江勝華,汪時機,李偉清,鮑安紅
基于位移變化率和強度折減有限元的邊坡失穩(wěn)判定方法
江勝華,汪時機,李偉清,鮑安紅
(西南大學(xué)工程技術(shù)學(xué)院,重慶 400715)
采用強度折減有限元法計算邊坡穩(wěn)定時,以變形為基礎(chǔ)的失穩(wěn)判據(jù)具有顯著的物理意義和工程意義。該文采用變步長的折減方法,基于位移變化率-強度折減系數(shù)曲線的轉(zhuǎn)折突變作為失穩(wěn)判據(jù),并研究特征點的敏感性及選取范圍。計算結(jié)果表明,當(dāng)折減系數(shù)為1.42時,坡頂水平位移變化率、豎向位移變化率和總位移變化率均發(fā)生急劇性的轉(zhuǎn)折。與位移相比,位移變化率-強度折減系數(shù)的曲線存在明顯的轉(zhuǎn)折突變,可更準(zhǔn)確、明顯地判斷邊坡穩(wěn)定的安全度。至坡頂一定距離范圍內(nèi)的特征點,如位于非塑性區(qū)域且非滑動土體時,其位移變化率-強度折減系數(shù)的曲線發(fā)生轉(zhuǎn)折突變,但曲線在轉(zhuǎn)折點附近存在振蕩現(xiàn)象。通過位移變化率計算得到的54個安全系數(shù),平均值為1.420,變異系數(shù)為0.005 3,不同特征點根據(jù)水平位移變化率、豎向位移變化率和總位移變化率得到的安全系數(shù)基本一致。當(dāng)特征點至坡頂?shù)木嚯x≤1倍坡高時,特征點的位移>12 mm,且位移變化率均較大,此時特征點對位移變化率較敏感;當(dāng)特征點至坡頂?shù)木嚯x>1倍坡高時,特征點位移在5~18 mm之間,但位移變化率大幅度降低,此時特征點對位移變化率的敏感性大幅度降低??紤]邊界約束的影響及特征點的敏感性,建議特征點的選取范圍為:與坡頂距離為1倍坡高的范圍。
邊坡穩(wěn)定性;模型;邊界條件;強度折減法;有限元法;位移變化率
江勝華,汪時機,李偉清,鮑安紅. 基于位移變化率和強度折減有限元的邊坡失穩(wěn)判定方法[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):155-161. doi:10.11975/j.issn.1002-6819.2017.15.020 http://www.tcsae.org
Jiang Shenghua, Wang Shiji, Li Weiqing, Bao Anhong. Slope instability evaluation method using finite element method of strength reduction and displacement rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 155-161. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.020 http://www.tcsae.org
強度折減有限元法在邊坡穩(wěn)定計算中得到了廣泛的應(yīng)用,目前失穩(wěn)判別準(zhǔn)則主要有:1)在最大迭代次數(shù)內(nèi)計算不能收斂[1-2];2)從坡頂至坡腳發(fā)生廣義剪應(yīng)變貫通[3];3)特征點位移的突變[4-9];4)特征點位移增量與強度折減系數(shù)增量之比[10-11];5)從坡頂至坡腳發(fā)生塑性區(qū)的貫通[12-13];6)能量積分與折減系數(shù)關(guān)系曲線[14]。在邊坡穩(wěn)定的有限元計算中強度折減法和加載系數(shù)法本質(zhì)上一致的[15-19],強度折減有限元中隨著強度折減系數(shù)的增加,邊坡的變形發(fā)生改變,與荷載增加時變形改變是等效的,因此,強度折減有限元中位移隨著強度折減系數(shù)的變化,具有一定的物理意義和工程意義。另一方面,現(xiàn)有邊坡的實際監(jiān)測工程中,獲得的主要監(jiān)測信息為邊坡的變形[20],如何建立邊坡變形與穩(wěn)定的安全度之間的聯(lián)系,然后根據(jù)變形確定邊坡穩(wěn)定的安全系數(shù)并進行預(yù)警,具有重要的科學(xué)意義和工程意義[21]。因此,針對特征點位移的突變和特征點位移變化率的強度折減有限元法,由于具有明確的工程意義和物理意義,作為失穩(wěn)判據(jù)具有顯著的優(yōu)點。
以坡頂、最大位移對應(yīng)的節(jié)點等位置作為特征點,根據(jù)其水平位移、豎向位移、總位移等變形為標(biāo)準(zhǔn),在理論上,當(dāng)邊坡達到極限狀態(tài)時,特征點的位移將趨于流動狀態(tài),強度折減系數(shù)與位移的曲線發(fā)生突變,取對應(yīng)的強度折減系數(shù)為安全系數(shù)[22]。但目前對于特征點位置的選取[22-24]、計算過程中強度參數(shù)折減的幅度[25]、水平位移和豎向位移的選取[5]、強度折減系數(shù)與位移的曲線拐點不明顯時如何判斷選擇極限狀態(tài)[23-24]等尚未取得共識,需要進一步的研究。
針對基于變形的強度折減有限元法,該文以邊坡穩(wěn)定計算為對象,深入探討了基于位移變化率的強度折減有限元法,對于特征點的敏感性和選取范圍及其影響進行了研究,同時分析了強度折減系數(shù)的折減幅度,討論了基于位移變化率的強度折減有限元法的判別準(zhǔn)則,比較了基于位移變化率的強度折減有限元法、計算不收斂和塑性區(qū)貫通等3種失穩(wěn)判別準(zhǔn)則,并對于基于位移變化率的強度折減有限元法給出了相關(guān)的建議。
強度折減法是將土體的抗剪強度參數(shù)c和tanφ按等比例進行折減,折減后的強度參數(shù)為式中c和φ為土體的黏聚力(kPa)和內(nèi)摩擦角(°);K為強度折減系數(shù)。
在標(biāo)準(zhǔn)三軸試驗中,偏應(yīng)力σ1-σ3與軸向應(yīng)變ε的關(guān)系近似為[26-27]
式中(σ1-σ3)f為土體破壞時的偏應(yīng)力,kPa,Rf為破壞比,一般為0.75~1.0。
根據(jù)Mohr-Coulomb準(zhǔn)則,土體破壞時的偏應(yīng)力為
聯(lián)立式(1)-式(4),則在標(biāo)準(zhǔn)三軸試驗中,根據(jù)Mohr-Coulomb準(zhǔn)則,土體破壞時的軸向應(yīng)變εf與折減系數(shù)K的關(guān)系為
土體破壞時,軸向位移h相對于強度折減系數(shù)的變化率與應(yīng)變的關(guān)系為
式中h0為土體試樣的初始高度,mm,hi和hi+1分別為強度折減系數(shù)Ki和Ki+1時的極限軸向位移,mm。
以某土體試樣為例,粘聚力c=42 kPa,內(nèi)摩擦角φ=17°,Rf=1.0,Ei=200 MPa,在標(biāo)準(zhǔn)三軸試驗中取σ1=500 kPa,σ3=300 kPa。根據(jù)式(1)-式(6),其應(yīng)變及應(yīng)變變化率與強度折減系數(shù)的關(guān)系見圖1。圖1中,強度參數(shù)的折減,采用0.1、0.01和0.001的變步長。
圖1 應(yīng)變和應(yīng)變變化率與強度折減系數(shù)的關(guān)系Fig.1 Relationship between strain, strain rate and strength reduction factor
在土體的加載過程中,接近破壞時,能量耗散率逐漸增大。由圖1可知,隨著強度系數(shù)的折減,土體接近破壞,相對于強度折減系數(shù)的應(yīng)變變化率dε/dK亦逐漸增大,在強度折減系數(shù)為1.58時,曲線發(fā)生轉(zhuǎn)折突變。根據(jù)式(6),則位移變化率dh/dK亦隨之增大,且曲線發(fā)生轉(zhuǎn)折突變。
在邊坡穩(wěn)定的有限元計算中,根據(jù)連續(xù)介質(zhì)的基本假定,在邊界范圍內(nèi)節(jié)點的位移變化率與其他節(jié)點的位移變化率均存在一定程度的關(guān)聯(lián)。在邊坡穩(wěn)定的強度折減過程中,塑性區(qū)的貫通會影響一定范圍的土體,可認(rèn)為在影響范圍內(nèi)節(jié)點的位移變化率dh/dK均發(fā)生轉(zhuǎn)折突變。
為便于分析討論,取某土坡作為算例。該邊坡的坡角為45°,斜坡部分高H為20 m,斜坡范圍由2層土組成,各土層厚度均為10 m。上層:容重γ=20 kN/m3,彈性模量E=960MPa,泊松比μ=0.33,粘聚力c=36 kPa,內(nèi)摩擦角φ=13°;下層:容重γ=25 kN/m3,彈性模量E= 1 000 MPa,泊松比μ=0.30,粘聚力c=42kPa,內(nèi)摩擦角φ=17°。邊坡長為105 m,高為40 m,坡腳至左邊界的距離L=1.5H=30 m,坡頂至右邊界的距離為R=55≥2.5H= 50 m,坡頂至底部邊界的距離B=2H=40 m,滿足邊界范圍的要求[28-30]。按照平面應(yīng)變建立有限元計算模型,采用四邊形一階單元,四邊形網(wǎng)格的長寬比為1.0~2.057,網(wǎng)格尺寸為1.375~2.828 m,網(wǎng)格尺寸與坡高(20 m)的比值為0.068 8~0.141。邊界條件為:下部固定,左右兩側(cè)約束水平位移,上部為自由邊界。計算模型見圖2。
圖2 邊坡有限元模型Fig.2 Finite element model of slope
采用Fortran編制主程序,將有限元軟件作為子程序進行調(diào)用,有限元軟件通過批處理在后臺運行。包括4個模塊:1)主程序,為Fortran95格式,包含流程控制,根據(jù)強度折減系數(shù)調(diào)整抗剪強度參數(shù),調(diào)用有限元計算,提取計算結(jié)果、處理計算結(jié)果等;2)強度折減有限元,為ANSYS的APDL文件,每一次計算時,自動讀取抗剪強度參數(shù),并輸出計算結(jié)果;3)抗剪強度參數(shù)的外部文件;4)有限元計算結(jié)果的外部文件。在強度折減系數(shù)的搜索過程中,從1.0K=開始,采用0.1、0.01、0.001和0.000 1的變步長進行逼近,得到不收斂時對應(yīng)的強度折減系數(shù),并在此基礎(chǔ)上,得到位移變化率與強度折減系數(shù)的關(guān)系,計算流程框圖見圖3。
圖3 強度折減系數(shù)的自動搜索流程圖Fig.3 Flowchart of automatic searching for strength reduction factor
取邊坡左下角為坐標(biāo)原點,水平方向為x軸,豎向為y軸,選擇18個特征點,其中坡面取3個特征點,P1(50,40),P2(40,30),P3(30,20);滑動面附近取3個特征點,P4(60,40),P5(50,30),P6(45,20);滑動面右側(cè)一定范圍選取3個特征點,P7(70,40),P8(65,30),P9(60,20);坡頂右側(cè)2倍坡高(2H=40)的斷面取5個特征點,P10(90,40),P11(90,30),P12(90,20),P13(90,16),P14(90,10);坡腳左側(cè)1倍坡高(1.0H=20)的斷面取3個特征點,P15(10,20),P16(10,16),P17(10,10);至坡頂?shù)呢Q直距離為1.5倍坡高(1.5H=30)的斷面除P14(90,10)和P17(10,10)外,另取1個特征點,P18(60,10)。18個特征點的位置分布見圖2。
坡頂P1的位移和位移變化率隨強度折減系數(shù)的變化曲線見圖4,其中,ux、uy和u分別為水平位移、豎向位移和總位移,單位為mm,u˙x=duxd K、u˙y=duyd K和 u˙=dudK分別為水平位移變化率、豎向位移變化率和總位移變化率;K為強度折減系數(shù)。
由圖4可知,坡頂?shù)乃轿灰?、豎向位移和總位移均隨著強度折減系數(shù)的增大而增大,且增大的幅度逐漸提高,但沒有明顯的轉(zhuǎn)折點或突變。坡頂?shù)乃轿灰谱兓?、豎向位移變化率和總位移變化率均隨著強度折減系數(shù)的增大而增大,且增大的幅度逐漸提高,在K=1.42時,水平位移變化率、豎向位移變化率和總位移變化率均發(fā)生急劇性的轉(zhuǎn)折??梢?,相比位移而言,位移變化率可更準(zhǔn)確、明顯地判斷邊坡穩(wěn)定的安全度。
在K=1.43時,邊坡的塑性區(qū)發(fā)生貫通;在K=1.433 7時,有限元計算不收斂??梢?,位移變化率轉(zhuǎn)折突變對應(yīng)的強度折減系數(shù),與塑性區(qū)貫通和計算不收斂的失穩(wěn)判斷基本一致。
本文中,邊坡為沉陷式邊坡,雖然以豎向位移為主,但坡頂?shù)乃轿灰谱兓?、豎向位移變化率和總位移變化率與強度折減系數(shù)的曲線關(guān)系均發(fā)生轉(zhuǎn)折突變,且對應(yīng)的強度折減系數(shù)均為1.42。另一方面,由圖4可知,邊坡在臨近失穩(wěn)滑動時,強度折減系數(shù)極其微小地增加,均會引起位移變化率的大幅度增大,因此,在強度參數(shù)的折減過程中,強度折減系數(shù)的步長宜采用逐漸減小的變步長,且在臨近失穩(wěn)滑動時采用小步長。
圖4 坡頂位移和位移變化率與強度折減系數(shù)的關(guān)系Fig.4 Relationship between displacement, displacement rate and strength reduction factor (P1)
為分析不同位置的特征點位移變化率與強度折減系數(shù)的關(guān)系,給出距離坡頂?shù)呢Q直距離為1倍坡高(1.0H=20)的斷面處P9,坡頂右側(cè)2倍坡高(2H=40)的斷面處P10和P14的總位移及總位移變化率隨強度折減系數(shù)的關(guān)系,見圖5。由于水平位移變化率、豎向位移變化率和總位移變化率隨強度折減系數(shù)的關(guān)系基本一致,故圖5僅給出了總位移及總位移變化率隨強度折減系數(shù)的關(guān)系。在K=1.433 7時,邊坡的剪應(yīng)變增量分布圖和位移向量場見圖6。
圖5 P9、P10、P14總位移和總位移變化率與強度折減系數(shù)的關(guān)系Fig.5 Relationship between total displacement, displacement rate and strength reduction factor (P9, P10, P14)
由圖5可知,雖然P9距離坡頂?shù)呢Q直距離為2倍坡高(2H=40),P10、P14距離坡頂?shù)乃骄嚯x為2倍坡高(2H=40),P9、P10、P14均位于非塑性區(qū)域且非滑動土體,但其總位移變化率隨強度折減系數(shù)的增大而增大;在強度折減系數(shù)為1.42時,P9、P14的位移變化率曲線發(fā)生轉(zhuǎn)折突變,在強度折減系數(shù)為1.41時,P10的位移變化率曲線發(fā)生轉(zhuǎn)折突變,但上述3個特征點的位移變化率-強度折減系數(shù)的曲線在轉(zhuǎn)折點附近均存在振蕩現(xiàn)象。同時,相對于特征點P1(坡頂)而言,P9、P10、P14的位移變化率大幅度降低。總體而言,隨著強度折減系數(shù)的增大,在坡面或滑動面的一定距離范圍內(nèi)節(jié)點的位移變化率均存在轉(zhuǎn)折突變,均可作為邊坡失穩(wěn)的判據(jù)之一。
由圖6a可知,在K=1.433 7時,剪應(yīng)變增量分布區(qū)域主要為塑性區(qū)。由圖6b可知,在K=1.433 7時,在塑性區(qū)或滑動土體,特征點位移存在明顯的滑動趨勢。比較圖6a和圖6b可知,在非塑性區(qū)域且非滑動土體的特征點亦存在明顯的總位移,由于該邊坡為沉陷式邊坡,以豎向位移為主,但至坡頂?shù)木嚯x越遠(yuǎn)則總位移越小。在18個特征點中,特征點1(即坡頂)的總位移最大,為20.23 mm,特征點17的總位移最小,為2.87 mm。
圖6 極限狀態(tài)時邊坡的剪應(yīng)變增量分布圖和位移向量場Fig.6 Shear strain increment distribution and displacement vectorfield of slope in limit equilibrium state
根據(jù)18個特征點的水平位移變化率、豎向位移變化率和總位移變化率與強度折減系數(shù)的關(guān)系,通過曲線的轉(zhuǎn)折突變可分別得到對應(yīng)的強度折減系數(shù),結(jié)果見表1。
表1 強度折減系數(shù)與位移變化率的關(guān)系Table 1 Relationship between strength reduction factor and displacement rate
由表1可知,大多數(shù)特征點,根據(jù)水平位移變化率、豎向位移變化率和總位移變化率得到的3個安全系數(shù)相等。同時,通過18個特征點的水平位移變化率、豎向位移變化率和總的位移變化率隨著強度折減系數(shù)的曲線關(guān)系,可得到54個安全系數(shù),其取值基本一致,平均值為1.420 2,變異系數(shù)為0.005 3,變異系數(shù)小于1%。另一方面,根據(jù)位移變化率得到的安全系數(shù),略小于塑性區(qū)貫通對應(yīng)的安全系數(shù)(1.43)及計算不收斂對應(yīng)的安全系數(shù)(1.433 7)相比,誤差為0.94%,基本一致。
為分析不同特征點的敏感性。由于最大的位移和最大的位移變化率均在坡頂附近,且鑒于坡頂位置的特殊性和顯著性,視坡頂為最敏感的特征點。在K=1.4337時,分析其他特征點Pi(i=2,…,18)與坡頂P1的相對距離
與總位移u及總位移變化率dduuK=˙之間的關(guān)系,結(jié)果見圖7。
圖7 特征點的相對距離與總位移、總位移變化率的關(guān)系Fig.7 Relationship between relative distance and total displacement, total displacement rate
由圖7可得,在K=1.433 7時,當(dāng)特征點至坡頂?shù)木嚯x≤20 m(1倍坡高1.0H=20)時,特征點的位移>12 mm,且位移變化率較大,此時特征點對位移變化率較敏感;特征點至坡頂?shù)木嚯x>20 m(1倍坡高1.0H=20)時,特征點位移在5~18 mm之間,但位移變化率大幅度降低,此時特征點對位移變化率的敏感性大幅度降低。由于強度折減系數(shù)有限元的最佳計算邊界為,坡頂至右側(cè)邊界為2.5倍的坡高,坡腳至左側(cè)邊界為1.5倍的坡高,坡頂至底部邊界為2倍的坡高[29-30],根據(jù)上述的敏感性分析,且綜合考慮邊界約束的影響,建議特征點選取范圍為:與坡頂?shù)南鄬嚯x為1倍坡高的范圍。
1)該文提出變步長的折減方法,基于位移變化率-強度折減系數(shù)曲線的轉(zhuǎn)折突變作為失穩(wěn)判據(jù),并研究了特征點的選取范圍。相比位移而言,位移變化率可更準(zhǔn)確、明顯地判斷邊坡穩(wěn)定的安全度。
2)坡頂?shù)乃轿灰?、豎向位移和總位移均與強度折減系數(shù)的曲線關(guān)系,沒有明顯的轉(zhuǎn)折點或突變。在強度折減系數(shù)為1.42時,坡頂水平位移變化率、豎向位移變化率和總位移變化率均發(fā)生急劇性的轉(zhuǎn)折。
3)至坡頂一定距離范圍內(nèi)的特征點,如位于非塑性區(qū)域且非滑動土體,則其位移變化率-強度折減系數(shù)的曲線發(fā)生轉(zhuǎn)折突變,但曲線在轉(zhuǎn)折點附近存在振蕩現(xiàn)象。通過位移變化率計算得到的54個安全系數(shù),平均值為1.420,變異系數(shù)為0.005 3,不同特征點根據(jù)水平位移變化率、豎向位移變化率和總位移變化率得到的安全系數(shù)基本一致。
4)當(dāng)特征點至坡頂?shù)木嚯x≤1倍坡高時,特征點的位移>12 mm,且位移變化率均較大,此時特征點對位移變化率較敏感;當(dāng)特征點至坡頂?shù)木嚯x>1倍坡高時,特征點位移在5~18 mm之間,但位移變化率大幅度降低,此時特征點對位移變化率的敏感性大幅度降低??紤]有限元計算中邊界約束的影響,結(jié)合特征點的敏感性,建議特征點的選取范圍為:與坡頂相對距離為1倍坡高的范圍。
[1] 趙尚毅,鄭穎人,時衛(wèi)民,等. 用有限元強度折減法求邊坡穩(wěn)定安全系數(shù)[J]. 巖土工程學(xué)報,2002,24(3):343-346.
Zhao Shangyi, Zheng Yingren, Shi Weimin, et al. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346. (in Chinese with English abstract)
[2] Dawson Ethan, You Kwangho, Park Yeonjun. Strength-Reduction Stability Analysis of Rock Slopes Using the Hoek-Brown Failure Criterion[C]// Proceedings of Sessions of Trends in rock mechanics, Denver, Colorado, USA, Geo-Denver, 2014: 65-77.
[3] 連鎮(zhèn)營,韓國城,孔憲京. 強度折減有限元法研究開挖邊坡的穩(wěn)定性[J]. 巖土工程學(xué)報,2001,23(4):407-411.
Lian Zhenying, Han Guocheng, Kong Xianjing. Stability analysis of excavation by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 407-411. (in Chinese with English abstract)
[4] 宋二祥. 土工結(jié)構(gòu)安全系數(shù)的有限元計算[J]. 巖土工程學(xué)報,1997,19(1):1-7.
Song Erxiang. Finite element analysis of safety factor for soil structures[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 1-7. (in Chinese with English abstract)
[5] 葛修潤,任建喜,李春光,等. 三峽左廠3#壩段深層抗滑穩(wěn)定三維有限元分析[J]. 巖土工程學(xué)報,2003,25(4):389-394.
Ge Xiurun, Ren Jianxi, Li Chunguang, et al. 3D-FEM analysis of deep sliding stability of 3# dam foundation of left power house of the Three Gorges Project[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 389-394. (in Chinese with English abstract)
[6] 張強,葛修潤,王水林,等. 考慮材料變形和破壞特性的強度折減方法研究[J]. 巖石力學(xué)與工程學(xué)報,2011,30(s1):2764-2769.
Zhang Qiang, Ge Xiurun, Wang Shuilin, et al. Study of strength reduction method considering material deformation and failure characteristics[J]. Chinese Journal of Rock Mechanics & Engineering, 2011, 30(s1): 2764-2769. (in Chinese with English abstract)
[7] 宋琨,晏鄂川,毛偉,等. 廣義Hoek-Brown準(zhǔn)則中強度折減系數(shù)的確定[J]. 巖石力學(xué)與工程學(xué)報,2012,31(1):106-112.
Song Kun, Yan Echuan, Mao Wei, et al. Determination of shear strength reduction factor for generalized Hoek-Browncriterion[J]. Chinese Journal of Rock Mechanics & Engineering, 2012, 31(1): 106-112. (in Chinese with English abstract)
[8] 李翠華,姜清輝,周創(chuàng)兵. 強度折減有限元法中的單元階次影響分析[J]. 巖土力學(xué),2013,34(11):3315-3320.
Li Cuihua, Jiang Qinghui, Zhou Chuangbing. Effect of element order on strength reduction finite element method[J]. Rock and Soil Mechanics, 2013, 34(11): 3315-3320. (in Chinese with English abstract)
[9] Liu Jian, Shang Ke, Wu Xing. Stability analysis and performance of soil-nailing retaining system of excavation during construction period[J]. Journal of Performance of Constructed Facilities, 2016, 30(1): C4014002.
[10] 遲世春,關(guān)立軍. 應(yīng)用強度折減有限元法分析土坡穩(wěn)定的適應(yīng)性[J]. 哈爾濱工業(yè)大學(xué)學(xué)報,2005,37(9):1298-1302. Chi Shichun, Guan Lijun. Soil constitutive equation for slope stability by finite element method with discount shear technology[J]. Journal of Harbin institute of technology, 2005, 37(9): 1298-1302. (in Chinese with English abstract)
[11] 遲世春,關(guān)立軍. 基于強度折減的拉格朗日差分方法分析土坡穩(wěn)定性[J]. 巖土工程學(xué)報,2004,26(1):42-46.
Chi Shichun, Guan Lijun. Slope stability analysis by Lagrangian difference method based on shear strength reduction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 42-46. (in Chinese with English abstract)
[12] 王棟,年廷凱,陳煜淼. 邊坡穩(wěn)定有限元分析中的三個問題[J]. 巖土力學(xué),2007,28(11):2309-2313.
Wang Dong, Nian Tingkai, Chen Yumiao. Three problems in slope stability analyses with finite element method[J]. Rock and Soil Mechanics, 2007, 28(11): 2309-2313. (in Chinese with English abstract)
[13] Wang Wei, Yuan Wei, Li Xiaohun, et al. Evaluation Approach of the Slope Stability Based on Deformation Analysis[J]. International Journal of Geomechanics, 2016, 16(2): 04015054
[14] 施建勇,曹秋榮,周璐翡. 修正有限元強度折減法與失穩(wěn)判據(jù)在邊坡穩(wěn)定分析中的應(yīng)用[J]. 巖土力學(xué),2013,34(s2):237-241.
Shi Jianyong, Cao Qiurong, Zhou Lufei. Modified finite element method for shear strength reduction and instability Criterion in slope stability analysis[J]. Rock and Soil Mechanics, 2013, 34(s2): 237-241. (in Chinese with English abstract)
[15] 曹建建,鄧安. 離心加載有限元方法在邊坡穩(wěn)定分析中的應(yīng)用[J]. 巖土工程學(xué)報,2006,28(s):1336-1339.
Cao Jianjian, Deng An. Centrifugal loading finite element method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(s): 1336-1339. (in Chinese with English abstract)
[16] 鄭穎人. 巖土材料屈服與破壞及邊(滑)坡穩(wěn)定分析方法研討:三峽庫區(qū)地質(zhì)災(zāi)害專題研討會”交流討論綜述[J].巖石力學(xué)與工程學(xué)報,2007,26(4):649-661.
Zheng Yingren. Discussion on yield failure of geomaterials and stability analysis methods of slope/landslide: Communication and discussion summary of special topic forum on geologic disasters in the three gorges project[J]. Chinese Journal of Rock Mechanics & Engineering, 2007, 26(4): 649-661. (in Chinese with English abstract)
[17] 李煥強,孫紅月,尚岳全,等. 有限元離心加載法分析邊坡穩(wěn)定性[J]. 江南大學(xué)學(xué)報:自然科學(xué)版,2008,7(5):595-598.
Li Huanqiang, Sun Hongyue, Shang Yuequan, et al. Study on slope stability by centrifuge loading FEM[J]. Journal of Jiangnan University: Natural Science Edition, 2008, 7(5): 595-598. (in Chinese with English abstract)
[18] 張嘎,王愛霞,牟太平,等. 邊坡破壞過程離心模型試驗的應(yīng)力位移場研究[J]. 巖土力學(xué),2008,29(10):2637-2641.
Zhang Ga, Wang Aixia, Mu Taiping, et al. Study of stress and displacement fields in centrifuge modeling of slope progressive failure[J]. Rock and Soil Mechanics, 2008, 29(10): 2637-2641. (in Chinese with English abstract)
[19] 金華. 邊坡穩(wěn)定分析的加載系數(shù)法[D]. 銀川:寧夏大學(xué),2013.
Jin Hua. Slope Stability Analysis of the Load Coefficient Method[D]. Yinchuan: Ningxia University, 2013. (in Chinese with English abstract)
[20] 張曉平,吳順川,王思敬. 類土質(zhì)路塹邊坡動態(tài)監(jiān)測及數(shù)值模擬分析[J]. 巖石力學(xué)與工程學(xué)報,2008,27(s2):3431-3440.
Zhang Xiaoping, Wu Shunchuan, Wang Sijing. Dynamic monitoring and numerical analysis of soil-like cut slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(s2): 3431-3440. (in Chinese with English abstract)
[21] 楊光華,張玉成,張有祥. 變模量彈塑性強度折減法及其在邊坡穩(wěn)定分析中的應(yīng)用[J]. 巖石力學(xué)與工程學(xué)報,2009,28(7):1506-1512.
Yang Guanghua, Zhang Yucheng, Zhang Youxiang. Variable modulus elastoplastic strength reduction method and its application to slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1506-1512. (in Chinese with English abstract)
[22] 鄭宏,劉德富. 彈塑性矩陣Dep的特性和有限元邊坡穩(wěn)定性分析中的極限狀態(tài)標(biāo)準(zhǔn)[J]. 巖石力學(xué)與工程學(xué)報,2005,24(7):1099-1105.
Zheng Hong, Liu Defu. Properties of elasto-plastic matrix Dep and a criterion on limiting state of slope stability by FEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1099-1105. (in Chinese with English abstract)
[23] 李維朝,戴福初,李宏杰,等. 基于強度折減法的巖質(zhì)開挖邊坡加固效果三維分析[J]. 水利學(xué)報,2008,39(7):877-882.
Li Weichao, Dai Fuchu, Li Hongjie, et al. Three-dimensional analysis on reinforcement effect of excavated rocky slope based on strength reduction technique[J]. Journal of Hydraulic Engineering, 2008, 39(7): 877-882. (in Chinese with English abstract)
[24] 陳菲,鄧建輝. 巖坡穩(wěn)定的三維強度折減法分析[J]. 巖石力學(xué)與工程學(xué)報,2006,25(12):2546-2551.
Chen Fei, Deng Jianhui. Three-dimensional stability analysis of rock slope with strength reduction method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2546-2551. (in Chinese with English abstract)
[25] 梁慶國,李德武. 對巖土工程有限元強度折減法的幾點思考[J]. 巖土力學(xué),2008,29(11):3053-3058.
Liang Qingguo, Li Dewu. Discussion on strength reduction FEM in geotechnical engineering[J]. Rock and Soil Mechanics, 2008, 29(11): 3053-3058. (in Chinese with English abstract)
[26] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1653.
[27] Duncan J M, Byrne P, Wong K S, et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses[R]. Report No. UCB/GT/80-01, Dept. Civil Engineering, U.C. Berkeley, 1980.
[28] 鄭穎人,趙尚毅,張魯渝. 用有限元強度折減法進行邊坡穩(wěn)定分析[J]. 中國工程科學(xué),2002,4(10):57-61.
Zheng Yinren, Zhao Shangyi, Zhang Luyu. Slope stability analysis by strength reduction FEM[J]. Engineering Science, 2002, 4(10): 57-61. (in Chinese with English abstract)
[29] 張魯渝,鄭穎人,趙尚毅,等. 有限元強度折減系數(shù)法計算土坡穩(wěn)定安全系數(shù)的精度研究[J]. 水利學(xué)報,2003(1):21-27.
Zhang Luyu, Zheng Yingren, Zhao Shangyi, et al. The feasibility study of strength2reduction method with FEM for calculating safety factors of soil slope stability[J]. Journal of Hydraulic Engineering, 2003(1): 21-27. (in Chinese with English abstract)
[30] 萬少石,年廷凱,蔣景彩,等. 邊坡穩(wěn)定強度折減有限元分析中的若干問題討論[J]. 巖土力學(xué),2010,31(7):2283-2288.
Wan Shaoshi, Nian Tingkai, Jiang Jingcai, et al. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. Rock and Soil Mechanics, 2010, 31(7): 2283-2288. (in Chinese with English abstract)
Slope instability evaluation method using finite element method of strength reduction and displacement rate
Jiang Shenghua, Wang Shiji, Li Weiqing, Bao Anhong
(College of Engineering and Technology, Southwest University, Chongqing 400715, China)
Finite element method of strength reduction is an important and effective measure to evaluate the stability safety of geotechnical engineering. Also, finite element method of strength reduction is widely used in slope stability computation, and failure criterion using deformation has obvious significance in aspects of physical and engineering meaning. However, there is no consensus among researchers regarding location selection of critical points, step-size of strength reduction, determination from horizontal displacement, vertical displacement and total displacement. Also, there is no consensus with regard to how to judge the limit state of slope when there is no obvious knee point on the curve of displacement versus strength reduction factor. The strength reduction of variable step-size is proposed in the paper. The curves of displacement, displacement rate versus strength reduction factor, are calculated automatically with the main program of Fortran and subroutine program of ANSYS software. The knee point on curve of displacement rate versus strength reduction factor is chosen as the failure criterion, and the sensitivity and location range of critical points are also studied. When strength reduction factor is 1.42, there is definite and specific knee point on curve of horizontal displacement rate, vertical displacement rate and total displacement rate of slope top versus strength reduction factor, which shows displacement rate is more accurate and sensitive than displacement in terms of slope failure criterion. When the critical point is in the vicinity of slope top and it is not located in plastic zone or sliding soil mass, there is also abrupt turning on the curve of displacement rate versus strength reduction factor with oscillation phenomenon although the critical points are relatively far from the slope point; and the corresponding safety factor is also about 1.42. Eighteen critical points are selected from different locations of slope, and by means of curves of horizontal displacement rate, vertical displacement rate and total displacement rate versus strength reduction factor, 54 safety factors are obtained. Consequently, the mean value of 54 safety factors is 1.420 and the variation coefficient is 0.005 3, which show that different critical points have nearly same safety factors and there is little difference between safety factors judged by horizontal displacement rate, vertical displacement rate or total displacement rate. When the distance from critical point to slope top is smaller than 20 m, about the height of slope, the total displacement of critical point is larger than 12 mm and the total displacement rate is large, which indicate that the critical points have high sensitivity. When the distance from critical point to slope top is larger than slope height, the total displacement of critical point ranges from 5 to 18 mm but the total displacement rate decreases drastically, which show that the critical points are also not sensitive either. Considering the influence of boundary range and the critical points’ sensitivity, it is suggested that the distance from the critical points to slope top should be less than the slope height. The step-size of strength reduction should be decreased gradually and small step-size should be used when the slope deformation is close to instable sliding.
slope stability; models; boundary conditions; finite element method; strength reduction method; displacement rate
10.11975/j.issn.1002-6819.2017.15.020
TV871
A
1002-6819(2017)-15-0155-07
2017-02-21
2017-07-13
國家自然科學(xué)基金(51208078,11572262);重慶市前沿與應(yīng)用基礎(chǔ)研究計劃(cstc2015jcyjA30008);中央高校基本科研業(yè)務(wù)費專項資金(XDJK 2015B007)
江勝華,男,湖北仙桃人,副教授,博士,主要從事巖土工程監(jiān)測與安全評價等領(lǐng)域的研究。重慶 西南大學(xué)工程技術(shù)學(xué)院,400715。
Email:jiangsh@whu.edu.cn