曲 萍,趙永富,宋 婧,夏禮如
改性脲醛樹脂粘合基質(zhì)塊性能及其對黃瓜幼苗生長的影響
曲 萍,趙永富,宋 婧,夏禮如※
(江蘇省農(nóng)業(yè)科學(xué)院,農(nóng)業(yè)設(shè)施與裝備研究所,農(nóng)業(yè)部長江中下游設(shè)施農(nóng)業(yè)工程重點實驗室,南京 210014)
針對機械化移栽過程中,基質(zhì)容易散落,造成根系損傷的問題,該研究采用了既具有粘合性又具有養(yǎng)分釋放功能的生物降解膠黏劑粘合基質(zhì)成塊。測定了水解蛋白改性脲醛樹脂的基本性能,基質(zhì)塊的孔隙度、EC值、pH值和抗壓強度的變化規(guī)律,以及基質(zhì)塊對黃瓜幼苗生長的影響。試驗結(jié)果表明,該改性脲醛樹脂的氮素釋放速率前期緩慢,后期較快,在第7周時養(yǎng)分釋放率可達48%。添加50%改性脲醛樹脂后,基質(zhì)塊的總孔隙度下降約8.4%,但還是能夠滿足黃瓜生長需要。然而添加改性脲醛樹脂后基質(zhì)塊的EC由2.51 mS/cm下降到1 mS/cm左右,pH值基本保持不變。改性脲醛樹脂在添加量50%時,抗壓強度為0.14 MPa以上,能夠滿足機械手抓取的要求,也能夠滿足幼苗根系生長的要求。同時,葉面積、鮮質(zhì)量、干質(zhì)量比普通基質(zhì)提高了89.86%、57.00%、79.2%。III-UF改性脲醛樹脂的養(yǎng)分釋放速率與黃瓜幼苗生長養(yǎng)分需求速率是一致的,該配方最有利于黃瓜幼苗的生長。添加膠黏劑后,每個顆苗只需增加0.0125元,從成本上看價格便宜,有利于推廣應(yīng)用。
基質(zhì);機械化;理化特性;水解蛋白;改性脲醛樹脂;基質(zhì)塊;育苗;黃瓜
曲 萍,趙永富,宋 婧,夏禮如. 改性脲醛樹脂粘合基質(zhì)塊性能及其對黃瓜幼苗生長的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):253-259. doi:10.11975/j.issn.1002-6819.2017.15.032 http://www.tcsae.org
Qu Ping, Zhao Yongfu, Song Jing, Xia Liru. Performance of substrate blocks glued by modified urea formaldehyde resins and its effect on cucumber seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 253-259. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.032 http://www.tcsae.org
育苗移栽能夠使作物早熟、高產(chǎn)、優(yōu)質(zhì)、節(jié)省資源,大約有半數(shù)以上的設(shè)施作物需要進行育苗。傳統(tǒng)的育苗移栽的種植方式主要依靠人工作業(yè),費工費時,效率低下,因此機械化移栽技術(shù)得到了大力的發(fā)展。機械移栽能保證移栽的株距、行距、深度。然而,目前市場上的育苗基質(zhì)在從育苗穴盤取出到移動到地面后覆土的機械化移栽過程中,由于機械手的抓取力度不當以及機械的物理振動,育苗基質(zhì)會有不同程度的散落,從而造成根系的損傷、定植后作物緩苗時間長等現(xiàn)象。
為了解決機械化移栽過程中基質(zhì)散落傷根的問題,很多學(xué)者做了大量的研究。有人研究利用生物降解的育苗缽避免移栽過程的傷根問題,Nechita等采用了木質(zhì)的纖維、泥炭等制備了營養(yǎng)缽用于蔬菜的育苗[1],Prasanna Kumar等采用紙做育苗缽適用于機械化移栽[2],Qu等采用了秸稈和改性脲醛樹脂制備生物降解的育苗容器[3],也有人采用壓縮的基質(zhì)塊進行育苗,張鳳銀等研究了不同壓縮回彈的有機育苗基質(zhì)塊對辣椒幼苗生長的影響,基質(zhì)塊的出苗時間長,但更有利于幼苗生長[4],葛桂民采用有機基質(zhì)壓縮成型并進行育苗技術(shù)的研究,發(fā)現(xiàn)復(fù)配后的基質(zhì)塊更有利于扦插和播種的幼苗后期的生長[5]。公開號為CN101781155A的專利文獻公開了一種養(yǎng)分緩釋型蔬菜育苗基質(zhì)塊,采用草炭、蛭石、珍珠巖、蘑菇渣、碎秸稈、包膜控釋氮肥、包膜控釋復(fù)合肥制得了養(yǎng)分緩釋型育苗基質(zhì)塊,基質(zhì)的養(yǎng)分由聚合物包膜控釋肥提供,養(yǎng)分含量較普通基質(zhì)提高10倍以上,實現(xiàn)苗期至生育前期不用追加肥料[6]。公開號為CN104761380A的專利公開了一種適用于水稻育苗基質(zhì)塊,將作物秸稈、營養(yǎng)劑、膨脹劑等采用熱壓成型,基質(zhì)塊培育的幼苗生長情況略差于普通基質(zhì)[7]。袁巧霞等為優(yōu)化蔬菜育苗成型基質(zhì)的配方,提高成型基質(zhì)蔬菜育苗效果,分別以牛糞好氧堆肥腐熟料和牛糞蚯蚓堆肥腐熟料為主料,草炭為輔料,吸水樹脂為膨脹劑,木醋液為調(diào)節(jié)劑,黃瓜為指示植物,研究不同配方對成型基質(zhì)塊成型及育苗效果的影響,基質(zhì)塊的存活率和莖粗株高不及牛糞蚯蚓堆肥腐熟料[8]。采用育苗缽育苗,缽體的降解周期難控制,基質(zhì)塊一般都需要壓縮成型,而且利用土坨育苗,由粘性較大的土壤壓制而成,其通透性差,成活率低,在澆水以及移栽過程中容易破碎傷根。目前,采用既具有粘合性又具有養(yǎng)分釋放功能的生物降解膠黏劑來輔助基質(zhì)成塊的研究尚未見報道。
本研究以可生物降解的改性脲醛樹脂為粘合劑,加入傳統(tǒng)的基質(zhì)調(diào)節(jié)育苗方塊的酸堿性、物理化學(xué)吸收能力、緩沖能力、營養(yǎng)物質(zhì)等。通過分析改性脲醛樹脂對普通基質(zhì)的理化性質(zhì)、抗壓強度的變化規(guī)律,以及該新型基質(zhì)塊養(yǎng)分釋放規(guī)律對黃瓜幼苗生長的影響,為育苗生產(chǎn)應(yīng)用該產(chǎn)品提供理論和適用性支持。
供試作物為津春4號(天津科潤農(nóng)業(yè)科技股份有限公司黃瓜研究所),供試基質(zhì)為優(yōu)佳育苗基質(zhì)(木薯渣∶珍珠巖∶蛭石=2∶1∶1,淮安市中園園藝發(fā)展有限公司生產(chǎn))。大豆分離蛋白(蛋白純度90%,河南安陽市得天力食品有限公司);尿素(分析純,≥99.0%,西隴化工股份有限公司);甲醛溶液(分析純,37.0%~40.0%,西隴化工股份有限公司);磷酸(分析純,≥85.0%,天津市科密歐化學(xué)試劑有限公司);氫氧化鉀(分析純,≥85.0%,西隴化工股份有限公司)。
1.2.1 改性脲醛樹脂的制備
在三口燒瓶中加入水解蛋白、尿素和甲醛,用氫氧化鉀溶液調(diào)節(jié)pH值為7.8,升溫至50 ℃后停止加熱,當溫度不再繼續(xù)上升時,再升溫至90 ℃,保溫半小時。用磷酸溶液調(diào)節(jié)pH值至4.5~5,到霧點后,再用氫氧化鉀溶液調(diào)pH值至7.5;加入剩余尿素,降溫至75℃,保溫半小時后降溫放料。其中甲醛與當量尿素的摩爾比為1.2∶1,水解蛋白替代尿素的摩爾數(shù)分別為2%、4%、6%、8%,分別用I-UF、II-UF、III-UF、IV-UF表示。
1.2.2 基質(zhì)塊的制備
將無養(yǎng)分添加的基質(zhì)與改性脲醛樹脂進行混合,其中改性脲醛樹脂添加量為基質(zhì)質(zhì)量的50%。將混合后的材料放入穴盤中,在60℃的烘箱中烘干4 h成型,即獲得所述具有養(yǎng)分控釋功能的育苗基質(zhì)塊。基質(zhì)塊初始含水率約為31%,終態(tài)含水率約為4%。I-UF,II-UF,III-UF,IV-UF與基質(zhì)混合制得的基質(zhì)塊分別用T1、T2、T3、T4表示。當III-UF添加量為基質(zhì)的0、40%、50%、60%、70%時制備的基質(zhì)塊分別用T5、T6、T7、T8和T9表示。
1.2.3 孔隙度的測定
取基質(zhì)塊,浸泡在水中24 h 后稱質(zhì)量W1,將水分自由瀝干24 h 后稱質(zhì)量W2,最后將基質(zhì)放入烘箱內(nèi)烘至質(zhì)量恒定后稱質(zhì)量W3,按以下公式計算:
式中W1為浸泡24 h后質(zhì)量,g;W2為控水24 h后質(zhì)量,g;W3為烘干后質(zhì)量,g;V為體積,mL。
1.2.4 播種及苗期管理
育苗在2016年9月份進行,選用72孔的穴盤,將黃瓜種子播于穴盤內(nèi),每穴一粒種子,在江蘇省農(nóng)業(yè)科學(xué)院溫室內(nèi)進行育苗試驗,內(nèi)部的溫度、濕度、二氧化碳、光照強度等參數(shù)如圖1所示。
圖1 溫室內(nèi)環(huán)境Fig.1 Environment in greenhouse
1.2.5 幼苗綜合指標的測定
幼苗生長30 d時進行測定,形態(tài)指標:用直尺(0.1 mm)測量從生長點到基質(zhì)表面之間的距離為株高;用游標卡尺(0.01 mm)測量幼苗子葉節(jié)下1 cm處為幼苗莖粗;在莖基部將幼苗地上部分和根系分開,用水洗凈,吸水紙吸干水分,置于烘箱內(nèi)105 ℃殺青15 min,80 ℃烘干至恒質(zhì)量,該質(zhì)量為干質(zhì)量;壯苗指數(shù)=(徑粗/株高)×全株干質(zhì)量;葉綠素的測定采用CCM-200 PLUS葉綠素測定儀(美國OPTI-sciences)。
1.2.6 基質(zhì)塊的基本性能
pH值和EC值的測定:將基質(zhì)塊粉碎后,用去離子水潤濕(含水率50%~60%)平衡24小時后稱取10 g樣品于100 mL燒杯中,加入50 mL去離子水,在180 r/min下振蕩40 min,靜置24 h過濾后,采用德國Lovibond SensoDirect 150測定儀測定pH值和EC值。抗壓強度的測定:樣品基質(zhì)塊直接在5 cm×5 cm×5 cm的立方體容器中成型。采用萬能力學(xué)試驗機(HY-0580,上海衡翼精密儀器有限公司)測定立方體的抗壓強度。
1.2.7 氮素釋放
用PVC管封底做成淋洗柱,以石英砂為淋洗介質(zhì),基質(zhì)塊添加量按氮與石英砂質(zhì)量比為3∶1000添加;同時以未加樣品的處理為空白,設(shè)3個重復(fù)的處理。每隔7 d取出土柱淋洗,淋洗液消煮后,用凱氏定氮儀測定總氮含量。
1.2.8 數(shù)據(jù)分析
使用Excel20l0和SPSS19.0軟件進行數(shù)據(jù)統(tǒng)計分析,使用最小顯著差異法(least significant difference, LSD)檢驗進行多重比較。
表1為水解蛋白改性脲醛樹脂的初始基本性質(zhì)。從表中可以看出,不同配方的改性脲醛樹脂pH值和密度差別不大。然而,隨著替代率的增大改性脲醛樹脂的黏度明顯提高,固含量下降,固化時間延長,游離甲醛降低。黏度增大是因為蛋白水解物本身的黏度就很大,在改性脲醛樹脂中蛋白水解物添加越多,改性脲醛樹脂黏度越大。改性后脲醛樹脂的固含量也有所下降是因為蛋白水解物的固含量很低,改性脲醛樹脂的固含量隨著水解蛋白的添加量的增大而降低。通過測定改性脲醛樹脂的固化時間可以得出改性脲醛樹脂的反應(yīng)活性,隨著替代率的增大,水解蛋白添加量的增多,改性脲醛樹脂的固化時間變長。說明添加蛋白水解物后,由于水解蛋白鏈段的空間阻隔以及單位體積內(nèi)的活性基團減少,改性脲醛樹脂的反應(yīng)活性下降了[9]。由于水解蛋白中的活性氨基與甲醛反應(yīng)形成的羥甲基較尿素和甲醛形成的羥甲基穩(wěn)定,因此改性脲醛樹脂中的游離甲醛隨著替代率的增大而減少[10]。
表1 改性脲醛樹脂的基本性能Table 1 Basic performance of modified urea formaldehyde
水解蛋白改性脲醛樹脂的生物降解性即養(yǎng)分釋性能是基質(zhì)塊的重要指標。采用土柱淋洗的方法測定基質(zhì)塊中添加的改性脲醛樹脂的養(yǎng)分釋放率,該氮素釋放率已扣除空白土柱中的氮素釋放。從圖2中可以看出,前3周內(nèi),改性脲醛樹脂的氮素釋放速率較為緩慢,原因是在初期改性脲醛樹脂比表面積小,能降解并釋放養(yǎng)分的分子鏈段少,微生物需要時間產(chǎn)生相應(yīng)的酶降解該樹脂。在第4周到第7周養(yǎng)分釋放速率明顯增加,這是因為隨著降解時間的延長,改性脲醛樹脂的比表面積增大,能分解利用改性脲醛樹脂的微生物越來越多,分解速率加快[11]。第7周時,IV-UF養(yǎng)分釋放率為48%。并且氮素釋放速率隨著水解蛋白添加量的增加而提高,水解蛋白越多,改性脲醛樹脂中的分子結(jié)構(gòu)相對疏松,酶更容易進入,因而分解速率快[12]。根系的健康生長與基質(zhì)中的養(yǎng)分密切相關(guān)[13],因此可以通過調(diào)控水解蛋白的含量來調(diào)控改性脲醛樹脂的結(jié)構(gòu),進而調(diào)控養(yǎng)分釋放速率,與幼苗的養(yǎng)分需求規(guī)律基本一致,使其有利于黃瓜根系的生長。
圖2 改性脲醛樹脂中的氮素釋放速率Fig.2 Nitrogen release rate of modified urea formaldeh yde
栽培基質(zhì)的大小孔隙比要適宜,具有適宜的通氣孔隙,能保證空氣交換,還要有適宜的持水孔隙保持水分,供植物吸收利用,大小孔隙比要適宜[14-15]。理想的基質(zhì)要求總孔隙度為54%~96%,大小孔隙比在(0.25~0.5):1之間[16-17]。從表2中可以看出,普通基質(zhì)的總孔隙度為72.9%。添加改性脲醛樹脂后,通氣孔隙度和持水孔隙度均減少。以III為例,和普通基質(zhì)相比,基質(zhì)塊的通氣孔隙度、持水孔隙度和總孔隙度分別下降6.6%,9.0%和8.4%。原因是粘合劑在粘合基質(zhì)的同時,基質(zhì)本身的孔隙被部分堵塞,基質(zhì)顆粒與基質(zhì)顆粒間的部分孔隙也被改性脲醛樹脂填充。此外,基質(zhì)表面豐富的吸水性基團羥基也被改性脲醛樹脂給包裹起來,而不能發(fā)揮吸水保水的作用。而在改性脲醛樹脂與基質(zhì)質(zhì)量比為1:2時,通氣孔隙度隨著蛋白水解物替代尿素的摩爾數(shù)的增加而增加,原因是改性脲醛樹脂的固含量隨著蛋白水解物替代量的增大而減少??紫抖却笳f明基質(zhì)較輕、疏松,容納空氣和水的量大,有利于根系生長。不同的改性脲醛樹脂粘合基質(zhì)塊中大小空隙比基本不變。
電導(dǎo)率是基質(zhì)浸提液中可溶性鹽濃度指標,反映基質(zhì)當中可溶性養(yǎng)分總量,電導(dǎo)率過高則構(gòu)成滲透逆境,會導(dǎo)致植物鹽害,須通過淋洗降低鹽分,電導(dǎo)率過低則營養(yǎng)不足以維持植物正常生長[18-19]。有研究認為作物生長安全電導(dǎo)率范圍為750~2 600 μS/cm[20]。從表2中可以看出,普通基質(zhì)的EC值為2.51 mS/cm,而添加改性脲醛樹脂后基質(zhì)塊的EC值明顯降低至1 mS/cm左右,原因是改性脲醛樹脂在基質(zhì)顆粒表面形成了一層包覆膜,阻礙了部分離子溶解到水中,從而使得基質(zhì)塊的EC值偏低。而隨著蛋白水解物替代尿素的摩爾數(shù)的增大,EC值有增大的趨勢,一方面原因是替代率越大,改性脲醛樹脂的固含量越多,基質(zhì)顆粒的包覆率越低,另外一個原因可能是蛋白水解物越多,其固化后的改性脲醛樹脂的分子鏈結(jié)構(gòu)越疏松,部分離子能夠穿過包覆膜到水溶液中。從表中可以看出,改性脲醛樹脂粘合基質(zhì)成塊的pH值與普通基質(zhì)差異不顯著。
表2 不同改性脲醛樹脂粘合基質(zhì)塊的孔隙度Table 2 Porosity of substrate block bonded with different kind of modified urea formaldehyde
機械化移栽的核心部件是機械手,是直接與苗坨接觸的工作部件,夾持指在夾持的過程中,基質(zhì)塊的抗壓強度是一個重要的指標[21-24]?;|(zhì)塊的強度直接決定穴苗損傷率和苗坨破碎率。傳統(tǒng)的基質(zhì)中,抗壓強度與各成分間接觸的緊密程度、基質(zhì)配方、填充量、根系、水分密切相關(guān)[25]。測定結(jié)果顯示(圖3)在添加不同質(zhì)量百分比的改性脲醛樹脂后,隨著改性脲醛樹脂添加比例的增大,基質(zhì)塊的抗壓強度也隨著增大,并且在添加同樣含量的改性脲醛樹脂時,隨著水解蛋白替代尿素的增大,基質(zhì)塊的抗壓強度越小,其原因是替代率越大,改性脲醛樹脂的固含量越低,有效膠合的分子越少,從而使得基質(zhì)塊強度變小。然而添加量越大,基質(zhì)塊孔隙度顯著下降,不利于作物根系的生長。綜合考慮諸因素,改性脲醛樹脂在添加量50%時,抗壓強度為0.14 MPa以上,能夠滿足機械手抓取的要求,也能夠滿足幼苗根系生長對孔隙度的要求。
圖3 不同改性脲醛樹脂粘合基質(zhì)塊的抗壓強度Fig.3 Compressive strength of substrate block bonded with different kind of modified urea formaldehyde resins
基質(zhì)塊T3培育的黃瓜幼苗在一葉一心時的圖片如圖4所示,黃瓜根系能夠很好地穿透基質(zhì)塊,并且在一片真葉的時候也能很好的成塊,不散坨。從表3中可以看出,T1,T2和T4和全基質(zhì)相比在株高上沒有顯著差異。在莖粗和葉面積上,T1,T2,T3,T4和全基質(zhì)彼此之間均差異顯著。T1,T2,T4和全基質(zhì)相比在根長上存在顯著差異,葉綠素則是II和III與全基質(zhì)有顯著差異,T1和T4與全基質(zhì)沒有顯著差異。地上部分鮮質(zhì)量和干質(zhì)量彼此之間差異明顯,地下部分鮮質(zhì)量除了T1和全基質(zhì)差異不明顯外,T2,T3,T4均差異顯著,地下干質(zhì)量則是T2,T3和T4與全基質(zhì)差異顯著??偟膩碚f,改性脲醛樹脂粘合基質(zhì)制備的基質(zhì)塊III和全基質(zhì)培育的黃瓜幼苗的各項指標均有顯著差異,黃瓜幼苗的各項指標和對照相比均有不同程度的提高,株高、徑粗、根長比普通基質(zhì)分別提高了27.81%,15.40%,18.10%。葉面積、鮮質(zhì)量、干質(zhì)量比普通基質(zhì)提高了89.86%,57.00%,79.2%。壯苗指數(shù)提高了38.89%。然而,根冠比確有所下降,原因可能是添加膠黏劑后,基質(zhì)塊的孔隙度有所下降,導(dǎo)致了根系生長艱難,速率變慢,也可能是該樹脂促進根和冠的生長,促進冠生長的更多[26]。其中,III-UF/基質(zhì)培育出的黃瓜幼苗的壯苗指數(shù)優(yōu)于其他幾種基質(zhì)塊。也就是說,III-UF改性脲醛樹脂的養(yǎng)分釋放速率與黃瓜幼苗生長養(yǎng)分需求速率是比較一致的,該配方適宜于黃瓜幼苗的生長。
圖4 一葉一心的黃瓜幼苗Fig.4 Cucumber seedlings with one leaf
表3 不同基質(zhì)塊培育的黃瓜幼苗生長狀況Table 3 Growth conditions of cucumber seedlings in different substrate block
表4為不同膠黏劑(III-UF)添加量對黃瓜幼苗生長的影響,從表6中可以看出,鮮質(zhì)量干質(zhì)量隨著基質(zhì)中膠黏劑的添加量由40%增加到70%,黃瓜幼苗的各項指標呈現(xiàn)下降的趨勢。一方面是因為粘合劑添加量越多直接導(dǎo)致孔隙度顯著下降,另一方面是由于具有養(yǎng)分釋放功能的膠黏劑太多,養(yǎng)分供應(yīng)大于黃瓜幼苗所需的養(yǎng)分,反而不利于黃瓜幼苗的生長[27-30]。但是在膠黏劑添加量為50%時,各項指標還是優(yōu)于未加膠黏劑的普通基質(zhì)。為了保證基質(zhì)塊的強度,同時有利于黃瓜幼苗的生長,粘合劑添加量為50%時,最適宜于黃瓜幼苗的生長。
表4 不同膠黏劑(III-UF)添加量的黃瓜幼苗生長狀況Table 4 Growth conditions of cucumber seedlings with different resins (III-UF) content
自主研發(fā)改性脲醛樹脂2 300元/t。以72孔穴盤為例,改性脲醛樹脂添加量為50%時,每個穴盤所需膠黏劑的成本為0.9元,每個孔所需的膠黏劑成本為0.012 5元。此外,該脲醛樹脂屬于生物降解材料,該改性膠黏劑在具備粘合功能的同時,能夠緩慢釋放養(yǎng)分,在苗期無需施用水溶肥,減少了苗期施用肥料的成本。而且,在定植后也能繼續(xù)為植株提供養(yǎng)分。該膠黏劑主要成分為氮磷鉀,不會對作物和土壤造成二次污染,并且該膠黏劑的合成所需的設(shè)備與木材工業(yè)中所用的膠黏劑基本一致,無論設(shè)備還是工藝都很成熟,因此有良好的應(yīng)用前景。
本文中合成了一種適宜于粘合基質(zhì)成塊的改性脲醛樹脂,該改性脲醛樹脂的養(yǎng)分釋放速率可以由水解蛋白進行調(diào)控,水解蛋白添加量越多,養(yǎng)分釋放速率越快。添加改性脲醛樹脂后,基質(zhì)塊的EC值有所降低,pH值基本保持不變。基質(zhì)塊的持水孔隙度和通氣孔隙度有所下降,但從幼苗的綜合指標看,還是能夠滿足黃瓜幼苗的生長需要。III-UF改性脲醛樹脂在添加50%時,抗壓強度為0.14 MPa以上,能夠滿足機械手抓取的要求,且鮮質(zhì)量干質(zhì)量養(yǎng)分釋放速率與黃瓜幼苗生長養(yǎng)分需求速率基本一致,適宜黃瓜幼苗的生長。該基質(zhì)塊免除了常規(guī)育苗后期需要施肥的問題,并且基質(zhì)塊有一定的強度,解決了機械無損抓取的難題。重要的是,該改性脲醛樹脂價格適中,在農(nóng)業(yè)中有良好的應(yīng)用前景。
[1] Nechita P, Dobrin E, Ciolacu F, et al. The biodegradability and mechanical strength of nutritive pots for vegetable planting based on lignocellulose composite materials[J]. Bioresources, 2010, 5(2): 1102-1113.
[2] Prasanna Kumar G V, Raheman H. Identification of optimum combination of proportion of vermicompost in the soil-based potting mix and pot volume for the production of paper pot seedlings of vegetables[J]. Journal of Plant Nutrition, 2012, 35(9): 1277-1289.
[3] Qu P, Huang H, Wu G, et al. Preparation and degradation of seedling containers made from straw and hydrolyzed soy protein isolate modified urea-formaldehyde resins[J]. BioResources, 2015, 10(4): 7946-7957.
[4] 張鳳銀,魏傳斌,張光梅,等. 有機育苗基質(zhì)塊對辣椒幼苗生長的影響[J]. 農(nóng)學(xué)學(xué)報,2012,2(3):41-43.
Zhang Fengyin, Wei Chuanbin, Zhang Guangmei, et al. Effects of organic substrate block on the growth of hot pepper seedling[J]. Journal of Agriculture, 2012, 2(3): 41-43. (in Chinese with English abstract)
[5] 葛桂民. 玉米秸稈發(fā)酵有機基質(zhì)壓縮成型及育苗技術(shù)研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2009.
Ge Guimin. Study on Selection Organic Matrix Formulation of Corn Straw Compression Molding and Breeding Technology[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese with English abstract)
[6] 北京市農(nóng)林科學(xué)院. 養(yǎng)分緩釋型蔬菜育苗基質(zhì)塊:201010112173.4 [P]. 2010-02-11
[7] 杭州燁霖農(nóng)業(yè)科技有限責任公司. 一種水稻育苗基質(zhì)塊及其制備工藝:201510154468.0 [P]. 2015-04-02
[8] 楊龍元,袁巧霞,劉志剛,等. 牛糞好氧和蚯蚓堆肥腐熟料成型基質(zhì)塊制備及育苗試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(24):226-233.
Yang Longyuan, Yuan Qiaoxia, Liu Zhigang, et al. Experiment on seedling of compressed substrates with cow dung aerobic composting and earthworm cow dung composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 226-233. (in Chinese with English abstract)
[9] Lorenz L F, Conner A H, Christiansen A W. The effect of soy protein additions on the reactivity and formaldehyde emission of urea-formaldehyde adhesive resins[J]. Forest Products Journal, 1999, 49(3): 73-78.
[10] Qu P, Huang H, Wu G, et al. Effects of hydrolysis degree of soy protein isolate on the structure and performance of hydrolyzed soy protein isolate_urea_formaldehyde copolymerresin[J]. Journal of Applied Polymer Science, 2015, 132(7). DOI: 10.1002/app.41469
[11] 曲萍,常志州,趙永富,等. 蛋白水解物改性脲甲醛緩釋肥的結(jié)構(gòu)及氮素釋放特征[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):240-245.
Qu Ping, Chang Zhizhou, Zhao Yongfu, et al. The structure of hydrolyzed soy protein modified urea formaldehyde and its nitrogen release characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 240-245. (in Chinese with English abstract)
[12] Qu P, Huang H, Wu G, et al. Hydrolyzed soy protein isolates modified urea-formaldehyde resins as adhesives and its biodegradability[J]. Journal of Adhesion Science and Technology, 2015, 29(21): 2381-2398.
[13] Krasowski M J, Owens J N, Tackaberry L E, et al. Aboveand below-ground growth of white spruce seedlings with roots divided into different substrates with or without controlled-release fertilizer[J]. Plant and Soil, 1999, 217(1): 131-143.
[14] 戴小紅,孫偉生,樊權(quán),等. 農(nóng)林廢棄物混配基質(zhì)的理化性質(zhì)及其對油茶幼苗生長效應(yīng)的綜合評價[J]. 植物資源與環(huán)境學(xué)報,2016,25(1):54-61.
Dai Xiaohong, Sun Weisheng, Fan Quan, et al. Physicochemical property of mixed substrates with agricultural and forestry wastes and comprehensive evaluation of their effect on growth of Camellia oleifera seedlings[J]. Journal of Plant Resources and Environment. 2016, 25(1): 54-61. (in Chinese with English abstract)
[15] 張舒玄,常江杰,李輝信,等. 奶牛糞蚯蚓堆肥的基質(zhì)配方及對草莓育苗的影響[J]. 土 壤, 2016, 48(1): 59—64
Zhang Shuxuan, Chang Jiangjie, Li Huixin, et al. Substrate formula of cow manure vermicompost and its effects on strawberry seedling[J]. Soils, 2016, 48(1): 59—64.
[16] 張碩,余宏軍,蔣衛(wèi)杰. 發(fā)酵玉米芯或甘蔗渣基質(zhì)的黃瓜育苗效果[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):236-242.
Zhang Shuo, Yu Hongjun, Jiang Weijie. Seedling effects of corncob and bagasse composting substrates in cucumber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 236-242. (in Chinese with English abstract)
[17] 郭世榮. 固體栽培基質(zhì)研究、開發(fā)現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(14):1-4.
Guo Shirong. Research progress current exploitations and developing trends of solid cultivation medium[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(14): 1-4. (in Chinese with English abstract)
[18] 胡亞利,孫向陽,龔小強,等. 混合改良劑改善園林廢棄物堆肥基質(zhì)品質(zhì)提高育苗效果[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(18):198-204.
Hu Yali, Sun Xiangyang, Gong Xiaoqiang, et al. Mix-ameliorant improving substrates quality of waste compost from garden and seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 198-204. (in Chinese with English abstract)
[19] 趙海濤,李天鵬,姚旭,等. 堆置與添加蛭石對污泥蚓糞培育茄子幼苗的影響[J]. 中國農(nóng)業(yè)科學(xué),2014,47(23):4668-4679.
Zhao Haitao, Li Tianpeng, Yaoxu, et al. Effects of the potting media produced by activated sludge vermicompost stacked and added vermiculite on eggplant seedlings[J]. Scientia Agricultura Sinica, 2014, 47(23): 4668-4679. (in Chinese with English abstract)
[20] 劉方春,馬海林,馬丙堯,等. 菇渣用作無紡布容器育苗成型機配套基質(zhì)的研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報,2010,26(5):477-481.
Liu Fangchun, Ma Hailin, Ma Bingyao, et al. Use of used mushroom cultivation medium as raw material in making seedling pots of non-woven fabric[J]. Journal of Ecology and Rural Enviroment, 2010, 26(5): 477-481. (in Chinese with English abstract)
[21] 繆小花,毛罕平,韓綠化,等. 黃瓜穴盤苗拉拔力及缽體抗壓性能影響因素分析[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(s1):27-32.
Miao Xiaohua, Mao Hanping, Han Lvhua. Analysis of influencing factors on force of picking plug seedlings and pressure resistance of plug seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(s1): 27-32. (in Chinese with English abstract)
[22] 趙雄,沈明,陳建能,等. 棉花移栽機旋轉(zhuǎn)式取苗機構(gòu)的運動學(xué)分析及虛擬試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(8):13-20.
Zhao Xiong, Shen Ming, Chen Jianneng, et al. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 13-20. (in Chinese with English abstract)
[23] 田昆鵬,毛罕平,胡建平,等. 自動移栽機門形取苗裝置設(shè)計與試驗研究[J]. 農(nóng)機化研究,2014(2):168-172.
Tian Kunpeng, Mao Hanping, Hu Jianping, et al. Design and experimental study on the door-shaped picking seedling mechanism of auto-transplanter[J]. Agricultural Mechanization Research, 2014(2): 168-172. (in Chinese with English abstract)
[24] 褚群,董春娟,尚慶茂. γ-聚谷氨酸對番茄穴盤育苗基質(zhì)礦質(zhì)養(yǎng)分供應(yīng)及幼苗生長發(fā)育的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2016,22(3):855-862.
Chu Qun, Dong Chunjuan, Shang Qingmao. Effects of γ-poly glutamic acid on substrate mineral nutrient supply and growth of tomato plug seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 855-862. (in Chinese with English abstract)
[25] 張冕,姬江濤,杜新武. 國內(nèi)外移栽機研究現(xiàn)狀與展望[J].農(nóng)業(yè)工程,2012,2(2):21-23.
Zhang Mian, Ji Jiangtao, Du Xinwu. Status and prospect of transplanter at home and abroad[J]. Agricultural Engineering, 2012, 2(2): 21-23. (in Chinese with English abstract)
[26] 王吉慶,趙月平,劉超杰. 水浸泡玉米秸基質(zhì)對番茄育苗效果的影響[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(3):276-281.
Wang Jiqing, Zhao Yueping, Liu Chaojie. Effects of water-soaked corn stalk substrate on tomato seedling culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 276-281. (in Chinese with English abstract)
[27] 林育炯,張均華,胡繼杰,等. 不同類型基質(zhì)對機插水稻秧苗生理特征及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):18-26.
Lin Yujiong, Zhang Junhua, Hu Jijie, et al. Effects of different seedling substrates on physiological characters and grain yield of mechanized-transplanted rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 18-26. (in Chinese with English abstract)
[28] 陳世昌,周士鋒,徐明輝,等. 促腐劑對菇渣發(fā)酵過程的影響及育苗基質(zhì)優(yōu)化研究[J]. 北方園藝,2011(17):177-180.
Chen Shichang, Zhou Shifeng, Xu Minghui, et al. Effect of transformation promoter addition on processing fermentation of mushroom residue and medium optimization for seeding[J]. Northern Horticulture, 2011(17): 177-180. (in Chinese with English abstract)
[29] Hartwigsen J A, Evans M R. Humic acid seed and substrate treatments promote seedling root development[J]. Hortscience, 2000, 35(7): 1231-1233.
[30] Carmona E, Moreno M T, Avilés M, et al. Use of grape marc compost as substrate for vegetable seedlings[J]. Scientia Horticulturae, 2012, 137(4): 69-74.
Performance of substrate blocks glued by modified urea formaldehyde resins and its effect on cucumber seedlings
Qu Ping, Zhao Yongfu, Song Jing, Xia Liru※
(Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze river, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Science, Nanjing 210014, China)
In order to solve the problem of scattering substrates and the damaged root during the process of mechanized transplanting, the hydrolyzed soy protein modified urea formaldehyde resins were applied to glue the substrates together. The properties of modified resins, such as pH value, viscosity, solid content, density, curing time, and free formaldehyde, were characterized. The nutrient release rate of modified urea formaldehyde resins was characterized. The aeration porosity, water-holding porosity, EC, pH value, and compressive strength of the substrate blocks were also tested; the effect of the substrate block on the cucumber seedling was measured. The results show that the hydrolyzed soy protein modified urea formaldehyde resins can meet requirements of gluing the substrates together. The viscosity and curing time increase obviously. And, the solid content and free formaldehyde decrease a little. The reason is that the viscosity of hydrolyzed soy protein is higher than urea formaldehyde resins, and the solid content is lower than urea formaldehyde resins. The active groups in modified urea formaldehyde resins are fewer than unmodified urea formaldehyde resins. In addition, the space barrier from the soy protein causes the increased curing time, because the hydroxymethyl groups formed from active amino groups of hydrolyzed soy protein and formaldehyde are more stable than that formed from urea and formaldehyde. The nutrient release rate is an important indicator of the substrate block. Soil column leaching method was applied to characterize the nitrogen release rate. The nitrogen release rate in the first 3 weeks is slower. Then the nitrogen release rate is improved in the later time, and the release rate can reach 48% in the 7thweek. The reason is the specific surface area increases as the time goes on. The aeration porosity, water-holding porosity, and total porosity of the substrate blocks are decreased by 6.6%, 9.0%, and 8.4% compared with the traditional substrate. The reason is that the porosity and the hydrophilic groups of the substrate are covered by modified urea formaldehyde resins. However, the porosity can meet the growth requirement of the cucumber seedling when the modified urea formaldehyde resins are added in the substrates in the proportion of 1:2. The EC of substrate block decreases from 2.5 to 1 mS/cm. The pH value of the substrate block remains unchanged. The compress strength of the substrate block is above 0.14 MPa, which can meet the requirement of grabbing of manipulator during the transplanting process. When the modified urea formaldehyde is added, the height, stem diameter, root length are improved by 27.81%, 15.40%, and 18.10%, respectively. And the leaf area, fresh and dry weight are improved by 89.86%, 57.00%, and 79.2%, respectively. In addition, the substrate blocks with 50% resins are suitable for the root growth of cucumber seedlings. III-H-UF is the best resins that the nutrient release rate is in accordance with the nutrient requirement characteristics of the cucumber seedlings. The formula of the substrate blocks is suitable for the cucumber seedlings growth. Every seedling tray increases by 0.9 yuan when blended with modified urea formaldehyde resins. And every seedling increases by 0.0125 yuan for seedling tray with 72 holes.
substrates; mechanization; physichemical properties; hydrolyzed soy protein; modified urea formaldehyde; substrate block; grow seedlings; cucumber
10.11975/j.issn.1002-6819.2017.15.032
S216; X71
A
1002-6819(2017)-15-0253-07
2017-02-15
2017-05-31
江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金(CX(16)1002);國家自然基金(11605077)
曲萍,博士,副研究員,主要從事農(nóng)用生物降解材料的研究。南京 江蘇省農(nóng)業(yè)科學(xué)院,農(nóng)業(yè)設(shè)施與裝備研究所,農(nóng)業(yè)部長江中下游設(shè)施農(nóng)業(yè)工程重點實驗室,210014。Email:qupinghappy@163.com
※通信作者:夏禮如,碩士,研究員,主要從事設(shè)施農(nóng)業(yè)技術(shù)與裝備的研究。南京 江蘇省農(nóng)業(yè)科學(xué)院,農(nóng)業(yè)設(shè)施與裝備研究所,農(nóng)業(yè)部長江中下游設(shè)施農(nóng)業(yè)工程重點實驗室,210014。Email:liruxiajaas@126.com