugesan K. Control of blast and sheath blight diseases of rice using antifungal metabolites produced byStreptomycessp. PM5 [J]. Biological Control, 2006, 39 (3): 313-319.
[30] Zhang Yinglao, Li Shuai, Jiang Donghua, et al. Antifungal activities of metabolites produced by a termite-associatedStreptomycescanusBYB02 [J]. Journal of Agricultural and Food Chemistry, 2013, 61(7): 1521-1524.
[31] 杜春梅,宋剛,趙丹,等. 稻瘟病拮抗菌NK413的鑒定及抑菌效果[J].植物保護(hù), 2010, 36(6): 77-81.
[32] 張翠榮. 檸檬醛對(duì)稻瘟病菌幾丁質(zhì)酶基因表達(dá)的影響[D]. 貴陽(yáng):貴州大學(xué), 2016.
[33] Fravel D R. Commercialization and implementation of biocontrol[J]. Annual Review of Phytopathology, 2005, 43: 337-359.
[34] Wang Y L, Liu S Y, Mao X Q, et al. Identification and characterization of rhizosphere fungal strain MF-91 antagonistic to rice blast and sheath blight pathogens [J]. Journal of Applied Microbiology, 2013, 114 (5): 1480-1490.
[35] Manandhar H K, Lyngs J?rgensen H J, Mathur S B, et al. Suppression of rice blast by preinoculation with avirulentPyriculariaoryzaeand the non-rice pathogenBipolarissorokiniana[J]. Phytopathology, 1998, 88(7): 735-739.
[36] Someya N, Nakajima M, Hibi T, et al. Induced resistance to rice blast by antagonistic bacterium,Serratiamarcescensstrain B2[J].Journal of General Plant Pathology, 2002, 68(2): 177-182.
[37] 劉路寧,屠艷拉,張敬澤. 綠木霉菌株TY009 防治紋枯病等水稻主要真菌病害的潛力[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(10): 2031-2038.
[38] Chaudhary B, Shrestha S M, Singh U S, et al. Seed treatment withTrichodermaharzianum: suitable option for leaf blast management of Sub1 and non-Sub1 rice genotypes [J]. Nepal Agriculture Research Journal, 2014, 14: 14-25.
[39] 溫小紅. 稻瘟病拮抗海洋細(xì)菌 HW-14 分離、鑒定及其抗菌物質(zhì)的研究[D]. 大連: 遼寧師范大學(xué), 2013.
[40] Taguchi Y, Hyakumachi M, Horinouchi H, et al. Biological control of rice blast disease byBacillussubtilisIK-1080 [J]. Japanese Journal of Phytopathology, 2003, 69(2): 85-93.
[42] Meng Xiangkun, Yu Junjie, Yu Mina, et al. Dry flowable formulations of antagonisticBacillussubtilisstrain T429 by spray drying to control rice blast disease[J]. Biological Control, 2015, 85: 46-51.
[43] Naureen Z, Price A H, Hafeez F Y, et al. Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan [J]. Crop Protection, 2009, 28(12): 1052-1060.
[44] 沙月霞, 王琦, 李燕. 稻瘟病生防芽胞桿菌的篩選及防治效果[J]. 中國(guó)生物防治學(xué)報(bào), 2016, 32(4): 474-484.
[45] Chatterjee A, Valasubramanian R, Ma W L, et al. Isolation of ant mutants ofPseudomonasfluorescensstrain Pf7-14 altered in antibiotic production, cloning of ant(+) DNA, and evaluation of the role of antibiotic production in the control of blast and sheath blight of rice [J]. Biological Control, 1996, 7(2): 185-195.
[46] Krishnamurthy K, Gnanamanickam S S. Biological control of rice blast byPseudomonasfluorescensstrain Pf7-14: evaluation of a marker gene and formulations [J]. Biological Control, 1998, 13(3): 158-165.
[47] Sitther V, Gnanamanickam S S. Biological control of blast disease of finger millet (EleusinecoracanaL. ) and analysis of fertility ofMagnaporthegrisea[J]. Current Science, 1996, 71(2): 144-147.
[48] Prathuangwong S, Chuaboon W, Chatnaparat T, et al. Induction of disease and drought resistance in rice byPseudomonasfluorescensSP007s [J]. Chiang Mai University Journal of Natural Sciences, 2012, 11(1): 45-56.
[49] Amutharaj P, Sekar C, Natheer S E. Development and use of different formulations ofPseudomonasfluorescenssiderophore for the enhancement of plant growth and induction of systemic resistance againstPyriculariaoryzaein lowland rice [J]. International Journal of Pharma and Biological Sciences, 2013, 4(2): B-831-B-838.
[50] Gohel N M, Chauhan H L. Integrated management of leaf and neck blast disease of rice caused byPyriculariaoryzae[J]. African Journal of Agricultural Research, 2015, 10(19): 2038-2040.
[51] Oh H S, Lee Y H. A Target-site-specific screening system for antifungal compounds on appressorium formation inMagnaporthegrisea[J].Phytopathology, 2000, 9(10): 1162-1168.
[52] 宋永燕, 李平, 鄭愛(ài)萍, 等. 抗稻瘟病拮抗菌D-2的鑒定及其活性代謝物的研究[J]. 植物病理學(xué)報(bào), 2005,35(4): 352-358.
[53] Khalil M S, Moubasher H, Hasan F F. Biological control of rice blast disease byStreptomycesflavotricini[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5(5): 1453-1461.
[54] Thawai C. Isolation and characterization of antibiotic producingMicromonosporafrom Thai Jasmine rice [J]. New Biotechnology, 2014, 31(S): S147.
[55] Takeuchi S, Hirayama K, Ueda K, et al. Blasticidin S, a new antibiotic [J]. Journal of Antibiotics, 1958, 11(1): 1-5.
[56] Schuwirth B S, Day J M, Hau C W, et al. Structural analysis of kasugamycin inhibition of translation [J]. Nature Structural and Molecular Biology, 2006, 13(10): 879-886.
[57] 馮東岳. 波拉霉素對(duì)稻瘟病的防治效果評(píng)價(jià)及機(jī)制初探[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2004.
[58] Chollet J F, Rocher F, Jousse C, et al. Acidic derivatives of the fungicide fenpiclonil: effect of adding a methyl group to the N-substituted chain on systemicity and fungicidal activity [J]. Pest Management Science, 2005, 61(4): 377-382.
[59] 葉亞軍, 張敏, 湯志良. 抗稻瘟病菌株一諾卡氏菌A11的誘變育種[J]. 植物保護(hù), 2007, 33(1): 33-36.
[60] 羅楚平, 劉郵洲, 吳荷芳, 等. 脂肽類化合物bacillomycin L 抗真菌活性及其對(duì)水稻病害的防治[J]. 中國(guó)生物防治學(xué)報(bào), 2011, 27(1): 76-81.
[61] Xiong Zhiqiang, Tu Xiaorong, Wei Saijin, et al.Invitroantifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungusMagnaporthegrisea[J]. Biotechnology Letter, 2013, 35(9): 1475-1479.
[62] 張傳能,黃銘杰,毛寧. 灰黃霉素對(duì)水稻稻瘟病菌的防治效果研究[J]. 中國(guó)農(nóng)學(xué)通報(bào) 2015,31(4):190-194.
[63] Amadioha A C. Controlling rice blastinvitroandinvivowith extracts ofAzadirachtaindica[J].Crop Protection, 2000, 19(5): 287-290.
[64] Lee S E, Park B S, Kim M K, et al. Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper,PiperlongumL., against phytopathogenic fungi[J]. Crop Protection, 2001, 20(6): 523-528.
[65] Huo Guanghua, Zhan Wugen, Fu Rihui, et al.Invitroantifungal activity of saponin extracts fromSchimasuperbaincombination withSapindusmukorossiagainstPiriculariaoryzae[J].天然產(chǎn)物研究與開(kāi)發(fā), 2010, 22(5): 755-760.
[66] 嚴(yán)偉. 抗稻瘟病菌植物源提取物組方研究[D]. 南昌: 江西農(nóng)業(yè)大學(xué), 2011.
[67] Rout S, Thatoi H N, Tewari S N. Performance of aqueous extract ofAeglemarmelosbased Amaext-a, an antifungal product againstPyriculariagriseacausing blast disease of rice [J]. Archives of Phytopathology and Plant Protection, 2012, 45(20): 2507-2518.
[68] Rout S, Thatoi H N, Tewari S N. Sensitivity of ethanolic extract ofAeglemarmelos-based Amasof-e, an organic antifungal product, againstPyriculariagriseathat causes blast disease of rice [J]. Archives of Phytopathology and Plant Protection, 2015, 48(1): 73-83.
[69] Ahuja I, Kissen R, Bones A M. Phytoalexins in defense against pathogens [J].Trends Plant Science,2012,17:73-90.
[70] Grosskinsky D K, van der Graaff E, Roitsch T. Phytoalexin transgenics in crop protection-fairy tale with a happy end?[J].Plant Science, 2012, 195: 54-70.
[71] Li Wenxin, Kodama O, Akatsuka T. Role of oxygenated fatty acids in rice phytoalexin production [J]. Agricultural and Biological Chemistry, 1991, 55(4): 1041-1048.
[72] Padmavati M, Sakthivel N, Thara K V, et al.Differential sensitivity of rice pathogens to growth inhibition by flavonoids [J]. Phytochemistry, 1997, 46(3): 499-502.
[73] 范軍, 彭友良. 一種新的水稻植保素的誘導(dǎo)、純化及特性研究[J]. 植物病理學(xué)報(bào), 1996, 26(3): 217-221.
[74] Zhang Shan, Tang Wenzhu, Jiang Linlin, et al. Elicitor activity of algino-oligosaccharide and its potential application in protection of rice plant (OryzasalivaL.) againstMagnaporthegrisea[J]. Biotechnology and Biotechnological Equipment, 2015, 29(4): 646-652.
[75] Someya T, Numata S, Nakajima M, et al. Biological control of rice blast by the epiphytic bacteriumErwiniaananastransformed with a chitinolytic enzyme gene from an antagonistic bacterium,Serratiamarcescensstrain B2 [J]. Journal of General Plant Pathology, 2003, 69(4): 276-282.
[76] 陳延熙, 陳璧, 潘貞德, 等. 增產(chǎn)菌的應(yīng)用與研究[J]. 生物防治通報(bào), 1985, 1(2): 22-23.
(責(zé)任編輯: 楊明麗)
Applicationofbiopesticideagainstriceblastandanalysisofitsprospect
Sha Yuexia
(KeyLaboratoryofNingxiaPlantDiseaseandInsectPestsControl,InstituteofPlantProtection,NingxiaAcademyofAgricultureandForestrySciences,Yinchuan750002,China)
Rice blast caused byMagnaportheoryzaeas the worldwide rice disease is an important factor to influence high and stable yield. Chemical pesticides and disease-resistant varieties potentially effective control rice blast in present. But the physiological race ofMagnaportheoryzaechanges easily and the breeding time for cultivar-resistance is long. Especially, chemicals yet pose residual toxicity and environmental pollution. Therefore, it reaches extremely urgent for rice industry in sustainable development to finding an effective way to bio-control rice blast. Biopesticide is the important fungicide with some priorities including low residue, efficient, no pollution to the environment and not easy resistant to pathogens. Biopesticides commonly used to control rice blast include microorganism drugs, botanical drugs and phytoalexin. This study aims to summarize mechanism and application of biopesticide against rice blast and analysis of its prospect.
biopesticide; rice blast; bio-control;Magnaportheoryzae
專論與綜述Reviews
S 476
: ADOI: 10.3969/j.issn.0529-1542.2017.05.004
2016-11-19
: 2017-03-27
寧夏農(nóng)林科學(xué)院科技先導(dǎo)資金(NKYJ-16-26)
聯(lián)系方式 E-mail:yuexiasha@126.com