李恩凱,趙金標(biāo),劉 嶺,李忠超,張 帥(中國(guó)農(nóng)業(yè)大學(xué),動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)部飼料工業(yè)中心,北京 100193)
不溶性纖維濃縮物在生長(zhǎng)豬和斷奶仔豬上的應(yīng)用效果研究
李恩凱,趙金標(biāo),劉 嶺,李忠超,張 帥*(中國(guó)農(nóng)業(yè)大學(xué),動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)部飼料工業(yè)中心,北京 100193)
試驗(yàn)旨在研究生長(zhǎng)豬日糧中添加不溶性纖維濃縮物(IRFC)和不同的日糧飼喂水平對(duì)日糧消化能、代謝能、日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率的影響,以及日糧中添加IRFC對(duì)斷奶仔豬生長(zhǎng)性能的影響。試驗(yàn)一選用24頭初始體重為(62.13±2.01)kg的去勢(shì)公豬,隨機(jī)分為4個(gè)處理(前3個(gè)處理分別自由采食含IRFC 0%、0.5%和1%的日糧;第4個(gè)處理按公豬初始體重的2%飼喂含IRFC 1%的日糧),每組6頭,設(shè)6個(gè)重復(fù),每個(gè)重復(fù)1頭豬。試驗(yàn)期12 d。試驗(yàn)二選用72頭平均體重為(7.13±0.54)kg的斷奶仔豬,采用完全隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),按照性別和體重分為2個(gè)處理,每個(gè)處理6個(gè)重復(fù),每個(gè)重復(fù)6頭豬(公、母各半),分別飼喂玉米-豆粕型基礎(chǔ)日糧和含10 g/kg IRFC試驗(yàn)日糧,試驗(yàn)期28 d。結(jié)果表明:在生長(zhǎng)豬日糧中添加IRFC對(duì)日糧消化能、代謝能以及日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響(P>0.05),日糧中添加IRFC對(duì)斷奶仔豬的生長(zhǎng)性能無(wú)顯著影響(P>0.05),不同的日糧飼喂水平對(duì)日糧消化能、代謝能以及日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響(P>0.05),但是隨著IRFC添加量的提高,生長(zhǎng)豬糞便含水量有下降的趨勢(shì)(P=0.08),其內(nèi)在機(jī)理還需進(jìn)一步探討。
消化代謝能;生長(zhǎng)豬;斷奶仔豬;不溶性纖維濃縮物;消化率;飼喂水平
不溶性纖維濃縮物(Insoluble Raw Fibre Concentrate,IRFC)在化學(xué)組成上主要是由纖維素和半纖維素構(gòu)成組成。飼料級(jí)IRFC是來(lái)自木本植物的濃縮纖維,其不溶性纖維含量約為50%~60%[1],它是通過(guò)化學(xué)和酶學(xué)處理后提取或分離得到的多糖,在動(dòng)物腸道環(huán)境中是非粘性且不可發(fā)酵。已有研究表明,IRFC可以增強(qiáng)家禽胃腸道的蠕動(dòng),促進(jìn)腸道健康,從而增加營(yíng)養(yǎng)物質(zhì)的消化和吸收[2-3]。其機(jī)制可能是IRFC促進(jìn)腸道中纖維網(wǎng)絡(luò)的形成,從而有利于食糜的溶脹和松動(dòng),便于消化酶的分解[4]。大量應(yīng)用研究也已表明,日糧中添加IRFC可以提高肉雞和蛋雞的生長(zhǎng)性能[5-7],但是其在豬日糧中添加應(yīng)用的效果研究卻鮮有報(bào)道。另外,不同日糧飼喂水平對(duì)豬營(yíng)養(yǎng)物質(zhì)消化率影響的報(bào)道不盡一致。Everts等[8]和Smits等[9]發(fā)現(xiàn),降低日糧的飼喂水平會(huì)造成日糧營(yíng)養(yǎng)物質(zhì)表觀能量消化率的提高;然而,Peers等[10]發(fā)現(xiàn),不同日量的飼喂水平對(duì)日糧營(yíng)養(yǎng)物質(zhì)的表觀能量消化率沒(méi)有顯著影響。因此,本試驗(yàn)旨在研究生長(zhǎng)豬日糧中添加IRFC和不同日糧的飼喂水平對(duì)日糧消化能、代謝能和日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率的影響以及日糧中添加IRFC對(duì)斷奶仔豬生長(zhǎng)性能的影響。
1.1 試驗(yàn)材料 IRFC購(gòu)自上海同化新材料科技有限公司,化學(xué)組成見(jiàn)表1。
1.2 試驗(yàn)動(dòng)物及日糧 試驗(yàn)一選用24頭初始體重為(62.13 ± 2.01)kg的杜×長(zhǎng)×大三元雜交去勢(shì)公豬,試驗(yàn)二選用72頭平均體重為(7.13±0.54)kg的28日齡杜×長(zhǎng)×大斷奶仔豬。日糧組成及營(yíng)養(yǎng)成分見(jiàn)表2和表3,滿(mǎn)足NRC(2012)需要[11]。
1.3 試驗(yàn)設(shè)計(jì)與飼養(yǎng)管理 試驗(yàn)一選用24頭去勢(shì)公豬,隨機(jī)分為4個(gè)處理(前3個(gè)處理分別自由采食含IRFC 0%、0.5%(5 g/kg)和1%(10 g/kg)的日糧;第4個(gè)處理按公豬初始體重的2%飼喂含IRFC 1%的日糧),每組6頭,設(shè)6個(gè)重復(fù),每個(gè)重復(fù)1頭豬。基礎(chǔ)日糧為玉米-豆粕型(IRFC 0%)。試驗(yàn)豬分別放入豬專(zhuān)用不銹鋼代謝籠(1.4 m × 0.7 m × 0.6 m),單籠飼養(yǎng),試驗(yàn)期12 d,包括7 d預(yù)試期和5 d糞尿收集期。試驗(yàn)期間自由飲水,限飼組每天08:30和15:30分2次等量飼喂。每天不定時(shí)巡視,觀察記錄采食、排糞等情況。常規(guī)消毒免疫,舍溫控制在(22 ± 2)℃。每次飼喂后對(duì)圈舍進(jìn)行沖洗和清掃,保持豬舍環(huán)境干凈衛(wèi)生。
表1 麥麩和IRFC的化學(xué)組成
表2 試驗(yàn)一日糧組成和營(yíng)養(yǎng)成分
試驗(yàn)二選用72頭斷奶仔豬,按照性別和體重分為2個(gè)處理,每個(gè)處理6個(gè)重復(fù),每個(gè)重復(fù)6頭豬(公、母各半)。對(duì)照組飼喂玉米-豆粕型基礎(chǔ)日糧(IRFC 0%),試驗(yàn)組飼喂含1% IRFC的試驗(yàn)日糧,試驗(yàn)期28 d。采用全封閉式豬舍,舍內(nèi)溫度、濕度、通風(fēng)強(qiáng)度、CO2和NH3濃度自動(dòng)化控制。試驗(yàn)期間舍溫保持在24~26℃,分欄飼養(yǎng)于1.2 m × 2 m的圈內(nèi),漏縫噴塑地板,不銹鋼可調(diào)式料槽,乳頭式飲水器。粉料飼喂,自由采食和飲水。
表3 試驗(yàn)二日糧組成和營(yíng)養(yǎng)成分
1.4 樣品采集 試驗(yàn)一每天分2次收集撒料和剩料,并立即烘干稱(chēng)重。同時(shí)按全收糞法收集糞樣,隨排隨收,放置于塑料袋內(nèi),將每天收集的糞樣放置于-20℃冰箱內(nèi)保存。5 d收集期結(jié)束后,將5 d內(nèi)收集的糞樣稱(chēng)重,混合均勻,取總糞樣的20%于65℃烘箱中烘干72 h,回潮24 h,恒重,粉碎過(guò)40目篩,裝袋備用。準(zhǔn)確收集豬每天24 h所排尿樣。收集期間每1 000 mL尿液加入10% HCl 20 mL,使尿液pH ≤ 5.5。5 d收集期結(jié)束后,將5 d內(nèi)收集的尿樣混合均勻,紗布過(guò)濾后,取總尿樣的10%保存在-20℃冰箱備用。
1.5 指標(biāo)測(cè)定 干物質(zhì)、粗蛋白質(zhì)、粗灰分和中性洗滌纖維測(cè)定分別按照中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn) GB/T 6435-2006、GB/T 6432-1994、GB/T 6436-2002和GB/T 20806-2006方法進(jìn)行測(cè)定。酸性洗滌纖維按照中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/ T1459-2007方法測(cè)定??偰艿臏y(cè)定按照國(guó)際標(biāo)準(zhǔn)ISO9831:1998推薦的方法,使用氧彈式測(cè)熱儀(Parr 6300 Calorimeter, Moline, IL)測(cè)定。粗脂肪參照AOAC(954.02)推薦的方法測(cè)定[12]。
1.6 計(jì)算公式 豬日糧消化能、代謝能參照Adeola等[13]的公式:
日糧表觀消化能(MJ/kg,飼喂基礎(chǔ))=(食入的總能- 排糞總能)/采食量
日糧表觀代謝能(MJ/kg,飼喂基礎(chǔ))=(食入的總能- 排糞總能- 尿能)/采食量
1.7 統(tǒng)計(jì)分析 用SAS統(tǒng)計(jì)軟件的UNIVARIATE程序?qū)λ袛?shù)據(jù)的正態(tài)性和異常值進(jìn)行檢測(cè),沒(méi)有發(fā)現(xiàn)異常值。試驗(yàn)一的數(shù)據(jù)用SAS統(tǒng)計(jì)軟件的GLM程序進(jìn)行單因子方差分析,每頭豬作為1個(gè)試驗(yàn)單元,統(tǒng)計(jì)模型包括3個(gè)添加水平的主效應(yīng)以及限飼與否的主效應(yīng)。處理組間的均值用LSMEANS語(yǔ)句得到,差異顯著時(shí)采用Duncan's方法對(duì)處理組間的均值進(jìn)行多重比較。試驗(yàn)二的數(shù)據(jù)用SAS統(tǒng)計(jì)軟件的GLM程序按照隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì)進(jìn)行方差分析,每個(gè)圈作為1個(gè)試驗(yàn)單元,處理組間的均值以及多重比較方法同試驗(yàn)一。所有數(shù)據(jù)結(jié)果均表示為平均值±標(biāo)準(zhǔn)誤。當(dāng)P< 0.05時(shí)表示有顯著性差異,當(dāng)0.05 ≤P≤0.10時(shí)表示有顯著性差異的趨勢(shì)。
2.1 生長(zhǎng)豬日糧中添加IRFC以及不同日糧的飼喂水平對(duì)日糧消化能和代謝能的影響 由表4可知,在生長(zhǎng)豬日糧中添加不同水平的IRFC對(duì)日糧消化能和代謝能無(wú)顯著影響(IL,P>0.05)。同一日糧不同飼喂水平對(duì)日糧消化能和代謝能無(wú)顯著影響(FL,P>0.05)。
2.2 生長(zhǎng)豬日糧中添加IRFC以及不同日糧的飼喂水平對(duì)日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率的影響 由表5可知,生長(zhǎng)豬日糧中添加不同水平IRFC對(duì)日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響(IL,P>0.05)。同一日糧不同飼喂水平對(duì)日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響(FL,P>0.05)。
表4 生長(zhǎng)豬日糧中添加IRFC以及不同飼喂水平對(duì)日糧消化能和代謝能的影響
表5 生長(zhǎng)豬日糧中添加IRFC以及不同飼喂水平對(duì)日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率的影響 %
表6 生長(zhǎng)豬日糧中添加IRFC以及不同飼喂水平對(duì)糞便水分的影響
2.3 生長(zhǎng)豬日糧中添加IRFC以及不同日糧的飼喂水平對(duì)糞便水分的影響 由表6可得,隨著IRFC添加水平的提高,糞便的半干率有提高的趨勢(shì)(IL,P=0.08),說(shuō)明糞便水分在下降。同一日糧不同飼喂水平對(duì)糞便水分無(wú)顯著影響(FL,P>0.05)。
2.4 日糧中添加IRFC對(duì)斷奶仔豬生長(zhǎng)性能的影響 由表7可得,與基礎(chǔ)日糧相比,在日糧中添加IRFC對(duì)斷奶仔豬平均每日采食量、平均日增重和耗料增重比沒(méi)有顯著影響(P>0.05)。
表7 日糧中添加IRFC對(duì)斷奶仔豬生長(zhǎng)性能的影響
大量研究結(jié)果表明,在日糧中添加IRFC有利于提高家禽的生產(chǎn)性能。其內(nèi)在機(jī)理可能是不溶性和非粘性的非淀粉多糖在單胃動(dòng)物的消化過(guò)程具有有益作用[14]。不溶性纖維可以影響食糜在腸道內(nèi)的存留時(shí)間,促進(jìn)腸道上皮的蠕動(dòng),并可能提高內(nèi)源酶分解其相關(guān)底物的能力[4]。因?yàn)椴蝗苄岳w維可以使食糜形成海綿狀,促進(jìn)消化酶的滲入分解,增加消化酶與底物的接觸面積,從而促進(jìn)營(yíng)養(yǎng)物質(zhì)的消化吸收。然而在本試驗(yàn)中,生長(zhǎng)豬日糧中添加IRFC對(duì)日糧消化能、代謝能以及日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率均沒(méi)有顯著影響,可能是IRFC添加量較低。Dohms[14]和González-Alvarado等[15]發(fā)現(xiàn)將不可消化的營(yíng)養(yǎng)素如纖維素和木質(zhì)素添加到肉雞日糧中可以提高肉雞的生產(chǎn)性能并且改善了飼料轉(zhuǎn)化效率。Santos等[16]研究也表明,在火雞日糧中添加木質(zhì)纖維明顯提高了飼料轉(zhuǎn)化效率。在本試驗(yàn)中,在日糧中添加IRFC,斷奶仔豬在保育前期(1~21 d)、后期(15~28 d)和全期(1~28 d)的平均日采食量、平均日增重和耗料增重比均沒(méi)有顯著變化,原因可能是豬和家禽大腸的微生物發(fā)酵能力不同。在豬的消化過(guò)程中,大多數(shù)可利用的營(yíng)養(yǎng)物質(zhì)(蛋白質(zhì)、碳水化合物、脂肪、礦物質(zhì)和維生素)在小腸被吸收,一些未消化的纖維成分和內(nèi)源性分泌物仍然可以通過(guò)大腸中的微生物發(fā)酵為機(jī)體利用,即使日糧中沒(méi)有添加IRFC在一定程度上限制了底物和內(nèi)源性酶之間的相互作用,但是經(jīng)過(guò)大腸發(fā)酵后可以得到彌補(bǔ)。相比之下,家禽的大腸發(fā)酵能力差,食糜流通速度也更快,從而限制了微生物降解[17],這可能導(dǎo)致在家禽日糧中添加IRFC后效果較為顯著。另外隨著IRFC添加量的提高,糞便含水量有下降的趨勢(shì),這與Rezaei等[18]報(bào)道的結(jié)果較為一致,原因可能是IRFC含有大量的不溶性纖維(持水力差)有改善腸道黏膜通透性的作用,從而提高了腸道對(duì)食糜水分的吸收能力。
Peers等[10]研究發(fā)現(xiàn),日糧的飼喂水平對(duì)大麥干物質(zhì)、總能和總氮的消化率均沒(méi)有顯著影響。然而Parker等[19]卻發(fā)現(xiàn),隨著日糧的飼喂水平的升高,玉米和大麥的干物質(zhì)、有機(jī)質(zhì)和氮消化率顯著降低。Everts等[8]也報(bào)道,日糧的飼喂水平的增加對(duì)日糧營(yíng)養(yǎng)消化率具有顯著的負(fù)面影響。本研究表明,日糧的飼喂水平對(duì)日糧消化能、代謝能以及日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響,與Peers等[10]研究結(jié)果相一致。日糧的飼喂水平與消化率之間的關(guān)系似乎取決于飼料可消化能力,如果日糧中可消化養(yǎng)分含量較低,日糧營(yíng)養(yǎng)物質(zhì)的的消化率可能會(huì)隨著日糧的飼喂水平的降低而顯著提高[20]。同時(shí)消化速率也會(huì)影響飼喂水平與消化率之間的關(guān)系,因?yàn)楫?dāng)日糧的飼喂水平較高時(shí),日糧消化進(jìn)入腸道后,食糜的流通速度較快,從而限制了底物與消化酶的接觸,同時(shí)也減少了大腸內(nèi)微生物的發(fā)酵時(shí)間,從而降低了營(yíng)養(yǎng)物質(zhì)的消化率[21]。此外,營(yíng)養(yǎng)物質(zhì)的消化率還會(huì)受內(nèi)源排泄物的影響,所以日糧的飼喂水平、飼料質(zhì)量不同均會(huì)導(dǎo)致內(nèi)源排泄量的不同。在本研究中,日糧的飼喂水平對(duì)日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響,可能原因是本試驗(yàn)的日糧可消化能力較高,所以相對(duì)于限飼,在自由采食條件下也不會(huì)導(dǎo)致?tīng)I(yíng)養(yǎng)物質(zhì)消化率的降低[22]。
生長(zhǎng)豬日糧中添加IRFC以及不同飼喂水平對(duì)日糧消化能、代謝能以及日糧營(yíng)養(yǎng)物質(zhì)全腸道表觀消化率無(wú)顯著影響,但是隨著IRFC添加量的提高,糞便含水量有下降的趨勢(shì)。日糧中添加IRFC對(duì)斷奶仔豬生長(zhǎng)性能無(wú)顯著影響。
[1] Pottgüter R. Fibre in layers diet[J]. Lohmann Information, 2008, 43:22‐31.
[2] Svihus B, Hetland H. Ileal starch digestibility in growing broiler chickens fed a wheat‐based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. [J]. Br Poult Sci, 2001, 42: 633‐637.
[3] Hetland H, Svihus B, Krogdalhl A. Ef f ects of oat hulls and wood shaving on digestion in broilers and layers fed diets based on whole or ground wheat[J]. Br Poult Sci, 2003, 44: 275‐282.
[4] Choct M. Enzyme supplementation of poultry diets based on viscous cereals[A]. In: Bedford MR and Partridge GG. ed. Enzymes in Farm Animal Nutrition[C]. Oxon U K: CABInternational, 2000: 145‐160.
[5] Hetland H, Svihus B, Choct M. Role of insoluble fi bre on gizzard activity in layers[J]. J Appl Poult Res, 2005, 14: 38‐46.
[6] Montagne L, Pluske J R, Hampson D J. A review of interactions between dietary fi bre and the intestinal mucosa and their consequences on digestive health in young non‐ruminant animals[J]. Anim Feed Sci Tech, 2003, 108: 95‐117.
[7] Sarikhan M, Shahryar H A, Gholizadeh B, et al. Ef f ect of insoluble fibre on growth performance, carcass traits and ileum morphological parameters on broiler chicks males[J].Int J Agric Biol, 2010, 12: 531‐536.
[8] Everts H, Smits B. Ef f ect of crude fi bre, feeding level, body weight and method of measuring on apparent digestibility of compound feed by sows[J]. World Rev Anim Prod, 1987, XXIII: 40–43.
[9] Smits B, Jongbloed A W, Sebek L B J. Ef f ect of pelleting and feeding level on apparent digestibility and feeding value of diets for growing‐f i nishing pigs[J]. Anim Feed Sci Tech, 1994, 45: 349‐362.
[10] Peers D G, Taylor A G, Whittemore C T. The influence of feeding level and level of dietary inclusion on the digestibility of barley meal in the pig[J]. Anim Feed Sci Tech, 1977, 2: 41‐47.
[11] Committee on Nutrient Requirements of Swine, National Research Council. Nutrient requirements of swine[M]. 11th ed. Washington D C: National Academy Press, 2012.
[12] Horwitz W, Latimer Jr G W. AOAC International. Official methods of analysis of AOAC International[M]. Gaithersburg M D: AOAC International, 2007.
[13] Adeola L, Lew i A J S, Southern L L, et al. Digestion and balance techniques in pigs[M]. 2nd edn.(Eds AJ Lewis, LL Southern) Washington D C:CRC Press, 2001: 903‐916.
[14] Dohms J. Raw fibre concentrate improves broiler performance[J]. World Poult, 2006, 22: 13‐14.
[15] González‐Alvarado J M, Jiménez‐Moreno E, Lázaro R, et al. Ef f ect of type of cereal, heat processing of the cereal, and inclusion of fi bre in the diet on productive performance and digestive traits of broilers[J]. Poult Sci, 2007, 86: 1705‐1715.
[16] Santos F B O, Santos Jr A A, Ferket P R, et al. Inf l uence of grain particle size and insoluble fibre content on Salmonella colonization and shedding of turkeys fed corn‐soybean meal diets[J]. Int J Poult Sci, 2006, 5: 731‐739.
[17] Wenk C. The role of dietary fi bre in the digestive physiology of the pig[J]. Anim Feed Sci Tech, 2001, 90: 21‐33.
[18] Rezaei M, Torshizi M K, Rouzbehan Y. The influence of different levels of micronized insoluble fibre on broiler performance and litter moisture[J]. Poult Sci, 2011, 90: 2008‐2012.
[19] Parker J W, Clawson A J. Inf l uence of level of total feed intake on digestibility, rate of passage and energetic efficiency of reproduction in swine[J]. J Anim Sci, 1967, 26: 485‐489.
[20] Sugimoto N. Effects of feeding level on digestibility in pigs[J]. Jpn J Zootech Sci, 1985, 56: 797‐801.
[21] Roth F X, Kirchgessner M. Verdaulichkeit und intestinale passagenrate beim schwein in abhangigkeit vom futterungsniveau und rohfasergehalt des futters[J]. Z Tierphysiol Tierer, 1985, 53: 254‐264.
[22] Morel P C H, Lee T S, Moughan P J. Effect of feeding level, live weight and genotype on the apparent faecal digestibility of energy and organic matter in the growing pig[J]. Anim Feed Sci Tech, 2006, 126: 63‐74.
Ef f ects of Insoluble Raw Fibre Concentrate Addition on Weanling Piglets and Growing Pigs
LI En‐kai, ZHAO Jin‐biao, LIU Ling, LI Zhong‐chao, ZHANG Shuai*
(State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China)
This study was conducted to determine the effects of insoluble raw fibre concentrate (IRFC) addition and dif f erent diet feeding levels on the digestible energy (DE), metabolizable energy (ME) and apparent total tract digestibility (ATTD) of nutrients in diets fed to growing pigs, as well as the ef f ect of dietary IRFC addition on growth performance in weanling piglets. In Exp.1, twenty‐four barrows with initial body weight of 62.13 ± 2.01 kg were randomly divided into four treatment groups, (the fi rst three groups were fed diets supplemented with IRFC at 0%, 0.5% or 1.0% ad libitum, respectively, and the fourth group was fed diet supplemented with IRFC at 1.0% with a daily amount equivalent to 2% of body weight determined at the beginning of the experiment), with six pigs per group, six replicates per treatment and 1 pig per replicate. The animal trial lasted for 12 days. In Exp. 2, seventy‐two healthy weaning piglets with an average body weight of 7.13 ± 0.54 kg were assigned into 2 treatments according to sex and weight in a randomized complete block design. Each treatment group includes 6 replicate pens and each pen has 6 pigs (3 barrows and 3 gilts), which were fed a corn‐soybean meal basal diet and a test diet supplemented with 10g/kg IRFC. The animal trial lasted for 28 days. The results showed that IRFC supplementation in diets had no signif i cant ef f ects (P > 0.05) on DE and ME values and the ATTD of nutrients of the experimental diets in growing pigs. Diet supplemented with IRFC had no signif i cant inf l uence (P> 0.05) on growth performance of weaning piglets. Dif f erent diet feeding levels also had no signif i cant ef f ects (P > 0.05) on DE and ME values and the ATTD of nutrients of the experimental diets in growing pigs. However, the moisture content of the feces tended to decrease with the IRFC supplementation increasing in growing pigs (P = 0.08). Further studies are needed to explore the underlying mechanisms.
Digestible and metabolizable energy; Growing pigs; Weanling piglets; Insoluble raw fibre concentrate; Digestibility; Feeding level
S828.5
A
10.19556/j.0258-7033.2017-09-080
2017-03-24;
2017-04-19
高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃資助(B16044)
李恩凱(1994-),男,山東臨沂人,碩士,主要從事豬營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail:1967389184@qq.com
* 通訊作者:張帥,講師,主要從事豬營(yíng)養(yǎng)與飼料科學(xué)研究,E-mail:zhangshuai16@cau.edu.cn