陳守開(kāi),楊 晴,劉秋常,郭 磊,汪倫焰
再生骨料透水混凝土強(qiáng)度及透水性能試驗(yàn)
陳守開(kāi)1,2,楊 晴1,2,劉秋常1,郭 磊1,2,汪倫焰1,2
(1. 華北水利水電大學(xué)水利學(xué)院,鄭州 450011; 2. 河南省水環(huán)境治理與生態(tài)修復(fù)院士工作站,鄭州 450002)
利用再生廢棄混凝土骨料制備透水混凝土是目前研究的熱點(diǎn)和趨勢(shì),其中強(qiáng)度和透水性是其關(guān)注及目前亟待突破的關(guān)鍵性能。以廢棄的預(yù)制混凝土梁構(gòu)件為再生骨料來(lái)源制備透水混凝土,并以水膠比0.3,砂率10%為基準(zhǔn),設(shè)計(jì)6組配合比,并通過(guò)標(biāo)準(zhǔn)養(yǎng)護(hù)下的立方體試塊試驗(yàn),研究了單一因素下再生骨料透水混凝土的孔隙率、透水性及其強(qiáng)度性能,其范圍分別為孔隙率17.8%~23.8%,滲透系數(shù)0.27~0.57 cm/s以及抗壓強(qiáng)度4.0~9.63 MPa。結(jié)果表明,再生骨料透水混凝土基本性能夠滿(mǎn)足要求,其中內(nèi)摻粉煤灰能大幅提高其抗壓強(qiáng)度,提高約44%,外摻鋼纖維提高透水性,摻入萘系高效減水劑及硅粉的效果不明顯。此外,再生骨料透水混凝土的毛細(xì)吸水過(guò)程與普通混凝土類(lèi)似,即前期吸水快,后期趨于平緩。
混凝土; 性能;抗壓強(qiáng)度;再生骨料透水混凝土;摻合料及外加劑;透水性;孔隙率;毛細(xì)吸水
陳守開(kāi),楊 晴,劉秋常,郭 磊,汪倫焰. 再生骨料透水混凝土強(qiáng)度及透水性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):141-146. doi:10.11975/j.issn.1002-6819.2017.15.018 http://www.tcsae.org
Chen Shoukai, Yang Qing, Liu Qiuchang, Guo Lei, Wang Lunyan. Experiment on strength and permeability of recycled aggregate pervious concrete[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 141-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.018 http://www.tcsae.org
2012年4月,在《2012低碳城市與區(qū)域發(fā)展科技論壇》中,“海綿城市”概念首次提出。城市能夠像海綿一樣,在適應(yīng)環(huán)境變化和應(yīng)對(duì)自然災(zāi)害等方面具有良好的“彈性”,下雨時(shí)吸水、蓄水、滲水、凈水,需要時(shí)將蓄存的水“釋放”并加以利用。提升城市生態(tài)系統(tǒng)功能和減少城市洪澇災(zāi)害的發(fā)生。由于透水混凝土具有連續(xù)孔隙率和高透水性,可以廣泛應(yīng)用于海綿城市的建設(shè)當(dāng)中。此外,還可將其應(yīng)用于江、河、湖、海等水域和沿岸,起到固沙土、固堤岸、透水作用。
利用再生骨料制備透水混凝土(以下簡(jiǎn)稱(chēng)再生透水混凝土)不僅可以發(fā)揮透水混凝土的功能優(yōu)勢(shì)(如透氣性、透水性、吸聲、隔熱等優(yōu)點(diǎn)),還能夠減少建筑垃圾的填埋堆放和天然骨料的消耗。國(guó)內(nèi)外已有一些再生透水混凝土的研究,如孫家瑛等[1]研究了再生集料透水性混凝土的物理力學(xué)性能和耐久性能,指出隨著集料粒徑增大或集灰比的提高抗壓和抗折強(qiáng)度均降低,透水性能增加。Zaetang等[2]利用再生粗骨料(粒徑4.75~9.5 mm)制備透水混凝土,結(jié)果表明隨著替代率的增加,再生骨料透水混凝土抗壓強(qiáng)度先增加后降低,100%再生骨料透水混凝土的抗壓強(qiáng)度與普通透水混凝土基本相同,而劈裂抗拉強(qiáng)度略低于普通透水混凝土。Güneyisi 等[3]研究不同再生粗骨料取代率對(duì)透水混凝土性能的影響,并運(yùn)用GLM-ANOVA進(jìn)行方差分析,認(rèn)為影響透水混凝土性能的2個(gè)主要因素是再生骨料取代率和水灰比,對(duì)于強(qiáng)度、干密度、孔隙率而言,前者影響程度大于后者;對(duì)于透水性能和耐磨性而言,后者影響程度大于前者。Sriravindrarajah等[4]研究了不同膠凝材料(水泥、礦渣)、齡期(7、28 d)、骨料(花崗巖、再生混凝土骨料)、骨料粒徑(5~13 mm、13~20 mm)以及試件類(lèi)型(邊長(zhǎng)150 mm立方體、φ100×200 mm)對(duì)透水混凝土性能的影響,結(jié)果表明:混凝土抗壓強(qiáng)度主要依賴(lài)于其內(nèi)部的孔隙,隨著骨料粒徑的減小,孔隙率降低,強(qiáng)度增加;在一定孔隙率下,摻入再生骨料導(dǎo)致透水混凝土強(qiáng)度降低,但是對(duì)孔隙率和透水性能無(wú)顯著影響;(再生骨料)透水混凝土的抗壓強(qiáng)度與孔隙率及透水系數(shù)與孔隙率的關(guān)系均服從指數(shù)分布。
目前國(guó)內(nèi)外學(xué)者關(guān)于摻合料及外加劑對(duì)再生透水混凝土性能的影響方面尚缺乏系統(tǒng)的研究。為能夠改善再生透水混凝土的性能,本文以再生透水混凝土的強(qiáng)度和透水性為目標(biāo),分別研究了粉煤灰、硅粉、萘系高效減水劑和鋼纖維的影響。此外,以往對(duì)普通混凝土毛細(xì)吸水過(guò)程試驗(yàn)研究較多,鮮有學(xué)者對(duì)再生透水混凝土有相關(guān)研究。本文參考已有經(jīng)驗(yàn),自制毛細(xì)吸水裝置,開(kāi)展了透水混凝土的毛細(xì)吸水試驗(yàn)。
試驗(yàn)所需的原材料及來(lái)源:①拌合水:自來(lái)水;②細(xì)骨料:粗砂,細(xì)度模數(shù)MX=3.34;③天然粗骨料(natural coarse aggregate, NCA):天然碎石;④再生粗骨料(recycled coarse aggregate, RCA):將混凝土框架結(jié)構(gòu)的拆除構(gòu)件人工破碎剔除鋼筋后,經(jīng)顎式破碎機(jī)進(jìn)行破碎后人工篩分后得到,粗骨料的基本性能指標(biāo)見(jiàn)表1;⑤膠凝材料包括水泥(P.O 42.5普通硅酸鹽水泥),粉煤灰(II級(jí)),硅粉(SiO2>95%);⑥鋼纖維:剪切型鋼纖維,波浪形,長(zhǎng)度為30 mm,等效直徑0.6 mm;⑦減水劑:萘系高效減水劑。由表1知,RCA的表觀密度和堆積密度比NCA低,含水率和壓碎指標(biāo)高于NCA,其中10 min的吸水率約是NCA的12倍,這一結(jié)果與現(xiàn)有研究成果相符[5-6]。由于再生粗骨料制備工藝流程嚴(yán)謹(jǐn),RCA的含泥量相比NCA低。粗骨料的性能指標(biāo)均滿(mǎn)足現(xiàn)行規(guī)范的指標(biāo)要求,可以用于配置混凝土。
表1 粗骨料的基本性能Table 1 Basic properties of coarse aggregates
根據(jù)現(xiàn)有規(guī)范及研究,設(shè)計(jì)再生透水混凝土的水膠比為0.3,砂率10%[7-10]。以100%再生粗骨料制備的透水混凝土(再生透水混凝土)為基準(zhǔn),在不改變水膠比與砂率的前提下,分別設(shè)計(jì)了5種透水混凝土:①普通透水混凝土(全部采用天然骨料);②粉煤灰等量取代20%水泥;③硅粉等量取代6%水泥;④萘系高效減水劑取水泥質(zhì)量的1%;⑤外摻鋼纖維量為水泥質(zhì)量的3%。為減小再生粗骨料高吸水性的影響,采用增加附加水量補(bǔ)償?shù)姆椒╗11],附加水量由再生粗骨料10 min吸水量確定。
透水混凝土配合比見(jiàn)表2。表中,NPC表示天然骨料透水混凝土,RPC表示再生骨料透水混凝土,SP、FA、Si、SF分別表示RPC摻入萘系高效減水劑、粉煤灰、硅粉和鋼纖維。
表2 透水混凝土的配合比Table 2 Mix proportions of pervious concrete
1.3.1 攪拌與成型工藝
試件的制作與養(yǎng)護(hù)均在室內(nèi)進(jìn)行。試驗(yàn)采用人工拌制混凝土,試件尺寸均為150 mm×150 mm×150 mm,共6組,每組9塊。制作流程如圖1。試件成型1 d后,放入溫度(20±2)℃,濕度98%以上的養(yǎng)護(hù)室養(yǎng)護(hù)28 d。
圖1 透水混凝土制作流程圖Fig.1 Flow chart of production of pervious concretes
1.3.2 強(qiáng)度孔隙率及透水性能試驗(yàn)
抗壓和劈裂抗拉強(qiáng)度參照《普通混凝土力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn)》(GB/T 50081-2002)[12]執(zhí)行,孔隙率及透水性能試驗(yàn)參照《透水水泥混凝土路面技術(shù)規(guī)程》(CJJ/T 135-2009)[13]執(zhí)行。
1.3.3 無(wú)損傷再生透水混凝土毛細(xì)吸水試驗(yàn)
毛細(xì)吸水作為水分在非飽和建筑材料中的主要傳輸方式,是影響結(jié)構(gòu)長(zhǎng)期性能(如耐久性能)的關(guān)鍵因素[14]。在前人混凝土毛細(xì)吸水試驗(yàn)研究[14-18]基礎(chǔ)上,針對(duì)透水混凝土自制毛細(xì)吸水裝置,如圖2所示。試驗(yàn)步驟:1)試件尺寸為150 mm立方體,標(biāo)準(zhǔn)養(yǎng)護(hù)28 d取出,將試件放入鼓風(fēng)干燥箱(105±5)℃中干燥至恒重,冷卻至室溫后,除測(cè)試的對(duì)立面以外其余2個(gè)側(cè)面用環(huán)氧樹(shù)脂密封,然后采用電子天平(精讀0.01 g)稱(chēng)質(zhì)量,室內(nèi)溫度設(shè)置為(20±2)℃,濕度為50%±2%;2)將試件的吸水面向下,置于自制毛細(xì)吸水裝置內(nèi),然后向容器內(nèi)加水至標(biāo)記高度,利用支撐架控制水面淹沒(méi)試件底面的高度為5 mm;3)每組3個(gè)試件,每個(gè)試件記錄2個(gè)面,每個(gè)面布置5個(gè)測(cè)點(diǎn)。從水達(dá)到標(biāo)記高度時(shí)為起始時(shí)間,然后每間隔5 min對(duì)試件吸水高度進(jìn)行拍照讀數(shù),共進(jìn)行6次,即30 min;4)連續(xù)吸水30 min后取出,用濕布將試件與水接觸面上的多余水分擦去,然后稱(chēng)質(zhì)量。
圖2 毛細(xì)吸水試驗(yàn)裝置圖Fig.2 Capillary water absorption test device
透水混凝土的28 d抗壓強(qiáng)度、劈裂抗拉強(qiáng)度試驗(yàn)結(jié)果見(jiàn)圖3。本次試驗(yàn)測(cè)得的透水混凝土抗壓強(qiáng)度在4.0~9.6 MPa,文獻(xiàn)[19-20]中推薦的透水混凝土圓柱體抗壓強(qiáng)度范圍為3.5~28.0 MPa,依據(jù)國(guó)際標(biāo)準(zhǔn)(ISO/DID 7034)得到相對(duì)應(yīng)的標(biāo)準(zhǔn)立方體抗壓強(qiáng)度為3.9~35 MPa,本次試驗(yàn)結(jié)果與之相符。
圖3 摻合料及外加劑對(duì)透水混凝土28 d強(qiáng)度的影響Fig.3 Strengths at 28 days of pervious concretes containing cementing materials and admixture
由圖3可知,RPC的抗壓強(qiáng)度、劈裂抗拉強(qiáng)度分別為6.7和1.13 MPa,高于NPC的4.0、0.59 MPa。與普通混凝土不同,透水混凝土的強(qiáng)度主要取決于骨料之間極薄的水泥漿層及其與骨料的粘結(jié)性[21-23],骨料本身強(qiáng)度對(duì)其影響不大。因此,試驗(yàn)結(jié)果顯示再生透水混凝土強(qiáng)度高于普通透水混凝土可以歸結(jié)為:1)由表1可知,本次試驗(yàn)采用的天然骨料含泥量相比再生骨料大,一定程度上影響骨料間水泥基強(qiáng)度的發(fā)展;2)試驗(yàn)中采用附加水的方法減小了再生骨料高吸水率的影響,這部分附加水使再生透水混凝土內(nèi)部能保持一定濕度,起到“內(nèi)養(yǎng)護(hù)”的作用[11,24],有利于再生透水混凝土強(qiáng)度的發(fā)展;3)再生粗骨料多孔隙特性及其表面比較粗糙[25-26],增加了骨料與水泥漿間粘結(jié)強(qiáng)度。
與RPC相比,內(nèi)摻粉煤灰可有效提高透水混凝土的抗壓強(qiáng)度,提高約44%,達(dá)到9.63 MPa;萘系高效減水劑及硅粉對(duì)再生透水混凝土抗壓強(qiáng)度的改善不顯著,鋼纖維的摻入會(huì)導(dǎo)致再生透水混凝土抗壓強(qiáng)度降低。摻合料及外加劑的使用均會(huì)對(duì)劈裂抗拉強(qiáng)度產(chǎn)生不利影響,其影響程度為:減水劑、粉煤灰<硅粉<鋼纖維,如內(nèi)摻硅粉可降低26%,原因可能是:摻入硅粉產(chǎn)生火山灰反應(yīng),所生成的膠凝體雖可填充再生透水混凝土內(nèi)部孔隙,改善其受力分布,但膠凝體吸水后會(huì)產(chǎn)生一定的體積膨脹,增大了再生透水混凝土的內(nèi)部應(yīng)力,導(dǎo)致應(yīng)力集中[7,9],從而影響再生透水混凝土劈裂抗拉強(qiáng)度的發(fā)展。
再生透水混凝土典型破壞形態(tài)見(jiàn)圖4。在混凝土立方體抗壓試驗(yàn)過(guò)程中,加載初期,試件表面少量顆粒出現(xiàn)掉落,未發(fā)現(xiàn)有裂縫。隨著荷載增大,試件內(nèi)的應(yīng)力不斷增加,初始出現(xiàn)的裂縫靠近試塊的側(cè)表層,沿斜向往上、下端發(fā)展至加載面處轉(zhuǎn)向試件角部。隨著荷載的繼續(xù)增加,裂縫逐漸在試件內(nèi)部發(fā)展,表面混凝土開(kāi)始大量剝落。再生混凝土試塊的破壞斷面主要為2處:一是再生骨料表面弱硬化水泥漿體,二是再生骨料與新拌水泥漿之間的界面過(guò)渡區(qū)。
圖4 再生透水混凝土28 d典型破壞路徑Fig.4 Typical crack path of RPC at 28 d
實(shí)測(cè)劈裂抗拉強(qiáng)度與抗壓強(qiáng)度的比值(拉壓比)范圍為9.5%~16.9%,平均值13.5%。文獻(xiàn)[2]和文獻(xiàn)[21]中測(cè)得的拉壓比均值分別為13.1%、14.4%,與文獻(xiàn)[27-28]中總結(jié)的(再生)透水混凝土拉壓比范圍(9%~14%)基本一致。
透水混凝土28 d的孔隙率、透水系數(shù)及相互關(guān)系見(jiàn)圖5-圖7。本次試驗(yàn)測(cè)得的透水混凝土孔隙率與透水系數(shù)范圍分別在17.8%~23.8%、0.27~0.57 cm/s,與透水混凝土滿(mǎn)足滲透性要求下推薦的孔隙率、透水系數(shù)范圍一致[19-20],并且滿(mǎn)足《透水水泥混凝土路面技術(shù)規(guī)程》(CJJ/T 135-2009)中連續(xù)孔隙率及透水系數(shù)的要求(V≥10%,k≥0.05 cm/s)。
由圖5-圖6可知,與RPC相比:
1)NPC的孔隙率和透水性能都有所下降,透水系數(shù)降低了約41%。分析原因認(rèn)為:再生粗骨料表面比較粗糙及顆粒形狀不規(guī)則,有利于增加混凝土內(nèi)部孔隙,提高透水性能。
2)摻入鋼纖維可有效提高再生透水混凝土的孔隙率與透水性能,孔隙率23.8%,透水系數(shù)0.57 cm/s,提高幅度分別為16%、24%,這也是導(dǎo)致鋼纖維再生透水混凝土強(qiáng)度低的主要原因。
3)粉煤灰的摻入雖然能提高抗壓強(qiáng)度,但會(huì)降低孔隙率與透水性能,降低幅度分別為12%、37%,這是由于:①水泥水化產(chǎn)生的Ca(OH)2吸附到粉煤灰顆粒表面,與粉煤灰中SiO2、A12O3等硅酸鹽玻璃體發(fā)生二次水化反應(yīng),生成鈣礬石、水化硅酸鈣(C-S-H)凝膠,可顯著改善混凝土的孔結(jié)構(gòu),減小孔徑并降低孔隙率[7-8,10];②再生粗骨料多孔隙特性及其表面比較粗糙,粉煤灰中的微細(xì)顆粒滲入其中,隨著后期水化反應(yīng),增大了水泥基與再生粗骨料界面過(guò)渡區(qū)(ITZ)的粘接強(qiáng)度[29];③已有研究表明,粉煤灰活性較水泥低。再生透水混凝土“內(nèi)養(yǎng)護(hù)”作用促進(jìn)了粉煤灰的火山灰效應(yīng)。
4)內(nèi)摻硅粉或摻入萘系高效減水劑對(duì)再生透水混凝土孔隙率及透水性的改善作用不顯著。如內(nèi)摻硅粉提高孔隙率6.6%,但透水性略有降低,摻入萘系高效減水劑則是透水系數(shù)提高4.3%,但孔隙率略有降低。
圖5 摻合料及外加劑對(duì)透水混凝土孔隙率的影響Fig.5 Effect of pervious concretes containing cementing materials and admixture on its total void
圖6 摻合料及外加劑對(duì)透水混凝土透水系數(shù)的影響Fig.6 Effect of pervious concretes containing cementing materials and admixture on its water permeability
圖7 孔隙率與透水系數(shù)關(guān)系圖Fig.7 Relationship between total void and water permeability of pervious concretes
由圖7可知,透水系數(shù)隨著孔隙率增大而增大,二者呈指數(shù)關(guān)系,這與普通透水混凝土描述的基本一致[30],也與現(xiàn)有再生透水混凝土的研究結(jié)論相符[2-3,21,31],但本文實(shí)測(cè)值略低,這是由于試驗(yàn)時(shí)為保證新拌混凝土和易性而添加10%粗砂填充了部分孔隙所致。
再生透水混凝土無(wú)損傷狀態(tài)下的毛細(xì)吸水過(guò)程為:再生透水混凝土在毛細(xì)管吸附力的作用下,吸水過(guò)程在前期曲線(xiàn)呈線(xiàn)性增長(zhǎng),后期曲線(xiàn)趨于平緩,與普通混凝土的規(guī)律[14,16-17]相似,其毛細(xì)吸水高度和吸水時(shí)間之間的關(guān)系如公式(1)所示。
式中H為再生透水混凝土的毛細(xì)吸水高度,cm;T為毛細(xì)吸水時(shí)間,min;a,b為擬合參數(shù)。
由圖8可知,在吸水前30 min,再生透水混凝土的毛細(xì)吸水高度H和吸水時(shí)間T呈冪函數(shù)分布。摻入鋼纖維在整個(gè)毛細(xì)吸水過(guò)程的吸水高度明顯高于RPC,摻入硅粉、粉煤灰和萘系高效減水劑后的吸水高度與RPC基本相同,各處理毛細(xì)吸水高度與吸水時(shí)間的擬合方程見(jiàn)表3。與RPC相比,硅粉和粉煤灰的摻入顯著增加累積毛細(xì)吸水質(zhì)量,而摻入鋼纖維對(duì)吸水質(zhì)量影響甚微,減水劑的使用會(huì)明顯減小吸水量(圖9)。試驗(yàn)得到毛細(xì)吸水高度最大值19.4 mm,毛細(xì)吸水最大浸入量為0.01 g/cm3,摻20%粉煤灰再生透水混凝土的吸水高度約13.5 mm,吸水質(zhì)量約28 g,這個(gè)數(shù)值在量級(jí)上與現(xiàn)有普通混凝土毛細(xì)吸水試驗(yàn)的成果[14,17]一致。
圖8 毛細(xì)吸水高度與吸水時(shí)間的關(guān)系Fig.8 Relationship between capillary absorption time and absorption height of pervious concretes
表3 毛細(xì)吸水高度與吸水時(shí)間擬合參數(shù)表Table 3 Fitting parameters of capillary absorption time and absorption height
圖9 再生骨料透水混凝土30 min毛細(xì)吸水質(zhì)量Fig.9 Cumulative capillary absorption quality of RPC in 30 min
本文研究了天然骨料透水混凝土及再生骨料透水混凝土的孔隙率、透水性及強(qiáng)度性能,其中重點(diǎn)分析了粉煤灰、硅粉、萘系高效減水劑及鋼纖維對(duì)再生骨料透水混凝土的改性作用,并開(kāi)展了透水混凝土的毛細(xì)吸水試驗(yàn)?;谝陨蠑?shù)據(jù),得出結(jié)論如下:
1)再生骨料透水混凝土的強(qiáng)度、透水性符合規(guī)范要求,且本文試驗(yàn)結(jié)果優(yōu)于同配比條件下天然骨料透水混凝土,即:RPC的抗壓強(qiáng)度、劈裂抗拉強(qiáng)度分別為6.7和1.13 MPa,高于NPC的4.0、0.59 MPa,因此采用再生骨料制備透水混凝土從其性能上而言是可行的。
2)粉煤灰能夠提高再生骨料透水混凝土抗壓強(qiáng)度(提高幅度約44%,達(dá)到9.63 MPa),但同時(shí)會(huì)降低其孔隙率及透水性;鋼纖維能夠顯著提高其孔隙率及透水系數(shù)(孔隙率與透水系數(shù)分別達(dá)到23.8%、0.57 cm/s),但抗壓強(qiáng)度反而降低;硅粉及萘系減水劑對(duì)再生透水混凝土性能有一定的改善作用,但不顯著。
3)在無(wú)損狀態(tài)下,再生骨料透水混凝土毛細(xì)吸水前30 min內(nèi),其毛細(xì)吸水高度和吸水時(shí)間成冪函數(shù)關(guān)系,毛細(xì)吸水的過(guò)程與普通混凝土類(lèi)似,即:在前期曲線(xiàn)呈線(xiàn)性增長(zhǎng),后期曲線(xiàn)趨于平緩。鋼纖維能夠有效提高毛細(xì)吸水高度,但對(duì)吸水質(zhì)量影響??;硅粉、粉煤灰和萘系高效減水劑對(duì)其吸水高度影響不明顯,但硅粉和粉煤灰會(huì)顯著增加毛細(xì)吸水質(zhì)量,而減水劑會(huì)降低吸水量。
[1] 孫家瑛,梁山. 再生混凝土集料透水性混凝土性能研究及應(yīng)用[J]. 建筑材料學(xué)報(bào),2012(6):747-750.
Sun Jiaying, Liang Shan. Performance of recycled concrete aggregate porous cement concrete and its application [J]. Journal of Building Materials, 2012(6): 747-750. (in Chinese with English abstract)
[2] Zaetang Y, Sata V, Wongsa A, et al. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate[J]. Construction & Building Materials, 2016, 111: 15-21.
[3] Güneyisi E, Geso?lu M, Kareem Q, et al. Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete[J]. Materials and Structures, 2016, 49(1): 521-536.
[4] Sriravindrarajah R, Wang N D H, Lai J W E. Mix design for pervious recycled aggregate Concrete[J]. International Journal of Concrete Structures and Materials, 2012, 6(4): 239-246.
[5] de Juan M S, Gutierrez P A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate[J]. Constr Build Mater, 2009, 23(2): 872-877.
[6] Etxeberria M, Vázquez E, Marí A, et al. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete[J]. Cement & Concrete Research, 2007, 37(5):735-742.
[7] 李清富,孫振華,張海洋. 粉煤灰和硅粉對(duì)混凝土強(qiáng)度影響的試驗(yàn)研究[J]. 混凝土,2011(5):77-79.
Li Qingfu, Sun Zhenhua, Zhang Haiyang. Experiment about effect of fly ash and silica fume on the strength of concrete[J]. Concrete,2011(5): 77-79. (in Chinese with English abstract)
[8] 張學(xué)兵,匡成鋼,方志,等. 鋼纖維粉煤灰再生混凝土強(qiáng)度正交試驗(yàn)研究[J]. 建筑材料學(xué)報(bào),2014(4):677-684.
Zhang Xuebing, Kuang Chenggang, Fang Zhi, et al. Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete[J]. Journal of Building Materials, 2014(4): 677-684. (in Chinese with English abstract)
[9] 王社良,于洋,張博,等. 粉煤灰和硅粉對(duì)再生混凝土力學(xué)性能影響的試驗(yàn)研究[J]. 混凝土,2011(12):53-55.
Wang Sheliang, Yu Yang, Zhang Bo, et al. Experimental study on influence of mechanic properties of recycled concrete by fly ash and silica fume[J]. Concrete, 2011(12): 53-55. (in Chinese with English abstract)
[10] Nochaiya T, Wongkeo W, Chaipanich A. Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete[J]. Fuel, 2010, 89(3): 768-774.
[11] 肖建莊,李佳彬,孫振平,等. 再生混凝土的抗壓強(qiáng)度研究[J].同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2004,32(12):1558-1561.
Xiao Jianzhuang, Li Jiabin, Sun Zhenping, et al. Study on compressive strength of recycled concrete[J]. Journal of Tongji University: Natural Science, 2004, 32(12): 1558-1561. (in Chinese with English abstract)
[12] 普通混凝土力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn):GB/T 50081-2002[S]. [13] 透水水泥混凝土路面技術(shù)規(guī)程:CJJ/T 135-2009[S].
[14] 黃蓓,錢(qián)春香. 摻合料混凝土的毛細(xì)吸水現(xiàn)象[J]. 混凝土與水泥制品,2008(4):14-16.
Huang Bei, Qian Chunxiang. Phenomena of capillary suction to concrete with mineral admixtures[J]. Construction and Cement Products, 2008(4):14-16. (in Chinese with English abstract)
[15] 朱方之,趙鐵軍,王鵬剛,等. 混凝土毛細(xì)吸水影響因素探討[J]. 西安建筑科技大學(xué)學(xué)報(bào):自然科學(xué)版,2012(5):627-631,636.
Zhu Fangzhi, Zhao Tiejun, Wang Penggang, et al. Discussion of the affecting factors on concrete sorption capacity [J]. Journal of Xi'an University of Architecture & Technology: Natural Science Edition, 2012(5): 627-631,636. (in Chinese with English abstract)
[16] 李淑紅. 混凝土中毛細(xì)吸水過(guò)程的理論及試驗(yàn)研究[D].大連:大連理工大學(xué),2011.
Li Shuhong. Theoretical and Experimental Study on the Capillary Absorption Within Concrete[D]. Dalian: Dalian University of Technology, 2011. (in Chinese with English abstract)
[17] 張鵬,趙鐵軍,Wittmann F H,等. 基于中子成像的水泥基材料毛細(xì)吸水動(dòng)力學(xué)研究[J]. 水利學(xué)報(bào),2011(1):81-87.
Zhang Peng, Zhao Tiejun, Wittmann F H, et al. Water capillary suction dynamics of cement-based materials based on neutron radiography method[J]. Journal of Hydraulic Engineering, 2011(1): 81-87. (in Chinese with English abstract)
[18] 李淑紅,王立成. 多孔建筑材料毛細(xì)吸水過(guò)程研究進(jìn)展綜述[J]. 水利與建筑工程學(xué)報(bào),2010(6):16-20.
Li Shuhong, Wang Licheng. Review on study for capillary absorption of porous building materials[J]. Journal of Water Resources and Architectural Engineering, 2010(6): 16-20. (in Chinese with English abstract)
[19] ACI committee 522, pervious concrete, Report no. 522R-10, American ConcreteInstitute, Detroit, USA; 2010. p.38.
[20] Tennis P D, Leming M L, Akers D J. Pervious Concrete Pavements[J]. Detention Basins, 2004.
[21] Sata V, Wongsa A, Chindaprasirt P. Properties of pervious geopolymer concrete using recycled aggregates[J]. Construction & Building Materials, 2013, 42(9):33-39.
[22] Yang J, Jiang G, Experimental study on properties of pervious concrete pavement materials, Cem[J]. Concrete Research, 2003, 33(3): 381-386.
[23] Yu C, Wang K J, Di L. Mechanical properties of pervious cement concrete[J]. Journal of Central South University, 2012, 19(11): 3329-3334.
[24] 肖建莊. 再生混凝土[M]. 北京:中國(guó)建筑工業(yè)出版社,2008.
[25] Moriconi G, Corinaldesi V, Antonucci R. Environmentallyfriendly mortars: A way to improve bond between mortar and brick[J]. Materials & Structures, 2003, 36(10):702-708.
[26] Xiao Z, Ling T C, Kou S C, et al. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks[J]. Waste Management, 2011, 31(8): 1859-1866.
[27] Kevern J T, Wang K, Schaefer V R. Effect of coarse aggregate on the freeze thaw durability of pervious concrete[J]. J Mater Civ Eng, 2010(22): 469-475. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000049.
[28] Kuo W T, Liu C C, Su D S. Use of washed municipal solid waste incinerator bottom ash in pervious concrete[J]. Cement & Concrete Composites, 2013, 37(1): 328-335.
[29] Kou S C, Poon C S, Agrela F. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures[J]. Cement & Concrete Composites, 2011, 33(8): 788-795.
[30] Neithalath N, Sumanasooriya M S, Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction[J]. Materials Characterization, 2010, 61(8):802-813.
[31] Tho-in T, Sata V, Chindaprasirt P, et al. Pervious highcalcium fly ash geopolymer concrete[J]. Construction & Building Materials, 2012, 30(5): 366-371.
Experiment on strength and permeability of recycled aggregate pervious concrete
Chen Shoukai1,2, Yang Qing1,2, Liu Qiuchang1, Guo Lei1,2, Wang Lunyan1,2
(1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; 2. Water Environment Governance and Ecological Restoration Academician Workstation of Henan Province, Zhengzhou 450002, China)
To prepare pervious concrete with recycled concrete aggregate is a hot point and the trend of the current research, while strength and water permeability are the key performance highlighted and to be broken through at present. With waste prefabricated concrete beam members as the source of recycled aggregate, pervious concrete was prepared, and 6 groups of mixture ratios were designed with water cement ratio of 0.3 and sand ratio of 10% as the benchmark. Besides, through the experiment on test cubes under standard maintenance, the porosity, water permeability and strength performance of recycled aggregate pervious concrete (RPC) under a single factor were studied. The grain size of coarse aggregate was 4.75-9.5 mm and the natural coarse aggregate (NCA) came from gravels. With the pervious concrete prepared with 100% recycled coarse aggregate as the benchmark, 5 kinds of pervious concretes were designed on the premise of not changing the water-binder ratio and sand ratio: 1) ordinary pervious concrete (wholly made of natural aggregate); 2) equivalent replacement of 20% cement with fly ash; 3) equivalent replacement of 6% cement with silica fume; 4) adding naphthalene superplasticizer equivalent to 1% of the mass of the cement; 5) external addition of steel fiber equivalent to 3% of the mass of the cement. To reduce the influence of the high water absorption of the recycled coarse aggregate, the method of increasing additional water compensation was adopted and the amount of additional water was determined as the amount of water absorbed in 10 min by the recycled coarse aggregate. On the basis of the test and research of the capillary water absorption of concrete by predecessors, a capillary water absorption device for pervious concrete was self-made. It was measured in the experiment that the range of porosity, permeability coefficient and compressive strength was 17.8%-23.8%, 0.27-0.57 cm/s and 4.0-9.63 MPa respectively. According to these results, the basic performance of pervious concrete made of recycled aggregate could satisfy the requirements. Compared with RPC, adding fly ash could realize effective improvement of the compressive strength of the pervious concrete to 9.63 MPa, an increase of about 44%, the external addition of steel fiber could improve the water permeability, and the mixing of naphthalene super plasticizer and silica fume didn’t have obvious effect. Admixtures and additives would both exert adverse effect on the splitting tensile strength, and their affecting degree was super plasticizer, fly ash < silica fume < steel fiber. The ratio of the measured splitting tensile strength to the compressive strength (ratio of tension to compression) was 9.5%-16.9%, with the average value being 13.5%. The water permeability increased with the increase of the porosity, and the two presented an exponential relationship, which was basically consistent with the description of ordinary pervious concrete. In addition, it was figured out in the experiment that the maximum capillary water absorption height was 19.4 mm, and the maximum immersion amount in capillary water absorption was 0.01 g/cm3; the water absorption height of RPC internally doped with 20% fly ash was about 13.5 mm, while the amount of water absorbed was about 28 g, both values being consistent with the test results of capillary water absorption of existing ordinary concrete in terms of the order of magnitude. In nondestructive condition, the capillary water absorption process of previous concrete made of recycled aggregate was similar with that of ordinary concrete, namely, fast absorption in the early stage and steady absorption in the late stage.
concretes; performance; compressive strength; recycled aggregate pervious concrete (RPC); cementing materials and admixture; permeability; porosity; capillary water absorption
TU528.0
A
1002-6819(2017)-15-0141-06
2017-03-30
2017-05-12
國(guó)家自然科學(xué)青年基金項(xiàng)目(51309101);國(guó)家自然科學(xué)基金面上項(xiàng)目(51679092)
陳守開(kāi),男,浙江溫州人,博士,副教授。主要從事混凝土材料試驗(yàn)及水工混凝土結(jié)構(gòu)數(shù)值仿真等方面的研究。鄭州 華北水利水電大學(xué)水利學(xué)院,450011。Email:man200177@163.com
10.11975/j.issn.1002-6819.2017.15.018