王 瓊,王 聞,亓 偉,余 強(qiáng),譚雪松,莊新姝※,袁振宏,2,王忠銘
木質(zhì)纖維素酸催化制備糠醛的工藝及機(jī)理研究進(jìn)展
王 瓊1,王 聞1,亓 偉1,余 強(qiáng)1,譚雪松1,莊新姝1※,袁振宏1,2,王忠銘1
(1. 廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院廣州能源研究所,廣州 510640; 2.生物質(zhì)能源河南省協(xié)同創(chuàng)新中心,鄭州 450002)
糠醛是一種重要的生物質(zhì)基平臺(tái)化合物,國(guó)內(nèi)外學(xué)者針對(duì)生物質(zhì)產(chǎn)糠醛展開諸多研究,尤其是酸催化水解領(lǐng)域。該文綜述了糠醛制備工藝在不同時(shí)期的情況,闡述并評(píng)價(jià)了目前新穎的同步產(chǎn)糠醛與纖維素基化學(xué)品工藝。對(duì)酸(稀布朗斯特酸和路易斯金屬鹽)催化木糖和半纖維素的反應(yīng)動(dòng)力學(xué)進(jìn)行系統(tǒng)歸納,并闡述了相關(guān)機(jī)理的研究進(jìn)展。最后,對(duì)現(xiàn)在研究熱點(diǎn)——酸/有機(jī)溶劑作用體系中有機(jī)溶劑的作用機(jī)制進(jìn)行歸納,并對(duì)計(jì)算化學(xué)在其中的最新研究情況進(jìn)行總結(jié)。該文旨在為學(xué)者開展生物質(zhì)產(chǎn)糠醛的研究提供信息,有利于學(xué)者進(jìn)行選擇性研究。
生物質(zhì);催化;動(dòng)力學(xué);糠醛;有機(jī)溶劑;機(jī)理
王 瓊,王 聞,亓 偉,余 強(qiáng),譚雪松,莊新姝,袁振宏,王忠銘. 木質(zhì)纖維素酸催化制備糠醛的工藝及機(jī)理研究進(jìn)展[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):272-282. doi:10.11975/j.issn.1002-6819.2017.15.035 http://www.tcsae.org
Wang Qiong, Wang Wen, Qi Wei, Yu Qiang, Tan Xuesong, Zhuang Xinshu, Yuan Zhenhong, Wang Zhongming. Progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 272-282. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.035 http://www.tcsae.org
美國(guó)能源部聯(lián)合西北太平洋國(guó)家實(shí)驗(yàn)室(PNNL)、國(guó)家可再生能源實(shí)驗(yàn)室(NREL)等科學(xué)人員發(fā)布的報(bào)告《Top Value Added Chemicals From Biomass》,將糠醛、5-羥甲基糠醛(5-hydromethylfurfural,HMF)、乙酰丙酸、乳酸等由木質(zhì)纖維素原料轉(zhuǎn)化的衍生品列為平臺(tái)化合物,既充分肯定了這些化學(xué)品在化工界的重要性,又充分肯定了木質(zhì)纖維素生物質(zhì)制備這些化合物的可能性和可靠性。隨后,科研人員展開了大量平臺(tái)化合物的制備研究,糠醛、5-羥甲基糠醛和乙酰丙酸是其中的研究熱點(diǎn)[1-2]。
糠醛又稱呋喃甲醛,是一種透明無(wú)色油狀液體,具有類似苦杏仁的氣味??啡┯幸粋€(gè)呋喃環(huán)基和一個(gè)醛基,結(jié)構(gòu)的相似性使之與苯甲醛的性質(zhì)接近,其分子結(jié)構(gòu)中有2兩個(gè)不飽和雙鍵、一個(gè)羰基和一個(gè)醚鍵,因此化學(xué)性質(zhì)活潑,可以發(fā)生縮合、氫化、氧化等多種化學(xué)反應(yīng),衍生出多種化學(xué)品和燃料[3-4]。糠醛可以經(jīng)過(guò)加氫反應(yīng)轉(zhuǎn)化為2-甲基呋喃(2-MF)和2-甲基四氫呋喃(2-MTHF)[5-6],還可以深度加氫開環(huán)生成二醇(如1,2-戊二醇)或者醇(如戊醇)[4],經(jīng)過(guò)重整制備2-呋喃甲醇和乙酰丙酸酯(EL)[7-9],經(jīng)過(guò)脫羰反應(yīng)制備呋喃或者四氫呋喃(THF)[4],經(jīng)過(guò)和丙酮羥醛縮合轉(zhuǎn)化為亞糠基丙酮,進(jìn)而通過(guò)加氫脫氧制備長(zhǎng)鏈烷烴[10],還可以和乙酰丙酸縮合,進(jìn)而加氫轉(zhuǎn)化為長(zhǎng)鏈烷烴[4]。
工業(yè)上采用稀酸直接催化木質(zhì)纖維素(主要是玉米芯)降解實(shí)現(xiàn)糠醛生產(chǎn)[11-13]。該技術(shù)操作簡(jiǎn)易、成本造價(jià)低廉,但是容易造成纖維素和木質(zhì)素的浪費(fèi)。隨著社會(huì)對(duì)于環(huán)境問(wèn)題和綠色可持續(xù)發(fā)展道路的愈加重視,以及纖維素和木質(zhì)素應(yīng)用潛力的不斷挖掘,新型的糠醛制備工藝及相關(guān)機(jī)理研究層出不窮,如采用兩步稀酸水解以降低糠醛生產(chǎn)過(guò)程中纖維素和木質(zhì)素的消耗;或者采用固體酸法、離子液體法、酸/有機(jī)試劑復(fù)合法等新型催化技術(shù)提高糠醛產(chǎn)率,同時(shí)定向催化纖維素或者木質(zhì)素解聚或降解。稀酸水解法是這些方法的基礎(chǔ),其他酸催化手段某種程度上都是稀酸催化概念的延伸[14]。鑒于此,本文深入分析稀酸(布朗斯特酸和路易斯金屬鹽)水解木質(zhì)纖維素產(chǎn)糠醛的研究進(jìn)展,從工藝技術(shù)的發(fā)展歷程入手,闡述其作用機(jī)理及動(dòng)力學(xué)研究成果,最后歸納目前最新的研究熱點(diǎn)——酸/有機(jī)溶劑作用體系中有機(jī)溶劑的作用機(jī)制,并對(duì)計(jì)算化學(xué)在其中的最新研究情況進(jìn)行總結(jié),旨在為相關(guān)學(xué)者開展木質(zhì)纖維素綜合化利用產(chǎn)平臺(tái)化合物及衍生物的研究提供參考。
糠醛的生產(chǎn)是基于木質(zhì)纖維素原料中五碳糖(主要是木糖)的化學(xué)轉(zhuǎn)化??啡┕I(yè)的發(fā)展在歷史上經(jīng)歷了三次較快的發(fā)展時(shí)期。20世紀(jì)20年代,美國(guó)桂格燕麥公司(Quaker Oats)為了穩(wěn)定燕麥麩皮的價(jià)格,嘗試了多種工藝方法,最終研究發(fā)現(xiàn),采用稀酸水解燕麥麩可以得到大量的糠醛,并實(shí)現(xiàn)了大規(guī)模的工業(yè)化生產(chǎn),極大促進(jìn)了該產(chǎn)品的生產(chǎn)與開發(fā)[10];第二次較快的發(fā)展時(shí)期是四十年代,糠醛被大量用于合成橡膠、醫(yī)藥、農(nóng)藥等領(lǐng)域[15]。第三次是六七十年代,四氫呋喃、糠醇等糠醛深加工產(chǎn)品用途的拓展,特別是呋喃樹脂在精密鑄造方面的應(yīng)用,使之有了更大規(guī)模的發(fā)展。目前糠醛生產(chǎn)主要集中在中國(guó)、巴西、多米尼加、伊朗等發(fā)展中國(guó)家,而歐美等發(fā)達(dá)國(guó)家已經(jīng)基本停止了糠醛的生產(chǎn)[16]。中國(guó)是最大的糠醛生產(chǎn)國(guó),生產(chǎn)能力超過(guò)20萬(wàn)t/a[16]。目前,在工業(yè)規(guī)模上,唯一能獲得糠醛的方法仍是以植物為原料(主要是玉米芯和甘蔗渣),通過(guò)水解的方法得到[10]。
糠醛的生產(chǎn)方法,根據(jù)半纖維素中戊聚糖水解和戊糖單體脫水環(huán)化是否在同一個(gè)水解鍋內(nèi)進(jìn)行分為一步法和兩步法;根據(jù)采用催化劑不同可分為硫酸法、鹽酸法、醋酸法、磷酸法、無(wú)機(jī)鹽法以及固體酸法等[17];根據(jù)進(jìn)料方式的不同又分為間歇和連續(xù)的生產(chǎn)方法。在糠醛生產(chǎn)過(guò)程中,為了提高收率,抑制生成的糠醛發(fā)生副反應(yīng),通常采用汽提、溶劑萃取、超臨界CO2等操作將生成的糠醛及時(shí)從體系中移出[18-20]。現(xiàn)在科研人員又提出了同步轉(zhuǎn)化半纖維素產(chǎn)糠醛及轉(zhuǎn)化纖維素產(chǎn)5-羥甲基糠醛(或乙酰丙酸)的新工藝。
糠醛從1922年開始工業(yè)化生產(chǎn)到迄今為止,工業(yè)上應(yīng)用的糠醛生產(chǎn)工藝都屬于一步法生產(chǎn)工藝。一步法指半纖維素水解至戊糖及戊糖脫水環(huán)化在同一個(gè)水解鍋內(nèi)完成。常用的工藝條件是在高溫(140~185 ℃)高壓下反應(yīng)3~10 h[21],H2SO4用量為3%,受多種條件限制,工業(yè)生產(chǎn)上最大糠醛收率只能達(dá)到理論值的45%~55%[22-23]。在所報(bào)道過(guò)的工藝中,應(yīng)用較廣的有Quaker Oats工藝、Agrifuran工藝、Petrole-chimie工藝、Escher Wyss工藝、Rosenlew工藝和RRL-J工藝等[24-25]。表1總結(jié)了一步法生產(chǎn)糠醛工藝的設(shè)備與方法。
表1 典型一步法產(chǎn)糠醛工藝Table 1 Typical one-step technologies for furfural production
一步法因其設(shè)備投資少,操作簡(jiǎn)單,在糠醛工業(yè)中得到了廣泛的應(yīng)用。但是,如表1所示的工藝均采用汽提方法從體系中移出糠醛,蒸汽消耗量大,能耗高,此外糠醛在高溫下會(huì)發(fā)生熱分解。目前,世界范圍內(nèi)約70%的糠醛生產(chǎn)企業(yè)采用Ouaker Oats技術(shù),糠醛收率只有理論值的50%左右,但是蒸汽消耗量卻是糠醛產(chǎn)量的30~50倍[26]。更重要的是,一步法生產(chǎn)糠醛的過(guò)程中存在大量諸如縮合和酯化的副反應(yīng)[27],生成大量膠體附著在未反應(yīng)的纖維素和木質(zhì)素表面,因此廢渣中的纖維素和木質(zhì)素很難再利用,一般只用作生產(chǎn)汽提蒸汽的燃料[16]。據(jù)估計(jì),每生產(chǎn)一噸糠醛,在水解工段要排出10~12 t廢渣,耗費(fèi)約20 t水[15]。目前,工業(yè)上糠醛生產(chǎn)廢水主要有4種來(lái)源:粗餾塔底廢水、分醛水、精制工藝脫水和精餾塔清洗廢水,其中分醛水和精餾工藝脫水,廢水可完全循環(huán)利用。另外兩部分中,粗餾塔底廢水量很大,COD約為12 775~22 400 mg/L,是最主要的廢水來(lái)源?,F(xiàn)在,對(duì)于粗餾塔底廢水的處理有2種設(shè)計(jì)思路。第1種采用“雙效蒸發(fā)技術(shù)”和“再沸器”污水處理技術(shù)進(jìn)行處理:廢水先排入沉淀池(也可以先回用部分塔底廢水用于拌酸工藝,剩余進(jìn)入沉淀池),經(jīng)過(guò)沉淀和過(guò)濾作用,再用污水泵將其送入廢水蒸發(fā)器內(nèi),與鍋爐來(lái)的一次蒸汽進(jìn)行熱交換,此時(shí)污水生成含醋酸的二次蒸汽,將二次蒸汽通過(guò)再沸器進(jìn)行加熱,轉(zhuǎn)化入1 MPa蒸汽回用于生產(chǎn)工藝的水解工段,實(shí)現(xiàn)工藝廢水的零排放[28-30],但在實(shí)際生產(chǎn)過(guò)程中,存在中和調(diào)配、循環(huán)水冒漏滴、廢水外溢等問(wèn)題。第2種是生物技術(shù),首先采用內(nèi)電解法對(duì)廢水進(jìn)行預(yù)處理,然后采用UASB厭氧反應(yīng)器匹配好氧生物處理,如UASB+BCO+混凝沉淀聯(lián)合工藝[31],或者UASB-MPCAST工藝[32]。
在兩步法生產(chǎn)工藝中,半纖維素水解產(chǎn)戊糖和戊糖的脫水環(huán)化分開進(jìn)行。第一步使半纖維素發(fā)生水解反應(yīng)產(chǎn)戊糖,由于半纖維素聚合度低,較易水解,選擇適宜的預(yù)水解條件可使半纖維素幾乎全部發(fā)生水解而纖維素保存完好;第二步再利用第一步所得戊糖制取糠醛[16]。該工藝的優(yōu)勢(shì)在于可以充分利用原料。但是,兩步法工藝較為復(fù)雜,設(shè)備投資高,在工業(yè)中基本沒(méi)有得到應(yīng)用。盡管如此,隨著社會(huì)對(duì)環(huán)境保護(hù)和原料綜合利用要求的提高,糠醛兩步法生產(chǎn)工藝是糠醛工業(yè)發(fā)展的必然趨勢(shì)[15]。
Dunning等[33-35]學(xué)者進(jìn)行了兩步法水解木質(zhì)纖維素原料產(chǎn)糠醛的試驗(yàn)研究,如表2所示,通過(guò)兩步處理可以聯(lián)產(chǎn)糠醛和乙醇,另外木質(zhì)素殘?jiān)€可用于酚類物質(zhì)的生產(chǎn)。
表2 早期的兩步法產(chǎn)糠醛工藝Table 2 Early two-step technologies for furfural production
兩步法糠醛生產(chǎn)工藝的第一步與纖維素乙醇技術(shù)的預(yù)處理過(guò)程異曲同工,因此第一步已經(jīng)比較成熟,所以目前兩步法生產(chǎn)工藝的研究主要集中在戊糖制取糠醛這一步驟。20世紀(jì)70-80年代國(guó)內(nèi)外糠醛生產(chǎn)企業(yè)先后進(jìn)行了由戊糖溶液生產(chǎn)糠醛的中試試驗(yàn),結(jié)果表明達(dá)到與“一步法”相同糠醛收率時(shí)的蒸汽消耗量遠(yuǎn)高于“一步法”生產(chǎn)工藝,這對(duì)兩步法的應(yīng)用造成巨大阻礙[16]。因此,相關(guān)科研人員從提高糠醛產(chǎn)率(新穎催化體系和催化劑的使用)和提高反應(yīng)過(guò)程經(jīng)濟(jì)性(新穎高效的加熱方式、高效節(jié)能地把糠醛從反應(yīng)體系中轉(zhuǎn)移出來(lái))等多個(gè)方面進(jìn)行研究。在此過(guò)程中,離子液體法、固體酸法、微波加熱法、溶劑反應(yīng)萃取法、超臨界CO2反應(yīng)萃取法等多種方法稱為研究熱點(diǎn),如表3所示。
表3 兩步法中戊糖產(chǎn)糠醛新工藝的進(jìn)展情況Table 3 Status of new furfural production methods in two-step methods from pentose
現(xiàn)在有一種新穎的兩步法產(chǎn)糠醛思路,即利用預(yù)處理將纖維素和半纖維素分離,兩者再分別轉(zhuǎn)化。Zhao等利用甲酸(或乙酸)法預(yù)處理生物質(zhì),可以有效分離三組分,如圖1所示,木質(zhì)纖維素原料在100~105 ℃的甲酸或者乙酸溶液中進(jìn)行預(yù)處理,纖維素進(jìn)一步酶解產(chǎn)糖、發(fā)酵產(chǎn)1,3丁二烯和甲乙酮,半纖維素進(jìn)一步產(chǎn)糠醛,糠醛和甲乙酮堿催化下羥醛縮合,用于制備液體烷烴燃料,木質(zhì)素可以制備固體酸,該生物煉制技術(shù)實(shí)現(xiàn)了生物質(zhì)三組分的全利用[48-49]。但是該工藝路徑較為復(fù)雜,預(yù)處理后半纖維素和木質(zhì)素仍需進(jìn)一步分離。
圖1 木質(zhì)纖維素原料甲酸/乙酸預(yù)處理后三組分全利用流程圖Fig.1 Simplified diagram of comprehensive lignocelluloses conversion process that integrates formic acid/acetic acid pretreatment with followed conversions of three components
隨著科技的推進(jìn)和環(huán)保的需求,科研人員致力于簡(jiǎn)便、高效地同時(shí)獲得糠醛和纖維素轉(zhuǎn)化的其他化學(xué)品。依賴于稀酸/有機(jī)溶劑體系的開發(fā),科技人員開展了大量“一鍋法”同步產(chǎn)糠醛和其他平臺(tái)化合物(糠醛和HMF、糠醛和HMF衍生物、糠醛和乙酰丙酸等)的研究,如表4所示。
Wyman團(tuán)隊(duì)構(gòu)建了稀酸/THF體系中C5和C6糖同步產(chǎn)糠醛和乙酰丙酸的體系。Cai等[50]利用液固比20∶1的稀硫酸-THF均相體系催化轉(zhuǎn)化楓木,同時(shí)獲得糠醛和乙酰丙酸,在最優(yōu)工況下(170 ℃,40 min,1%硫酸,3∶1 THF/H2O),兩者的最高摩爾產(chǎn)率分別是87%和32%。當(dāng)溫度提高到200 ℃,硫酸含量提高到1.5%,并且不添加THF時(shí),乙酰丙酸的最高摩爾產(chǎn)率達(dá)到75%,但此時(shí)糠醛產(chǎn)率降為0。Dumesic團(tuán)隊(duì)開展了稀酸/γ-戊內(nèi)酯(GVL)體系中C5和C6糖同步產(chǎn)糠醛和乙酰丙酸的研究,Alonso等[51]發(fā)現(xiàn),玉米秸稈和闊葉木在稀硫酸/GVL均相體系中同步轉(zhuǎn)化產(chǎn)糠醛和乙酰丙酸時(shí),盡管在最優(yōu)工況下,糠醛摩爾產(chǎn)率可達(dá)73%,但乙酰丙酸產(chǎn)率僅為51%,即使調(diào)整反應(yīng)參數(shù),兩者也很難同步提高。
表4 典型“一鍋法”稀酸/有機(jī)溶劑體系產(chǎn)平臺(tái)化合物的研究進(jìn)展Table 4 Typical one-pot diluted acid/organic solvent systems for platform chemicals production
一鍋法減少了反應(yīng)步驟,縮短了反應(yīng)時(shí)間,是一種高效低成本的方法。但是細(xì)胞壁中纖維素和半纖維素的結(jié)構(gòu)以及物化特性均不相同[58],半纖維素結(jié)構(gòu)疏松,成分不均,易被酸催化轉(zhuǎn)化成糠醛,而纖維素結(jié)構(gòu)致密,成分均一,難以降解。同時(shí),纖維素首先生成HMF,然后HMF進(jìn)一步轉(zhuǎn)化為乙酰丙酸。因此3種產(chǎn)物隨時(shí)間的生成順序?yàn)榭啡MF、乙酰丙酸,很難同時(shí)高產(chǎn)。通過(guò)表4也可以觀察到這一點(diǎn):糠醛產(chǎn)率很高的時(shí)候,HMF或乙酰丙酸產(chǎn)率不高,如Cai和Zhang的研究結(jié)果所示;若使HMF或乙酰丙酸高產(chǎn),糠醛的產(chǎn)率就會(huì)降低,如Alonso的研究結(jié)果所示。而且,一鍋法獲得了2種平臺(tái)化合物,其后續(xù)的分離也較困難。Cai等[50]的研究也指出,由于糠醛的不穩(wěn)定性,因此和一鍋法相比,兩步法更適合糠醛和HMF(或乙酰丙酸)的高產(chǎn)。
均相稀布朗斯特酸(Br?nsted acid, B酸)催化木糖或者生物質(zhì)產(chǎn)糠醛已經(jīng)研究多年。B酸是氫離子的給體,主要包括稀無(wú)機(jī)酸(硫酸[59]、鹽酸[60]、硝酸[61]等),稀有機(jī)酸(甲酸[62]等),部分固體酸(沸石[63-64]、磺酸型離子交換樹脂(amberlyst)等[65-66]),而且高溫液態(tài)水解也能釋放氫離子,發(fā)揮B酸催化的作用[67-68]。
在有關(guān)木糖脫水生成糠醛的動(dòng)力學(xué)研究中,稀無(wú)機(jī)酸的相關(guān)研究是基礎(chǔ)。一般情況下,包含木糖降解—木糖產(chǎn)糠醛—糠醛降解這條主路徑的簡(jiǎn)化動(dòng)力學(xué)模型能夠描述試驗(yàn)結(jié)果[61,68]。
在木糖轉(zhuǎn)化為糠醛的過(guò)程中,有一種或多種中間產(chǎn)物產(chǎn)生,早在1948年,Dunlop[60]研究表明木糖在液相稀酸環(huán)境中的水解速率遵循一級(jí)反應(yīng)動(dòng)力學(xué),而且該反應(yīng)相對(duì)于氫離子濃度也是一階;在給定的物料濃度和溫度,酸強(qiáng)度增加一倍將使氫離子濃度提高一倍,因此0.1 mol/L鹽酸中木糖水解的速率常數(shù)是0.05 mol/L鹽酸中的兩倍;溫度每升高約10 ℃,水解速率約增加一倍。
Lamminp??等[62]詳細(xì)研究了甲酸體系中木糖脫水產(chǎn)糠醛的動(dòng)力學(xué)(130~200 ℃),提出了如圖2所示的路徑1、路徑2與路徑3。路徑1是最常規(guī)的反應(yīng)路線,即木糖—糠醛—降解產(chǎn)物的主路徑,并考慮了木糖降解為其他產(chǎn)物的可能,路徑2加入了糠醛與中間產(chǎn)物的縮合步驟,路徑3涵蓋路徑1和路徑2。
圖2 三種假設(shè)的木糖脫水產(chǎn)糠醛路徑[62]Fig.2 Three proposed paths for xylose dehydration into furfural
基于反應(yīng)路徑1提出的動(dòng)力學(xué)方程如方程(7)和(8)所示,基于路徑2提出的動(dòng)力學(xué)方程如方程(9)-(11)所示,方程(7)、(10)和(11)基于路徑3。其中k1、k2、k3、k4和k5是反應(yīng)速率常數(shù),CX、CF和CI分別是木糖,糠醛和中間產(chǎn)物的濃度(mol/L)。
典型木質(zhì)纖維素在稀B酸中產(chǎn)糠醛的動(dòng)力學(xué)模型一般以木糖或木聚糖作為產(chǎn)糠醛的初始反應(yīng)物,構(gòu)建的模型與?;锬咎茄芯克媚P拖囝愃芠69-70]。Mamman等[71]提出了以木聚糖為起始反應(yīng)物的一級(jí)反應(yīng)動(dòng)力學(xué)反應(yīng)模型,即簡(jiǎn)化的木聚糖反應(yīng)模型:
Conner[72]指出,簡(jiǎn)化的木聚糖反應(yīng)模型不能完整描述木聚糖水解過(guò)程。木聚糖鏈應(yīng)首先被分解為低聚木糖(xylo-oligosaccharrides),隨后低聚木糖逐漸轉(zhuǎn)化為單體(木糖)。Conner等[73]隨后研究了稀乙酸(5%)催化橡木水解的動(dòng)力學(xué)(170~200和239.6 ℃),推導(dǎo)出木聚糖在低溫條件下(170~200 ℃)從橡木解離,低聚糖生成,游離木糖生成和進(jìn)一步降解的動(dòng)力學(xué)參數(shù),提出如圖3所示的反應(yīng)模型,并研究了高溫下(236.9 ℃)木聚糖水解模型,和低溫相比添加了低聚木糖生成糠醛的副反應(yīng)支線。其提出木聚糖的水解由2個(gè)平行初始物組成:一種是易水解木聚糖成分,另一種是難水解或不水解的部分。
圖3 木聚糖水解反應(yīng)模型Fig.3 Xylan hydrolysis model
Liu等[74-76]的研究發(fā)現(xiàn),生物質(zhì)的反應(yīng)速率和其顆粒尺寸相關(guān)度較高,以木材為例,尺寸為塊狀水解速率較慢,隨著尺寸逐漸減小,反應(yīng)速率明顯升高。同時(shí),Liu等深入研究了塊狀木材在高溫液態(tài)水環(huán)境的水解反應(yīng),提出了新穎的動(dòng)力學(xué)模型,其研究結(jié)果表明,塊狀木材在高溫液態(tài)水中反應(yīng)的初始階段不能簡(jiǎn)化為易水解木聚糖和不水解木聚糖,還包含木聚糖(、木聚糖片段、低聚木糖等多種糖成分。
Zhang等[61]開展了稀硝酸水解玉米秸稈的動(dòng)力學(xué)研究,系統(tǒng)研究了木糖、葡萄糖、糠醛等產(chǎn)物濃度的動(dòng)力學(xué)方程,提出了與簡(jiǎn)化木聚糖反應(yīng)模型類似的模型,并在模型基礎(chǔ)上得到預(yù)測(cè)產(chǎn)物(如單糖、糠醛等)濃度的微分方程,但是,發(fā)現(xiàn)該方程并不能很好地匹配試驗(yàn)結(jié)果。Zhang等[61]將模型中聚糖的分解分為兩部分,一部分解聚為木糖,另一部分產(chǎn)生了低聚糖和其他降解產(chǎn)物,同時(shí)引入解聚為單糖的聚糖量與玉米秸稈中該聚糖初始量之比,發(fā)現(xiàn)改進(jìn)后的方程可以與試驗(yàn)結(jié)果很好的吻合。
采用PowerSoil DNA Isolation Kit試劑盒,本研究提取了30個(gè)曲塊菌群的總DNA。采用超微量分光光度計(jì)(Thermo NanoDrop 2000),檢測(cè)了菌群總DNA的OD260/OD280比值,發(fā)現(xiàn)該比值介于1.80~1.90之間,同時(shí),瓊脂糖凝膠(0.8%)電泳結(jié)果也顯示出清晰的DNA條帶。結(jié)果表明,樣本基因組DNA質(zhì)量較好(圖1)。
Lavarack等[77]研究了多種條件下(80~200 ℃、液固比1:5~1:20、酸濃度0.25%~8%、硫酸和鹽酸催化、10~2 000 min)2種甘蔗渣(bagasse 和bagacillo)半纖維素在稀酸催化下的水解,針對(duì)木糖、阿拉伯糖、葡萄糖、酸可溶木質(zhì)素和糠醛提出不同的動(dòng)力學(xué)模型。其研究結(jié)果與Zhang等[61]的研究結(jié)果不同,相比引入了易水解部分和難水解部分的模型,簡(jiǎn)化的模型與真實(shí)結(jié)果最吻合。同時(shí),Lavarack等的研究發(fā)現(xiàn)鹽酸催化效果不如硫酸催化。
通過(guò)上文可以分析出,稀B酸催化生物質(zhì)水解產(chǎn)糠醛的動(dòng)力學(xué)模型深受酸濃度和溫度影響,酸濃度越高,反應(yīng)溫度越高,反應(yīng)越徹底,其反應(yīng)路徑更接近木糖-糠醛-降解產(chǎn)物或者木聚糖-木糖-糠醛路線;相反,酸濃度越低,酸性越弱,條件越溫和,其反應(yīng)路徑更復(fù)雜,如高溫液態(tài)水反應(yīng),往往在木聚糖(固體)與木糖(單體)之間加入各種聚合度的低聚糖更符合實(shí)際反映情況,或者在酸強(qiáng)度較弱的反應(yīng)中,將模型的木聚糖水解分為“快速水解部分”和“慢速水解部分”以修正[73,77]。除了產(chǎn)糠醛的主路徑,根據(jù)實(shí)際反應(yīng)情況往往還需要加入木聚糖(或木糖)降解為其他副產(chǎn)物、糠醛縮合、或者產(chǎn)物糠醛與木糖等反應(yīng)的部分。而且,不同的反應(yīng)底物和反應(yīng)條件相結(jié)合還會(huì)造成試驗(yàn)結(jié)果差別較大,因此精確描述試驗(yàn)的模型種類繁多,有的使用反應(yīng)模型即可,有的還需要加入溫度、濃度以及pH值所構(gòu)成的方程才能準(zhǔn)確描述。
木糖脫水制備糠醛的反應(yīng)機(jī)理非常復(fù)雜,目前仍無(wú)定論[4]。Antal等[78]系統(tǒng)研究了稀B酸環(huán)境中D-木糖脫水產(chǎn)糠醛的機(jī)理,提出如圖4a所示的2條反應(yīng)路徑。這2條路徑的區(qū)別在于起始氧原子的質(zhì)子化發(fā)生在C1還是C2位。路徑1中,C1位羥基的氧原子首先質(zhì)子化,失去1個(gè)水分子,形成氧鎓離子,C2位羥基上的氧原子與C5加成,生成呋喃糖,然后脫去2個(gè)水分子生成糠醛。路徑2中,C2位羥基氧原子的質(zhì)子化導(dǎo)致C2位失去1分子水,隨后O5攻擊C2,在失去2分子水后,形成糠醛。
Nimlos等[79]通過(guò)量子化學(xué)計(jì)算,發(fā)現(xiàn)C2位羥基氧原子質(zhì)子化的木糖,其反應(yīng)的能壘低于71.16 kJ/mol,而C1位羥基氧原子質(zhì)子化的木糖形成呋喃形式的能壘為133.95 kJ/mol,這個(gè)機(jī)制較路徑b的機(jī)制不具備競(jìng)爭(zhēng)力,因此C2位羥基氧原子的質(zhì)子化和隨后的環(huán)收縮是糠醛生成最可能的途徑。
在木糖生成糠醛的過(guò)程中,除了脫水產(chǎn)糠醛的路徑,還有其他不期望的各種副反應(yīng)。B酸催化介導(dǎo)的糠醛降解與糠醛的生成同時(shí)發(fā)生。圖4b為簡(jiǎn)化的糠醛生成至降解的反應(yīng)路徑[60],一般存在3個(gè)重要的副反應(yīng):糠醛分子的酸催化降解;糠醛與反應(yīng)中間體發(fā)生縮合反應(yīng);糠醛與戊糖(木質(zhì)纖維素中主要是木糖)縮合。這3個(gè)反應(yīng)的發(fā)生程度取決于生成的糠醛是否停留在酸反應(yīng)體系中,以及在酸中停留的時(shí)間[15]。除此之外,木糖逆向醇醛縮合還會(huì)產(chǎn)生C1-4酸、醛類和酮類化合物[78,80]。這些降解反應(yīng)又稱為副反應(yīng),會(huì)造成糠醛的消耗。
圖4 木糖脫水產(chǎn)糠醛機(jī)理和糠醛制備過(guò)程副反應(yīng)的示意圖Fig.4 Diagrams of mechanism of xylose dehydration into furfural and side reactions
具有L酸酸性的金屬鹽催化劑也是一類重要的稀酸催化劑。L酸是指一類能接受電子對(duì)的物質(zhì),一般屬于中等強(qiáng)度或弱酸[81]。在稀L酸金屬鹽中,木糖的轉(zhuǎn)化和在B酸中有所不同,存在金屬離子誘導(dǎo)的酮糖-醛糖異構(gòu)化過(guò)程[82],Choudhary的研究進(jìn)一步表明,不僅存在木糖異構(gòu)為木酮糖,木酮糖脫水產(chǎn)糠醛的路徑,中間還有木糖和木酮糖與來(lái)蘇糖的差向異構(gòu)化[83],再由金屬鹽在水相中解離出的B酸催化木酮糖和來(lái)蘇糖脫水生成糠醛,如圖5所示[81]。其中,木糖向木酮糖的異構(gòu)化需要O2向O1的氫轉(zhuǎn)移,以及C2向C1的氫轉(zhuǎn)移,通過(guò)金屬離子與O2和O1形成螯合物實(shí)現(xiàn)氫的轉(zhuǎn)移[83],這一過(guò)程與負(fù)載金屬Sn的Sn-Beta沸石分子篩催化木糖產(chǎn)糠醛路徑類似[84],同時(shí)和L酸金屬催化葡萄糖異構(gòu)為果糖的路徑類似[85]。
圖5 L酸金屬鹽催化木糖脫水制糠醛機(jī)理Fig.5 Mechanism of xylose dehydration into furfural catalyzed by Lewis acid (metal salts)
Choudhary等[83]的研究表明,糖分子結(jié)構(gòu)的差異可造成反應(yīng)路徑不同,導(dǎo)致木酮糖脫水生成的糠醛產(chǎn)率大于木糖脫水的產(chǎn)率,因此L酸金屬鹽溶液在催化木糖產(chǎn)糠醛方面具有優(yōu)越性能。但是,由于水相中糠醛的穩(wěn)定性差,易在酸催化作用下進(jìn)一步降解,因此學(xué)者采用兩相體系等方式提高L酸催化作用效果。Stein等[86]利用2-甲基四氫呋喃和水的兩相體系,考察木糖在不同金屬鹽催化下的轉(zhuǎn)化性能,發(fā)現(xiàn)FeCl3·6H2O可使糠醛收率達(dá)到31%。Enslow等[87]在水和丁醇的兩相體系中使用SnCl4和LiCl共同催化,發(fā)現(xiàn)其不僅提高了糠醛在有機(jī)相的分配比,抑制羥醛縮合副反應(yīng),而且提高了反應(yīng)速率和轉(zhuǎn)化率,最優(yōu)木糖轉(zhuǎn)化率為95%,糠醛選擇性為88%,但是存在成本較高的問(wèn)題。
現(xiàn)在,科研人員較少單一地利用稀B酸或者L酸金屬鹽制備糠醛,而較多采用將其與有機(jī)溶劑相結(jié)合的方式。有機(jī)溶劑包括非極性、極性質(zhì)子、非質(zhì)子和離子液體,根據(jù)其自身性質(zhì)的不同發(fā)揮不同的溶劑化作用[88]。含有可溶性有機(jī)溶劑的體系能通過(guò)溶解生物質(zhì)組分,提高底物可及性,大大提高生物質(zhì)組分的傳質(zhì)效率和反應(yīng)速率[53,89-90],還可以通過(guò)構(gòu)建兩相體系,通過(guò)有機(jī)相萃取呋喃類產(chǎn)物,使其脫離酸溶液體系從而抑制縮合,提高選擇性[91]。不僅如此,有機(jī)溶劑還能夠影響參與反應(yīng)各組分(如底物、中間態(tài)化合物、產(chǎn)品和催化劑)的熱力學(xué)特性,從而改變這些反應(yīng)的速率和選擇性。
有機(jī)溶劑的添加可以改變底物的反應(yīng)性。Vasudevan等[92]利用GROMACS軟件分析了葡萄糖在純水溶劑和三種混合溶劑(二甲亞砜(DMSO)/水,THF/水和二甲基甲酰胺(DMF)/水)中的分子動(dòng)力學(xué),發(fā)現(xiàn)在高濃度DMSO的體系中,葡萄糖C1上的羥基優(yōu)先被水分子遮蓋,C2羥基的氧原子優(yōu)先覆蓋水分子,但是氫原子附近,水和DMSO的等值面重疊,到了C3和C4,氧原子附近不存在水的高密度等值面,而且在氫原子附近,水和DMSO的等值面重疊,THF和DMF的混合溶液存在類似現(xiàn)象。這些現(xiàn)象說(shuō)明,葡萄糖分子C3和C4位質(zhì)子化生成的非目標(biāo)產(chǎn)物可以通過(guò)共溶劑分子的競(jìng)爭(zhēng)性溶劑化來(lái)阻止。此外,羥基基團(tuán)上氫原子附近共溶劑分子的優(yōu)先或者競(jìng)爭(zhēng)性排列能夠阻止2個(gè)葡萄糖分子之間的酸催化縮合反應(yīng)。木糖在有機(jī)溶劑溶液中的溶劑化也會(huì)發(fā)生類似現(xiàn)象。
有機(jī)溶劑的添加可以改變過(guò)渡態(tài)特性。Mellmer等[93]研究了GVL體系中,酸催化木糖轉(zhuǎn)化成糠醛的反應(yīng)動(dòng)力學(xué),量化極性非質(zhì)子有機(jī)溶劑GVL對(duì)酸催化木糖轉(zhuǎn)化成糠醛的影響,發(fā)現(xiàn)GVL通過(guò)改變質(zhì)子化過(guò)渡態(tài)相關(guān)的酸性質(zhì)子的穩(wěn)定性來(lái)影響反應(yīng)動(dòng)力學(xué),以及強(qiáng)酸如H-絲光沸石和H-β也有一樣的行為(部分揭示強(qiáng)酸環(huán)境中反應(yīng)在主路徑進(jìn)行的原因)。
有機(jī)溶劑的添加可以改變催化劑特性。質(zhì)子的標(biāo)準(zhǔn)吉布斯自由能在水和有機(jī)溶劑之間有明顯區(qū)別[88]。Casey等[94]的研究顯示,一個(gè)質(zhì)子在水中的溶劑化自由能為1 113 kJ/mol,而在非質(zhì)子溶劑乙腈中降為1 089 kJ/mol。降低的24 kJ/mol自由能使該質(zhì)子具有更高的反應(yīng)活性。但是,同樣的質(zhì)子在DMSO中卻更穩(wěn)定,這是由于和水相比,DMSO有更高的路易斯堿度。Kalidas等[95]發(fā)現(xiàn)金屬離子Li+、Cs+、Na+、K+和Rb+在DMSO溶解的吉布斯自由能排序和純水中一致,意味著DMSO是一個(gè)純粹的極性非質(zhì)子溶劑,但是在DMSO中這些金屬離子的吉布斯自由能更低。學(xué)者進(jìn)一步研究表明,有機(jī)溶劑DMF和DMSO可與金屬離子Li+之間進(jìn)行配位,導(dǎo)致自由陰離子的釋放,因此DMF(或DMSO)/Li+體系在催化木質(zhì)纖維素溶解、葡萄糖脫水產(chǎn)羥甲基糠醛等反應(yīng)時(shí)具有良好的溶劑性能[96-99]。
生物質(zhì)產(chǎn)糠醛是利用可再生資源制備高附加值化學(xué)品的重要途徑之一,是替代化石資源的有效途徑。隨著經(jīng)濟(jì)社會(huì)的進(jìn)一步發(fā)展,人們對(duì)糠醛產(chǎn)業(yè)的綠色發(fā)展途徑提出了進(jìn)一步思索,不僅滿足于糠醛的單一高產(chǎn),而是在兼顧環(huán)保的基礎(chǔ)上,對(duì)于生物質(zhì)綜合全面利用提出更高要求。在廣度上,歷年來(lái)科技人員開發(fā)出一步法、兩步法、同步產(chǎn)糠醛和其他化學(xué)品等多種工藝,并且相應(yīng)的機(jī)理研究也在往縱深進(jìn)行。下一步面臨的任務(wù)是將新穎、高效的糠醛相關(guān)工藝推向市場(chǎng),與目前市場(chǎng)上廣泛存在的糠醛制備產(chǎn)業(yè)相銜接;同時(shí),由于糠醛下游的高附加值產(chǎn)品(如糠醇、四氫糠醇、甲基呋喃、航空燃油)具有巨大市場(chǎng)空間,如何將糠醛反應(yīng)工藝與下游產(chǎn)品生產(chǎn)路線簡(jiǎn)潔、高效、低成本的對(duì)接,實(shí)現(xiàn)糠醛和下游產(chǎn)品聯(lián)產(chǎn)也是必須面對(duì)的任務(wù)和挑戰(zhàn)。
[1] Werpy T, Petersen G. Top value added chemicals from biomass. Volume I: Results of screening for potential candidates from sugars and synthesis gas[R]. USA: U. S. Department of Energy, Office of Scientific and Technical Information, 2004.
[2] Abad S, Alonso J L, Santos V, et al. Furfural from wood in catalyzed acetic acid media: A mathematical assessment[J]. Bioresource Technology, 1997, 62(3): 115-122.
[3] 榮春光. 糠醛生產(chǎn)工藝研究及糠醛廢渣的綜合利用[D].長(zhǎng)春:吉林大學(xué),2012.
Rong Chunguang. Studies on Preparation of Furfural and Comprehensive Utilization of Furfural Residue[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract)
[4] Lange J P, Evert V D H, Jeroen V B, et al. Furfural-a promising platform for lignocellulosic biofuels[J]. Chem Sus Chem, 2012, 5(1): 150-166.
[5] Román-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-986.
[6] Hayes D J, Fitzpatrick S, Hayes H B, et al. Biorefineries-Industrial Processes and Products[M]. Weinheim: Wiley-VCH, 2006:139-164.
[7] Lange J P, Price R, Ayoub P M, et al. Valeric biofuels: A platform of cellulosic transportation fuels[J]. Angew Chem, 2010, 49(26): 4479-4483.
[8] Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114.
[9] Lange J P, Vestering J Z, Haan R J. Towards ‘bio-based’Nylon:conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions[J]. Chem Commun, 2007, 33: 3488-3490.
[10] 張曄. 無(wú)機(jī)鹽催化半纖維素水解制備糠醛的研究[D]. 淮南:安徽理工大,2014.
Zhang Ye. Conversion of Hemicellulose Into Furfural Using Inorganic Salt Catalysts[D]. Huainan:Anhui University of Science and Technology, 2014. (in Chinese with English abstract)
[11] 殷艷飛,房桂干,施英喬,等. 生物質(zhì)轉(zhuǎn)化制糠醛及其應(yīng)用[J]. 生物質(zhì)化學(xué)工程,2011,45(1):53-56.
Yin Yanfei, Fang Guigan, Shi Yingqiao, et al. Production and application of furfural from biomass[J]. Biomass Chemical Engineering, 2011, 45(1): 53-56. (in Chinese with English abstract)
[12] O’Neill R, Ahmad M N, Vanoye L, et al. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite[J]. Industrial and Engineering Chemistry Research, 2009, 48(9): 4300-4306.
[13] Xing R, Qi W, Huber G W. Production of furfural and carboxylic acids from waste aqueous hemicelluloses solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy and Environmental Science, 2011, 4(6): 2193-2205.
[14] 王瓊,莊新姝,袁振宏,等. 酸催化水解生物質(zhì)產(chǎn)乙酰丙酸的現(xiàn)狀分析[J]. 林產(chǎn)化學(xué)與工業(yè),2014,34(6):155-164.
Wang Qiong, Zhuang Xinshu, Yuan Zhenhong, et al. Research status analysis of acid catalyzed hydrolysis of biomass to levulinic acid[J]. Chemistry and Industry of Forest Products, 2014, 34(6): 155-164. (in Chinese with English abstract)
[15] 趙志福. 常壓兩步法生產(chǎn)糠醛工藝條件研究[D]. 天津:天津大學(xué),2009.
Zhao Zhifu. Studies on the Two-step Process for Furfural Production at Atmospheric Pressure[D]. Tianjin: Tianjin University, 2009. (in Chinese with English abstract)
[16] 薄德臣,李憑力. 糠醛生產(chǎn)技術(shù)發(fā)展及展望[J]. 林產(chǎn)化學(xué)與工業(yè),2013,33(6):128-134.
Bo Dechen, Li Pingli. Development and prospect of furfural production technology[J]. Chemistry and Industry of Forest Products, 2013, 33(6): 128-134. (in Chinese with English abstract)
[17] 馬新起,劉偉,余軍成. 糠醛生產(chǎn)現(xiàn)狀及前景展望[J]. 河南化工,1998(2):13-15.
[18] Madan A K, Baveja K K. Manufacture of furfural by solvent extraction process[J]. Chemical Age of India, 1982, 33(3): 149-151.
[19] 張運(yùn)明,李寬宏,黃華江. 溶劑萃取法分離糠醛的研究[J].林產(chǎn)化學(xué)與工業(yè),1991,11(3):231-240.
Zhang Yunming, Li Kuanhong, Huang Huajiang. Study on solvent extraction process for furfural separation[J]. Chemistry and Industry of Forest Products, 1991, 11(3): 231-240. (in Chinese with English abstract)
[20] Sangarunlert W, Piumsomboon P, Ngamprasertsith S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk[J]. Korean Journal of Chemical Engineering, 2007, 24(6): 936-941.
[21] 李憑力,肖文平,常賀英,等. 糠醛生產(chǎn)工藝的發(fā)展[J]. 林產(chǎn)工業(yè),2006,33(2):13-16.
Li Pingli, Xiao Wenping, Chang Heying, et al. Development of furfural production process[J]. China Forest Products Industry, 2006, 33(2): 13-16. (in Chinese with English abstract)
[22] 高禮芳,徐紅彬,張懿. 玉米芯水解生產(chǎn)糠醛清潔工藝[J].環(huán)境科學(xué)研究,2010,23(7):924-929.
Gao Lifang, Xu Hongbin, Zhang Yi. Clean process of furfural production through the hydrolysis of corncobs [J]. Research of Environmental Science, 2010, 23(7): 924-929. (in Chinese with English abstract)
[23] 陳文明. 生物質(zhì)基木糖制備糠醛的研究[D]. 淮南:安徽理工大學(xué),2007.
Chen Wenming. The Study of Producing Furfural from Biomass-Derived Xylose[D]. Huainan: Anhui University of Science and Technology, 2007. (in Chinese with English abstract)
[24] Sain B, Chaudhuri A, Borgohain J N, et al. Furfural and furfural-based industrial chemicals[J]. Journal of Scientific and Industrial Research, 1982, 41: 431-438.
[25] 肖文平. 木糖脫水制備糠醛的工藝研究[D]. 天津:天津大學(xué),2006.
Xiao Wenping. Studies on Preparation of Furfural from Xylose Dehydration[D]. Tianjin: Tianjin University, 2006. (in Chinese with English abstract)
[26] Agirrezabal-Telleria I, Larreategui A, Requies J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen[J]. Bioresource Technology, 2011, 102(16): 7478-7485.
[27] Rong C, Ding X, Zhu Y, et al. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts[J]. Carbohydrate Research, 2012, 350: 77-80.
[28] 李濱丹. 糠醛生產(chǎn)工藝污染防治措施研究[D]. 哈爾濱:黑龍江大學(xué),2014.
[29] 花拉. 糠醛生產(chǎn)企業(yè)廢水處理措施[J]. 環(huán)境與發(fā)展,2014,26(3):129-130.
Hua La. A brief introduction to the waste water treatment of furfuraldehyde manufacturing firms[J]. Environment and Development, 2014, 26(3): 129-130. (in Chinese with English abstract)
[30] 王洪莉. 糠醛生產(chǎn)污染來(lái)源與污染防治[J]. 環(huán)境保護(hù)與循環(huán)經(jīng)濟(jì),2013,33(4):45-46.
[31] 范毓萍,孫青斌. 內(nèi)電解法處理糠醛廢水工程實(shí)例[J]. 河南機(jī)電高等??茖W(xué)校學(xué)報(bào),2012,20(2):31-33.
Fan Yuping, Sun Qingbin. The engineering example of interior electrolytic in treating furfural waste water[J]. Journal of Henan Mechanical and Electrical Engineering College, 2012, 20(2): 31-33. (in Chinese with English abstract)
[32] 賈雪艷,朱冬紅,崔秀霞,等. 糠醛生產(chǎn)廢水處理新工藝的工程應(yīng)用[J]. 工業(yè)用水與廢水,2009,40(5):73-76.
Jia Xueyan, Zhu Donghong, Cui Xiuxia. Application of new technology for furfural waste water treatment in engineering[J]. Industrial Water and Waste Water, 2009, 40(5): 73-76. (in Chinese with English abstract)
[33] Dunning J W, Lathrop E C. Saccharification of agricultural residues[J]. Industrial and Engineering Chemistry, 1945, 37(1): 24-29.
[34] Singh A, Das K, Sharma D K. Integrated process for production of xylose, furfural and glucose from bagasse by two-step acid hydrolysis[J]. Journal of Chemical Technology and Biotechnology, 1984, 23: 257-262.
[35] Sproull R D, Bienkowski P R, Tsao G T. Production of furfural from corn stover hemicellulose[J]. Biotechnology and Bioengineering Symposium, 1985, (15): 561-577.
[36] Sako T, Sugeta T, Nakazawa N, et al.Phase equilibria study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide[J]. Journal of Chemical Engineering Japan, 1991, 24(4): 449-455.
[37] Moreau C, Durand R, Peyron D, et al. Selective preparation of furfural from xylose over microporous solid acid catalysts[J]. Industrial Crops and Products, 1998, 7: 95-99.
[38] Kim Y C, Lee H S. Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid Catalyst[J]. Journal of Industrial and Engineering Chemistry, 2001, 7(6): 424-429.
[39] Dias A S, Lima S, Brand?o P, et al. Liquid-phase dehydration of D-xylose over microporous and mesoporous niobium silicates[J]. Catalysis Letters, 2006, 108: 179-186.
[40] Dias A S, Lima S, Carriazo D, et al. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural[J]. Journal of Catalysis, 2006, 244: 230-237.
[41] Dias A S, Pillinger M, Valente A A. Mesoporous silicasupported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of D-xylose[J]. Microporous and Mesoporous Materials, 2006, 94: 214-225.
[42] Lima S, Pillinger M, Valente A A. Dehydration of D-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1)[J]. Catalysis Communications, 2008, 9(11/12): 2144-2148.
[43] Lima S, Neves P, Antunes M M, et al. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids[J]. Applied Catalysis A: General: 2009, 363(1/2): 93-99.
[44] Chareonlimkun A, Champreda V, Shotipruk A, et al. Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2and mixed-oxide TiO2-ZrO2under hot compressed water (HCW) condition[J]. Bioresource Technology, 2010, 101(11): 4179-4186.
[45] Zhang Z, Zhao Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology, 2010, 101(3): 1111-1114.
[46] Yemis O, Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction[J]. Bioresource Technology, 2011, 102(15): 7371-7378.
[47] Yang Y, Hu C, Abu-Omar M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green Chemistry, 2012, 14(2): 509-513.
[48] Zhao X B, Liu D H. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility: The formiline process[J]. Bioresource Technology, 2012, 117: 25-32.
[49] Zhao X B, Morikawa W C, Qi F, et al. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse[J]. Bioresource Technology, 2014, 151: 128-136.
[50] Cai C M, Zhang T Y, Kumar R, et al. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass[J]. Green Chemistry, 2013, 15: 3140-3145.
[51] Alonso D M, Wettstein S G, Mellmer M A, et al. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass[J]. Energy and Environmental Science, 2013, 6: 76-80.
[52] Cai C M, Nikhil N, Kumar R, et al. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy[J]. Green Chemistry, 2014, 16: 3819-3829.
[53] Zhang T Y, Kumar R, Wyman C E. Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass[J]. RSC Advances, 2013, 3: 9809-9819.
[54] Girisuta B, Janssen L P B M, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid [J]. Industrial and Engineering Chemistry Research, 2007, 46: 1696-1708.
[55] Girisuta B, Danon B, Manurung R, et al. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid[J]. Bioresource Technology, 2008, 99(17): 8367-8375.
[56] Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009, 131: 1979-1985.
[57] Mark M, Edward B N. Towards the efficient, total glycan utilization of biomass[J]. Chem Sus Chem, 2009, 2(5): 423-426.
[58] Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresource Technology, 2005, 96(8): 2026-2032.
[59] 梁瑩. 玉米秸稈稀硫酸預(yù)處理工藝研究[D]. 天津:天津大學(xué),2007. Liang Ying. Study of Dilute Sulfuric Acid Pretreatment of Corn Stover[D]. Tianjin: Tianjin University, 2007. (in Chinese with English abstract)
[60] Dunlop A P. Furfural formation and behavior [J]. Industrial and Engineering Chemistry, 1948, 40(2): 204-209.
[61] Zhang R, Lu X, Sun Y, et al. Modeling and optimization of dilute nitric acid hydrolysis on corn stover[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(2): 306-314.
[62] Lamminp?? K, Ahola J, Tanskanen J. Kinetics of xylose dehydration into furfural in formic acid[J]. Industrial and Engineering Chemistry Research, 2012, 51: 6297-6303.
[63] Lima S, Antunes M, Fernandes A, et al. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material [J]. Applied Catalysis A: General, 2010, 388(1/2): 141-148.
[64] Kim S B, You S J, Kim Y T, et al. Dehydration of D-xylose into furfural over H-zeolites[J]. Korean Journal of Chemical Engineering, 2011, 28(3): 710-716.
[65] Takagaki A, Ohara M, Nishimura S, et al. One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts[J]. Chemistry Letters, 2010, 39(8): 838-840.
[66] Dias A S, Pillinger M, Valente A A. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts[J]. Journal of Catalysis, 2005, 229(2): 414-423.
[67] 余強(qiáng). 高溫液態(tài)水法水解木質(zhì)纖維素生物質(zhì)的研究[D].北京:中國(guó)科學(xué)院大學(xué),2011. Yu Qiang. The Study on Lignocellulosic Biomass Hydrolysis with Liquid Hot Water[D]. Beijing: University of Chinese Academy of Sciences, 2011. (in Chinese with English abstract)
[68] Jing Q, Lv X Y. Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water[J]. Chinese Journal of Chemical Engineering, 2007, 15(5): 666-669.
[69] Lee Y Y, Lin C M, Johnson T, et al. Selective hydrolysis of hardwood hemicellulose by acids[J]. Biotechnol Bioeng, Symp, 1979, 8: 75-88.
[70] Kobayashi T, Sakai Y. Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid[J]. Bioscience, Biotechnology and Biochemistry, 1956, 20(1): 1-7.
[71] Mamman A S, Lee J M, Kim Y C, et al. Furfural: hemicellulose/xylose-derived biochemical[J]. Biofuels Bioproducts and Biorefining, 2008, 2: 438-454.
[72] Conner A H. Kinetic modeling of hardwood prehydrolysis. part I. xylan removal by water prehydrolysis[J]. Wood and Fiber Science, 1984, 16(2): 268-277.
[73] Conner A H, Lorenz L F. Kinetic modeling of hardwood prehydrolysis. III. Water and dilute acetic acid prehydrolysis of southern red oak [J]. Wood and Fiber Science, 1986, 18(2): 248-263.
[74] Liu S J. A kinetic model on autocatalytic reactions in woody biomass hydrolysis[J]. Journal of Biobased Materials and Bioenergy, 2008, 2: 135-147.
[75] Liu S J. Chemical reactions on surfaces during woody biomass hydrolysis[J]. Journal of Biobased Materials and Bioenergy, 2013, 2: 125-142.
[76] Liu S J. A synergetic pretreatment technology for woody biomass conversion[J]. Applied Energy, 2015, 144: 114-128.
[77] Lavarack B P, Griffin G J, Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products[J]. Biomass and Bioenergy, 2002, 23(5): 367-380.
[78] Antal M L, Leesomboon T, Mok W S. Mechanism of formation of 2-furaldehyde from D-xylose[J]. Carbohydrate Research, 1991, 217: 71-85.
[79] Nimlos M R, Qian X H, Davis M, et al. Energetics of xylose decomposition as determined using quantum mechanics modeling[J]. Journal of Physical Chemistry A, 2006, 110(42): 11824-11838.
[80] Du B, Sharma L N, Becker C, et al. Effect of varying feedstock pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates[J]. Biotechnology and Bioengineering, 2010, 107(3): 430–440.
[81] 劉菲,鄭明遠(yuǎn),王愛琴,等. 酸催化制備糠醛研究進(jìn)展[J].化工進(jìn)展,2017,36(1):156-165. Liu Fei, Zheng Mingyuan, Wang Aiqin, et al. Research progresses in furfural production by acid catalysts[J]. Chemical Industry and Engineering Progres, 2017, 36(1): 156-165. (in Chinese with English abstract)
[82] Nagorski R W, Richard J P. Mechanistic imperatives for aldose-ketose isomerization in water: Specific, general baseand metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer[J]. Journal of the American Chemical Society, 2001, 123(5): 794-802.
[83] Choudhary V, Sandler S I, Vlachos D G. Conversion of xylose to furfural using lewis and br?nsted acid catalysts in aqueous media[J]. ACS Catalysis, 2012, 2: 2022-2028.
[84] Choudhary V, Pinar A B, Sandler S I, et al. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media[J]. ACS Catalysis, 2011, 1(12): 1724-1728. [85] Román-Leshkov Y, Moliner M, Labinger J A, et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie, 2010, 49(47): 8954-8957.
[86] Stein T V, Grande P M, Leitner W, et al. Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock[J]. Chem Sus Chem, 2011, 11 (4): 1592-1594.
[87] Enslow K R, Bell A T. SnCl4-catalyzed isomerization/ dehydration of xylose and glucose to furanics in water[J]. Catalysis Science and Technology, 2015, 5(5): 2839-2847.
[88] Li S, Jeremy L. Organic solvent effect in biomass conversion reactions[J]. Chem Sus Chem, 2015, 9(2): 133-155.
[89] Burket C L, Sabesan S. Process for furfural production from biomass[P]. US Patent: 8524924, 2013-09-03.
[90] Shi N, Liu Q Y, Zhang Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chem, 2013, 15(7): 1967-1974.
[91] Román-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose [J]. Science, 2006, 312(5782): 1933-1937.
[92] Vasudevan V, Mushrif S H. Insights into the solvatioin of glucose in water, dimethyl sulfoxide(DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals[J]. RSC Advances, 2015, 5: 20756-20763.
[93] Mellmer M A, Sener C, Gallo J M R, et al. Solvent effects in acid catalyzed biomass conversion reactions[J]. Angew Chem Int Ed, 2014, 53: 11872-11875.
[94] Casey P K, Christopher J C, Donald G T. Single ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile and dimethyl sulfoxide[J]. J Phys Chem B, 2007, 111(2): 408-422.
[95] Kalidas C, Hefter G, Marcus Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents[J]. Chem Rev, 2000, 100(3): 819-852.
[96] 潘燕. 基于DMF溶液體系溶劑化過(guò)程和理論研究[D]. 合肥:合肥工業(yè)大學(xué),2011.
Pan Yan. Study and Calculation of Ion Solvation Process in Dimethylformamide (DMF) Solution System[D]. Hefei: Hefei University of Technology, 2011. (in Chinese with English abstract)
[97] Wang Z G, Yokoyama T, Chang H M, et al. Dissolution of beech and spruce milled woods in LiCl/DMSO[J]. J Agric Food Chem, 2009, 57(14): 6167-6170.
[98] Rasrendra C B, Soetedjo J N M, Makertihartha I G B N, et al. The catalytic conversion of D-glucose to 5-hydroxymethylfurfural in DMSO using metal salts[J]. Top Catal, 2012, 55: 543-549.
[99] Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009, 131(5): 1979-1985.
Progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids
Wang Qiong1, Wang Wen1, Qi Wei1, Yu Qiang1, Tan Xuesong1, Zhuang Xinshu1※, Yuan Zhenhong1,2, Wang Zhongming1
(1. Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Collaborative Innovation Centre of Biomass Energy, Zhengzhou 450002, China)
Furfural is an important high value-added platform chemical derived from lignocellulosic biomass. Domestic and foreign scholars launched various studies of furfural production from biomass, especially in the field of acid catalyzed hydrolysis. In this study, it was reviewed that the progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids, especially diluted Br?nsted acid. The progress status of traditional one-step furfural production technologies was summarized at first, and the problem of large amount of waste water treatment in traditional furfural industry was analyzed. To solve the shortages of one-step technologies, different types of two-step technologies were proposed to achieve the saccharides of hemicellulose to C5 sugars and the dehydration of C5 sugars to furfural separately. The first step of two-step technology was similar to the pretreatment in cellulose ethanol technology, so researchers mainly focus on the second step of furfural preparation from C5 sugars. They invented new methods (such as new solvent systems and catalysts) to increase furfural yields, or improve the economic efficiency of reaction progress by applying effective heating methods or by transferring furfural from reaction system as soon as its generation. In this section, methods of ionic liquid solvent, solid acid catalyst, microwave-assisted heating, organic solvent extraction, supercritical carbon dioxide extraction were studied. Then the new and hot technologies of simultaneous production of furfural and cellulose-derived chemicals, such as 5-hydroxymethylfurfural and levulinic acid were described and evaluated. In the second part, the reaction kinetics of xylose and lignocellulosic biomass catalyzed by diluted Br?nsted acids were comprehensively analyzed, and the research progress of related mechanisms was depicted. It was concluded that the kinetic models of the furfural production from lignocellulose were significantly influenced by the acid concentration and temperature. Under higher acid concentration and temperature, the kinetic model was more simple, and close to the “xylose-furfural-degradation products” path or the “xylan-xylose-furfural”path. In the third part, both the mechanisms of furfural generation from xylose and by-products generation from furfural were introduced. In the fourth part, due to Lewis acid catalysis was confirmed important and effective for xylose isomerization to xylulose, and xylulose conversion into furfural was more easier, we summarized the progress and mechanism of xylose conversion into furfural catalyzed by Lewis acid, such as FeCl3, SnCl4and LiCl. Finally, the research status of the solvent effects in acid/organic solvent reaction systems was concluded, and due to quantum chemistry was used in platform chemical production progress recently, the application of related software was introduced, such as GROMACS. This paper aimed to provide sufficient information for relative scholars to carry out research on furfural production from biomass, and to help scholars to conduct selective research.
biomass; catalyzation; kinetics; furfural; organic solvent; mechanism
10.11975/j.issn.1002-6819.2017.15.035
TQ35; TK6
A
1002-6819(2017)-15-0272-11
2017-03-27
2017-06-30
國(guó)家自然科學(xué)基金青年項(xiàng)目(51506207),廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(Y709ji1001),國(guó)家自然科學(xué)基金面上項(xiàng)目(21376241,51676193),國(guó)家自然科學(xué)基金國(guó)際交流合作重點(diǎn)項(xiàng)目(51561145015)
王 瓊,女,河南洛陽(yáng)人,助理研究員,博士,主要從事生物質(zhì)產(chǎn)燃料乙醇及平臺(tái)化合物的研究工作。廣州 中國(guó)科學(xué)院廣州能源研究所,510640。Email:wangqiong@ms.giec.ac.cn
※通信作者:莊新姝,女,研究員,博士生導(dǎo)師,主要從事生物質(zhì)能源化利用及高附加值化學(xué)品方面的研究。廣州 中國(guó)科學(xué)院廣州能源研究所,510640。Email:zhuangxs@ms.giec.ac.cn