国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

葉片進口安放角對泵作透平外特性影響的數(shù)值模擬與驗證

2017-09-15 06:17孔繁余劉瑩瑩魏啟能
農(nóng)業(yè)工程學報 2017年15期
關(guān)鍵詞:液力蝸殼葉輪

王 桃,孔繁余,劉瑩瑩,魏啟能

葉片進口安放角對泵作透平外特性影響的數(shù)值模擬與驗證

王 桃1,2,孔繁余1※,劉瑩瑩1,魏啟能3

(1. 江蘇大學流體機械工程技術(shù)研究中心,鎮(zhèn)江 212013; 2. 西華大學能源與動力工程學院流體及動力機械教育部重點實驗室,成都610039;3. 成都瀚能精密機械有限責任公司,成都 610039)

為充分探究離心泵作透平專用葉輪葉片進口安放角的確定方法,該文建立了液力透平專用葉輪葉片進口安放角與設計流量的關(guān)系表達式;基于ANSYS BladeGen與NX軟件,分別設計了4個不同葉片進口安放角的透平專用葉輪;在試驗驗證基礎(chǔ)上,通過全流場數(shù)值計算,分析了葉片進口安放角對透平外性能的影響。結(jié)果表明:葉片進口安放角從60°增大到72°、90°和105°時,透平高效點對應的流量分別為85、90、100和110 m3/h,4臺透平數(shù)值計算最高效率點流量與理論計算設計流量基本吻合,表明采用該文推導的設計流量與進口安放角的關(guān)系式合理。外特性性能曲線顯示隨葉片進口安放角增大,透平高效點向大流量偏移,最高效率值有所下降,且下降的速率增大。綜合考慮透平最高效率及高效區(qū)范圍,對于比轉(zhuǎn)速為193蝸殼式單級單吸離心泵反轉(zhuǎn)作透平,葉片進口安放角宜設計在60°與90°之間。該研究可為液力透平專用葉輪設計提供參考。

泵;葉輪;模型;離心泵作透平;葉片進口安放角;設計流量;前彎葉片;性能預測

王 桃,孔繁余,劉瑩瑩,魏啟能. 葉片進口安放角對泵作透平外特性影響的數(shù)值模擬與驗證[J]. 農(nóng)業(yè)工程學報,2017,33(15):98-104. doi:10.11975/j.issn.1002-6819.2017.15.012 http://www.tcsae.org

Wang Tao, Kong Fanyu, Liu Yingying, Wei Qineng. Numerical simulation and validation of effects of blade inlet angle on performance of pump-as-turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 98-104. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.012 http://www.tcsae.org

0 引 言

隨著日益增加的能源需求與環(huán)境保護的要求,水電作為可再生的清潔能源在全球范圍內(nèi)得以廣泛推廣和應用。在微型水力發(fā)電中,若采用傳統(tǒng)的軸流式、混流式或沖擊式水輪機發(fā)電,由于較高的初期投資和運行成本,經(jīng)濟上不可行。泵是一種可逆式旋轉(zhuǎn)機械,單級單吸離心泵反轉(zhuǎn)作透平因具有成本低,運行維護成本少,占地空間小等優(yōu)勢,在微型水電開發(fā)與工業(yè)流程余能回收中被許多學者廣泛推薦[1-5]。

近年來,國內(nèi)外的學者主要圍繞泵作透平的選型、運行穩(wěn)定性與性能提高等方面開展研究[6]。泵出廠時,制造商通常不提供泵在透平工況下的性能曲線,若直接選用原型泵反轉(zhuǎn)作透平,首要解決的問題是如何選擇合適的泵,使其在透平工況運行時能夠滿足用戶要求。雖然國內(nèi)外學者通過試驗研究、理論推導與數(shù)值模擬的方法導出了適合一定比轉(zhuǎn)速范圍的透平性能預測表達式,但由于泵幾何型式的多樣和復雜性,預測精度還有待進一步提高[7-13]。泵作透平在實際運行中常產(chǎn)生振動和噪聲,影響機組運行的穩(wěn)定性,嚴重時會影響機組的正常開機[14-17]。直接采用離心泵反轉(zhuǎn)作透平時,除運行穩(wěn)定性有待提高之外,透平效率通常不高于泵的效率,且高效區(qū)范圍較窄。為提高透平運行性能,Derakhshan等[18-19]采用神經(jīng)網(wǎng)絡、基于梯度的葉片型線優(yōu)化算法,重新優(yōu)化葉型,透平效率有所提高。Giosion等[20-22]通過在葉輪進口前添加導葉改善透平運行性能。Jain等[9,23-24]均提出對透平葉片進口邊倒圓及前、后蓋板外圓修圓,可使透平效率提高1%~4%。Doshi等[25]通過試驗同樣指出對葉輪修圓,可提高透平效率,但提高的幅度十分有限,最高效率僅能提升1至2.5個百分點,建議對葉片進口角進行重新設計以更明顯的改善透平性能??梢?,國內(nèi)外研究者主要通過優(yōu)化葉片形狀,添加導葉及葉輪修圓的方式提高透平性能,鮮有學者提出重新設計液力透平專用葉輪以顯著提高泵反轉(zhuǎn)作透平的性能。

因泵反轉(zhuǎn)時蝸殼由壓水室變?yōu)橐?,由于空間尺寸限制通常不能同水輪機一樣在蝸殼與葉輪之間布置可調(diào)導葉,液體從蝸殼流出后直接流入葉輪進口;又因原型泵葉輪設計時只考慮泵運行工況,原型泵葉片的出口安放角(透平工況的進口安放角)通常取值在推薦的22°~30°范圍[26],葉片形式通常為后彎型,若直接采用原型泵葉輪做能量轉(zhuǎn)換核心部件,效率較低的問題不能得到根本改善。為提高透平能量特性,課題組從透平運行工況,在不改變其他過流部件的前提下,設計了前彎葉片型式的透平專用葉輪,通過試驗和數(shù)值分析發(fā)現(xiàn)可顯著提高離心泵作透平的效率[27]。為深入研究液力透平專用葉輪的設計理論與方法,課題組前期對液力透平專用葉輪直徑的確定方法[28]進行了研究。文獻[29]設計了葉片進、出口安放角均相同但安放角變化規(guī)律不同的3種葉片,研究了從葉輪進口到葉輪出口葉片安放角變化規(guī)律對泵作透平性能的影響,得出了安放角按線性分布規(guī)律透平性能較好的結(jié)論。葉輪設計時,葉片進口安放角是重要參數(shù)之一。文獻[29]中未討論葉片進口安放角的確定方法,也未涉及進口安放角如何影響透平外特性的問題。為研究葉片進口安放角對液力透平性能的影響,楊孫圣等[30]針對5個不同進口安放角的葉輪進行了數(shù)值模擬,分析了進口安放角對透平外特性的影響,并給出了葉片進口安放角的取值建議。但文獻[30]中研究對象為一低比轉(zhuǎn)速原型泵葉輪,葉片形式為后彎型,且研究內(nèi)容并未涉及如何從理論方法上,依據(jù)不同的設計條件,確定合理的葉片進口安放角;其研究對象與研究核心內(nèi)容與本文均不同。因此,有必要對液力透平專用葉輪葉片進口安放角與設計流量的關(guān)系及其對液力透平性能的影響展開深入研究。

本文以比轉(zhuǎn)速為193帶螺旋形蝸殼的單級單吸離心泵為原型,導出了葉片安放角與設計流量的關(guān)系表達式,設計了4個不同葉片進口安放角的透平專用葉輪,分析了葉片進口安放角對透平外性能和水力損失分布的影響,驗證了葉片安放角與設計流量關(guān)系式的合理性,以期為泵作透平專用葉輪的設計提供參考。

1 液力透平專用葉輪設計方法

1.1 葉輪進口速度矩

透平葉輪進口能量由蝸殼提供,若需設計出與蝸殼出流相匹配的葉片進口安放角,首先需要掌握蝸殼出流的流動規(guī)律。文獻[27]推導了蝸殼內(nèi)速度矩即蝸殼常數(shù)k與螺旋段進口圓斷面幾何尺寸及包角的關(guān)系表達式,見式(1)。

式中k為蝸殼常數(shù);Qr為設計計算流量,m3/s;a0為蝸殼螺旋進口斷面中心距葉輪軸心線的距離,m;ρ0為蝸殼螺旋進口圓斷面半徑,m;φ0為蝸殼包角,(°)。

式(1)的推導過程是基于蝸殼斷面為圓形斷面,如圖1a所示;當蝸殼為非圓形斷面時,如圖1b所示,式(1)中蝸殼螺旋進口圓斷面半徑ρ0將不能直接給出。

為建立非圓形斷面蝸殼常數(shù)與蝸殼幾何參數(shù)的關(guān)系,可將圖1b中蝸殼斷面按照面積相等原則,計算出蝸殼螺旋進口斷面當量圓半徑ρ0。

式中F為蝸殼螺旋進口非圓形斷面面積,m2。

以蝸殼螺旋進口斷面高的一半(0.5H8)與0.5b0(b0為蝸殼出口高度)的交點為圓心,ρ0為半徑作圖,并計算出當量圓斷面中心距葉輪軸心線的距離a0,如圖1b中ρ0與a0所示。本文以一比轉(zhuǎn)速為193的單級單吸離心泵為原型,主要參數(shù)(按透平工況命名)如表1所示。

圖1 不同蝸殼螺旋進口斷面形狀Fig.1 Different shapes of inlet cross section of spiral volute

表1 比轉(zhuǎn)速為193的原型泵的主要參數(shù)Table 1 Main geometry parameters of original pump with 193 specific speed

式中k1為蝸殼結(jié)構(gòu)系數(shù)。

那么

由蝸殼螺旋段進口斷面相關(guān)幾何尺寸,計算得當量圓半徑ρ0=0.035 m,由a0=0.1075 m,φ0=329°可得蝸殼常數(shù)k=24.83Qr。假設蝸殼與葉輪間無能量轉(zhuǎn)換,因此可得葉輪進口速度矩vu1r1=k=24.83Qr。

1.2 葉片進口安放角與設計流量的關(guān)系

葉片進口速度三角形依據(jù)各速度大小不同,將呈現(xiàn)3種不同的型式,如圖2所示。葉輪進口圓周速度

式中u1為葉輪進口圓周速度,m/s;D1為葉輪進口直徑,m;n為葉輪轉(zhuǎn)速,r/min。

由vu1r1=k,當葉輪進口直徑為D1時,葉輪進口圓周分速度

式中vu1為進口絕對速度的圓周分量,m/s。

已知k=k1Qr,那么

圖2 不同型式的進口速度三角形Fig.2 Inlet velocity triangles with different shapes

由圖2可知,當β1>90°時,u1<vu1;當β1=90°時,u1=vu1;當β1<90°時,u1>vu1。為了便于問題的討論,命名進口相對水流角β1等于90°時的流量為臨界流量Qc,此時vu1= u1,可推導其表達式

式中Qc為進口水流角為90°時的臨界流量,m3/s。

針對本文研究對象,透平轉(zhuǎn)速n=1 500 r/min,葉輪進口直徑D1及寬度b1與原型泵葉輪均相同,可計算Qc=99.2 m3/h。若取該臨界流量作為設計計算流量Qr,此時進口流速三角形為唯一確定的直角三角形。新設計的透平專用葉輪葉片數(shù)取為11片,假設在設計流量下,透平葉輪工作時為無撞擊進口,葉片的進口安放角與進口相對水流角相等,即βb1=β1。當葉片進口相對水流角β1>90°時,設計

流量大于臨界流量Qr>Qc,有

由葉輪進口軸面分速度

式中vm1為進口絕對速度的軸面分量,m/s;b1為葉片進口寬度,m;ψ1為葉片進口排擠系數(shù),可由公式(10)確定[26]

式中δ1為葉片進口邊圓周厚度,m;R1c為葉片進口邊母線重心位置半徑,m;Z為葉片數(shù)。

而當葉片進口相對水流角β1<90°時,對應的設計流

量小于臨界流量Qr<Qc,有

由式(11)、式(12)知,葉片進口相對水流角與設計計算流量存在一一對應的關(guān)系;即給定一設計流量可以計算出合理的葉片進口安放角;反之,給定葉片進口安放角可以反求出與該進口安放角匹配的高效點流量(本文視高效點流量與設計計算流量相同)。本文選取了4個不同的進口安放角,即60°,72°,90°,105°為研究對象,計算不同進口安放角對應的設計流量,分別為83.6,90,99.2,108.6 m3/h,并建立4個不同進口安放角的葉輪模型,采用數(shù)值模擬的方法,與理論計算結(jié)果進行對比,驗證上述表達式的正確性;并且對葉片進口安放角對透平性能的影響進行分析。

1.3 出口安放角的確定

設液體流出透平葉輪時絕對速度為法向出口,即α2=90°,如圖3所示。此時出口相對水流角β2滿足式(13)。

式中β2為出口相對水流角,(°);vm2為出口絕對速度的軸面分速度,m/s;u2為出口圓周速度,m/s;A2為葉輪出口實際軸面液流過水斷面面積,m2。

圖3 出口速度三角形Fig.3 Outlet velocity triangle

對上文設計流量,分別計算4個葉輪出口相對水流角。本文不考慮液體在葉輪出口處的相對滑移,設出口安放角βb2與出口相對水流角β2相等。葉片進口安放角60°,72°,90°,105°對應的中間流線處的出口安放角分別為40.5°,43°,45°,48°。

1.4 透平專用葉輪模型的建立

葉輪出口直徑、輪轂直徑、口環(huán)長度、葉片進口寬度與原型泵葉輪均相同。透平專用葉輪葉片數(shù)為11片,進口邊厚度為5 mm,出口邊厚度為2 mm,葉片厚度按線性變化。對葉片進、出口邊分別以厚度的1/2為半徑倒圓,葉片進、出口安放角分別取上文數(shù)值。采用ANSYSBladeGen軟件,輸入流道幾何參數(shù),劃分葉片進、出口邊,葉片安放角從進口到出口按照線性規(guī)律變化,葉片包角自然形成[29],建立透平葉片三維模型。將葉片三維模型導入到NX軟件中,在NX軟件中完成葉輪前、后蓋板三維造型,生成完整的葉輪三維模型,如圖4所示。制作葉片進口安放角βb1=72°的試驗葉輪,如圖5所示。

圖4 具有不同葉片進口安放角的泵作透平專用葉輪三維模型Fig.4 3D models of special impellers using in turbine mode of pump-as-turbine with different blade inlet angles

圖5 葉片進口安放角為72°的試驗葉輪Fig.5 Test impeller with 72° blade inlet angle

2 泵作透平內(nèi)部流動數(shù)值計算方案

采用NX軟件分別對4臺裝有不同葉輪的透平進行三維建模及裝配,建立了包括蝸殼、葉輪、尾水管、前泵腔和后泵腔5部分在內(nèi)的透平全流道三維模型,如圖6a所示,并在蝸殼進水段與尾水管出口段分別作一定延伸以保證在數(shù)值計算中獲得較穩(wěn)定的進、出口流態(tài)。在ANSYS ICEM中對各部件進行網(wǎng)格劃分。與非結(jié)構(gòu)化網(wǎng)格,結(jié)構(gòu)化網(wǎng)格的生成速度快,質(zhì)量便于控制。本文選用六面體結(jié)構(gòu)化網(wǎng)格對全流道進行網(wǎng)格劃分,同時對葉片表面、葉片進、出口邊、蓋板表面、蝸殼隔舌、蝸殼及尾水管過流表面等進行了邊界層劃分,圖6b為葉輪網(wǎng)格。對網(wǎng)格無關(guān)性進行了研究,當網(wǎng)格數(shù)在100萬以上時,透平揚程、扭矩和效率偏差均在0.5%以內(nèi),因此本文用于計算的網(wǎng)格在100萬以上較合適。

本文基于ANSYS CFX軟件平臺對泵作透平的內(nèi)部流動進行數(shù)值計算。選用20 ℃的清水作為流體介質(zhì)。采用多重坐標系,葉輪流場在旋轉(zhuǎn)坐標系中計算,其余流道在靜止坐標系中計算,動靜交接面設置為Frozen Rotor模式;采用標準k-ε湍流模型,近壁區(qū)應用標準壁面函數(shù),固壁面采用無滑移邊界條件,葉輪的旋轉(zhuǎn)速度設為1 500 r/min,過流表面粗糙度按實際加工精度設置為50 μm,收斂殘差標準為0.000 001。設置質(zhì)量流量進口、壓力出口邊界條件,通過給定不同流量,計算得到透平不同工況運行時的性能參數(shù)。

圖6 泵作透平全流道三維模型及葉輪網(wǎng)格Fig.6 3D model of whole flow passage of pump-as-turbine and mesh of impeller

3 數(shù)值計算試驗驗證

為驗證數(shù)值計算的正確性,搭建了開式液力透平試驗臺,如圖7所示,對βb1=72°的透平專用葉輪進行試驗。透平所需的高壓液體由一臺增壓泵提供,透平葉輪將液體壓力能轉(zhuǎn)換為旋轉(zhuǎn)機械能。采用電渦流測功器(Electric eddy current dynamometer)測量和消耗透平產(chǎn)生的能量,通過自動控制系統(tǒng)使透平旋轉(zhuǎn)速度恒定。在透平的進、出口分別安裝壓力變送器以測量進、出口壓力,在透平進口管路中安裝渦輪流量計測透平進口流量。通過改變增壓泵轉(zhuǎn)速,使進入透平的高壓液體具有不同的能量,實現(xiàn)透平進口能量的調(diào)節(jié),得到透平不同工況運行時的性能參數(shù),進而繪制出透平性能曲線。

圖7 開式液力透平試驗臺簡圖Fig.7 Open test rig schematic of pump as turbine

試驗前對試驗設備進行標定,試驗參照GB3216-2005進行,表2為試驗所用儀器儀表及性能參數(shù)表。高效點時,試驗臺測量的轉(zhuǎn)速、流量、揚程、扭矩和效率的不確定度分別為±0.07%,±0.5%,±0.72%,±0.4%,和±0.97%。

表2 試驗所用儀表及性能參數(shù)Table 2 Parameters of instruments used in test

將數(shù)值模擬結(jié)果與試驗結(jié)果進行對比,如圖8所示。透平試驗揚程略高于數(shù)值計算結(jié)果,試驗軸功率與數(shù)值計算結(jié)果差異不大,數(shù)值計算的效率較試驗效率高。在70~140 m3/h的運行區(qū)間,計算與試驗效率差為3.29%~6.85%之間。數(shù)值計算的效率高于試驗值的原因主要是計算中忽略了軸承和軸封等摩擦引起的損失。雖然數(shù)值計算與試驗值有一定差異,但兩者的變化趨勢一致。因此本文采用的數(shù)值模擬方案可用于預估透平性能。

圖8 透平性能數(shù)值模擬與試驗對比Fig.8 Performance curves of pump-as-turbine obtained by experimental and numerical results

4 結(jié)果分析

通過對不同葉片進口安放角的葉輪進行全流場數(shù)值模擬,得到4臺透平運行性能參數(shù),繪制外特性曲線,如圖9所示。從圖9可以看出,4臺透平外特性曲線變化趨勢一致,透平的揚程與軸功率隨流量增大而增加,效率先上升后下降。葉片進口安放角對透平外特性有明顯的影響,隨葉片進口安放角增加,高效點向大流量偏移。表3列出了4臺裝有不同進口安放角葉輪的透平數(shù)值計算的高效點性能參數(shù),葉片進口安放角從60°增大到72°、90°和105°時,透平高效點對應的流量分別為85、90、100和110 m3/h。在1.2節(jié)中理論計算的設計流量分別為83.6、90、99.2和108.6 m3/h,可見4臺透平數(shù)值計算最高效率點的流量均出現(xiàn)在理論計算設計流量附近,與理論推導結(jié)論相符,說明上文中論據(jù)合理,理論計算結(jié)果可信。同時表明采用本文推導的設計流量與進口安放角的關(guān)系式,可以實現(xiàn)對透平專用葉輪高效點流量的有效預測,彌補了傳統(tǒng)選型中對泵反轉(zhuǎn)后性能預測的不足。

圖9 4臺不同葉片安放角葉輪的外特性曲線Fig.9 Performance curves of four pumps-as-turbines with different blade inlet angles

表3 不同葉片進口安放角葉輪對應的數(shù)值預測高效點性能參數(shù)Table 3 Numerical predicted best efficiency points of pump-as-turbine impellers with different blade inlet angles

從表3可知,隨著進口安放角的增大,透平最高效率值有所下降,且下降的速率增大;當葉片進口安放角從60°增大到72°時,最高效率僅相差0.68個百分點,而當葉片進口安放角從90°增大到105°時,透平最高效率僅為77.42%,下降了2.97個百分點。從圖9可以看出,在小于100 m3/h的流量范圍內(nèi),隨葉片安放角增大,效率越低,效率曲線越陡峭,表明在該工況范圍內(nèi),選用60°的葉片進口安放角,透平最高效率與平均效率較其他3臺高;但在流量大于100 m3/h的工況范圍內(nèi),進口安放角為60°的透平效率下降較其他3臺透平快,效率曲線陡峭。上述結(jié)論可以通過圖10所示的流速三角形隨流量的變化加以解釋。當進入透平的流量與設計計算流量不相等時,進口安放角與進口相對水流角不等,會產(chǎn)生葉片進口沖角。當流量大于設計流量時,對應的軸面速度由vm1增大到1mv′,圓周分速度由vu1增大到1uv′,進口相對水流角從β1增大到1β′,產(chǎn)生了進口沖角Δβ。當流量與設計流量偏離越遠,所產(chǎn)生的沖角越大,由此造成的沖擊漩渦等水力損失越大。因此,小流量工況下,進口相對水流角較小,隨葉片進口安放角增大,進口沖角越大,葉輪內(nèi)部的水力損失越大,效率越低;反之,大流量工況下,隨著葉片安放角加大,葉輪內(nèi)的水力損失減小,效率提高。

在泵反轉(zhuǎn)作透平的應用中,應結(jié)合實際情況,給出針對性強的透平設計方案。當需要透平在較寬廣的工況范圍內(nèi)長時間高效運行時,透平葉片進口安放角應設計在合理的范圍內(nèi)。針對本文案例,葉片安放角在72°時,透平最高效率可達82%以上,在80~110 m3/h的流量區(qū)間,效率均高于80%,在大流量工況時效率曲線平坦,高效區(qū)較寬。因此,綜合考慮透平最高效率及高效區(qū)范圍,采用本文所述比轉(zhuǎn)速的泵作透平時,葉片進口安放角不宜超過90°,宜設計在大于60°且小于90°的范圍內(nèi)。

圖10 進口流速三角形隨流量的變化圖Fig.10 Velocity triangle change with flow rate at impeller inlet

5 結(jié) 論

1)理論上導出了透平專用葉輪葉片安放角與設計計算流量的關(guān)系表達式;基于ANSYS BladeGen與NX軟件,設計了4個不同葉片進口安放角的透平專用葉輪,當葉片進口安放角從60°增大到72°、90°和105°時,透平高效點對應的流量分別為85、90、100和110 m3/h,4臺透平數(shù)值計算最高效率點的流量均出現(xiàn)在理論計算設計流量附近,與理論推導結(jié)論相符;導出的葉片安放角與設計計算流量關(guān)系表達式可實現(xiàn)對透平專用葉輪高效點流量的有效預測。

2)隨葉片進口安放角增大,透平最高效率值降低,且下降的速率增大;對于比轉(zhuǎn)速為193蝸殼式單級單吸離心泵反轉(zhuǎn)作透平,葉片進口安放角宜設計在60°與90°之間。

[1] Williams A A, Simpson R. Pico hydro-reducing technical risks for rural electrification[J]. Renewable Energy, 2009, 34(8): 1986-1991.

[2] Elbatran A H, Yaakob O B, Ahmed Y M, et al. Operation, performance and economic analysis of low head microhydropower turbines for rural and remote areas: A review[J]. Renewable and Sustain Energy Reviews, 2015, 43(3): 40-50.

[3] Jain S, Patel R. Investigations on pump running in turbine mode: A review of the state-of-the-art[J]. Renewable and Sustainable Energy Reviews, 2014, 30(2): 841-868.

[4] Binama M, Su W T, Li X B, et al. Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 148-179.

[5] Lima G M, Luvizotto E, Brentan B M. Selection and location of Pumps as Turbines substituting pressure reducing valves[J]. Renewable Energy, 2017, 109: 392-405.

[6] 王桃,孔繁余,何玉洋,等. 離心泵用作透平的研究現(xiàn)狀[J].排灌機械工程學報,2013,31(8):674-680. Wang Tao, Kong Fanyu, He Yuyang, et al. Researching status of centrifugal pump as turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 674-680. (in Chinese with English abstract)

[7] Xu T, Engeda A. Performance of centrifugal pumps running in reverse as turbine: Part Ⅱ- systematic specific speed and specific diameter based performance prediction[J]. Renewable Energy, 2016, 99: 188-197.

[8] Punit S. The choice between turbine expanders and variable speed pumps as replacement for throttling devices in non-thermal process applications[J]. Energy, 2017, 123:198-217.

[9] Jain S, Swarnkar A, Motwani K, et al. Effects of impeller diameter and rotational speed on performance of pump running in turbine mode[J]. Energy Conversion and Management, 2015, 89(1): 808-824.

[10] Pugliese F, Paola F D, Fontana N, et al. Experimental characterization of two pumps as turbines for hydropower generation[J]. Renewable Energy, 2016, 99: 180-187.

[11] Fecarotta O, Carravetta A, Ramos H M, et al. An improved affinity model to enhance variable operating strategy for pumps used as turbines[J]. Journal of Hydraulic Reasearch, 2016(3): 1-10.

[12] Barbarelli S, Amelio M, Florio G. Predictive model estimating the performances of centrifugal pumps used as turbines[J]. Energy 2016, 107: 103-121.

[13] 史廣泰,楊軍虎,苗森春. 離心泵作液力透平葉輪出口滑移系數(shù)的解析計算方法及驗證[J]. 農(nóng)業(yè)工程學報,2015,36(11):66-73. Shi Guangtai, Yang Junhu, Miao Senchun. Analytical methods and verification for determining slip factor at impeller outlet of centrifugal pumps as turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 36(11): 66-73. (in Chinese with English abstract)

[14] Su X H, Huang S, Zhang X J, et al. Numerical research on unsteady flow rate characteristics of pump as turbine[J]. Renewable Energy, 2016, 94(8): 488-495.

[15] Yang Sunsheng, Kong Fanyu, Qu Xiaoyun, et al. Influence of blade number on the performance and pressure pulsations in a pump used as a turbine[J]. Journal of Fluids Engineering, 2012, 134(12): 1-10.

[16] Yang Sunsheng, Liu Houlin, Kong Fanyu, et al. Effects of the radial gap between impeller tips and volute tongue influencing the performance and pressure pulsations of pump as turbine[J]. Journal of Fluids Engineering, 2014, 136(5): 1-8.

[17] 代翠,董亮,孔繁余,等. 泵作透平振動噪聲機理分析與試驗[J]. 農(nóng)業(yè)工程學報,2014,30(15):114-119.

Dai Cui, Dong Liang, Kong Fanyu, et al. Mechanism analysis of vibration and noise for centrifugal pump working as turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 114-119. (in Chinese with English abstract)

[18] Derakhshan S, Nourbakhsh A, Mohammadi B. Efficiency improvement of centrifugal reverse pumps[J]. ASME Journal of Fluids Engineering, 2009, 131(2): 21103-21109.

[19] Derakhshan S, Mohammadi B. The comparison of incomplete sensitivities and genetic algorithms applications in 3D radial turbo machinery blade optimization[J]. Computers & Fluids, 2010, 39(10): 2022-2029.

[20] Giosion D R, Henderson A D, Walker J M, et al. Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control[J]. Renewable Energy, 2015, 78(6): 1-6.

[21] Qian Z D, Wang F, Guo Z W, et al. Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode[J]. Renewable Energy, 2016, 99: 1146-1152.

[22] 楊軍虎,龔朝暉,夏書強,等. 導葉對液力透平性能影響的數(shù)值分析[J]. 排灌機械工程學報,2014,32(2):113-118.

Yang Junhu, Gong Zhaohui, Xia Shuqiang, et al. Numerical analysis on influence of guide vanes on performance of centrifugal pump acting as hydraulic turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(2): 113-118. (in Chinese with English abstract)

[23] Singh P, Nestmann F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 121-134.

[24] 盛樹仁. 利用水泵逆轉(zhuǎn)及水輪機回收能量的研究[J]. 流體機械,1984(6):41-45.

Sheng Shuren. Research on energy recovery using reverse running pump and hydraulic turbine[J]. Fluid Mechinery, 1984(6): 41-45. (in Chinese with English abstract)

[25] Doshi A, Channiwala S, Singh P. Inlet impeller rounding in pumps as turbines: An experimental study to investigate the relative effects of blade and shroud rounding[J]. Experimental Thermal and Fluid Science, 2017, 82: 333-348.

[26] 關(guān)醒凡. 現(xiàn)代泵理論與設計[M]. 北京:中國宇航出版社,2011.

[27] Wang Tao, Wang Chuan, Kong Fanyu, et al. Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine[J]. Energy, 2017,130: 473-485.

[28] 王桃,孔繁余,楊孫圣,等. 泵作透平專用葉輪直徑的確定及其對透平性能的影響[J]. 農(nóng)業(yè)工程學報,2016,32(15):60-66.

Wang Tao, Kong Fanyu, Yang Sunsheng, et al. Determination of special impeller diameter for pump as turbine and its effects on turbine performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 60-66. (in Chinese with English abstract)

[29] 王桃,孔繁余,楊孫圣,等. 葉片安放角變化規(guī)律對液力透平性能影響的研究[J]. 農(nóng)業(yè)機械學報,2015,46(10):75-80.

Wang Tao, Kong Fanyu, Yang Sunsheng, et al. Effects of the blade angle distributions on performance of pump as turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 75-80. (in Chinese with English abstract)

[30] 楊孫圣,孔繁余,陳浩,等. 葉片進口安放角對液力透平性能的影響[J]. 中南大學學報:自然科學版,2013,44(1):108-113.

Yang Sunsheng, Kong Fanyu, Chen Hao, et al. Effects of blade inlet angle on performance of pump as turbine[J]. Journal of Central South University: Science and Technology, 2013, 44(1): 108-113. (in Chinese with English abstract)

Numerical simulation and validation of effects of blade inlet angle on performance of pump-as-turbine

Wang Tao1,2, Kong Fanyu1※, Liu Yingying1, Wei Qineng3
(1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China; 2. School of Energy and Power Engineering, Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China; 3. Chengdu Alen Precision Machinery Co., Ltd., Chengdu 610039, China)

Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT) approach is promising in this application due to its low purchase and maintenance cost. Due to that the conventional backward-curve centrifugal impellers do not effectively match the turbine’s running, the performance of the PAT is usually undesirable. Therefore, to improve significantly the performance of PAT, the method for determining the blade inlet angle that plays an important role in the energy conversion was investigated deeply, and one kind of special impeller with forward-curved blades was designed for the turbine working condition in this paper. Firstly, based on the conservation theorem of angular momentum, the relationship expression between the blade inlet angle and the design flow rate was deduced. Moreover, in order to validate the relationship expression and investigate the effects of the blade inlet angle on the performance of PAT, 4 special impellers with different blade angles were designed by using ANSYS BladeGen and NX software. The validity of numerical simulation was first confirmed through the comparison between numerical and experimental results. The 4 impellers with different blade angles were numerically investigated by use of a verified computational fluid dynamics (CFD) technique. The performance within PATs was investigated through analyzing the external characteristic curves obtained by CFD. The results show that the flow rates of 4 PATs at BEP (best efficiency point) obtained by CFD are about 85, 90, 100 and 110 m3/h while the flow rates by theoretical calculation are about 83.6, 90, 99.2 and 108.6 m3/h, respectively, as the blade inlet angle is 60°, 72°, 90° and 105°. Based on the results, the flow rate of numerical BEP is very close to that of theoretical BEP, and the flow rate of BEP increases with the enlargement of the blade inlet angles. And, the theoretical relationship expression between the blade inlet angle and the design flow rate presents the effective prediction of the turbine model operations of centrifugal pumps with special impellers. The maximum efficiency of PAT decreases with the increase of the blade inlet angle. And the drop rate of the maximum efficiency increases with the increase of the blade inlet angle. The results indicate that the calculating method of the blade inlet angle is reasonable. Smaller angle is matched with relatively lower rated flow rate while bigger angle with higher rated flow rate. The performance of PAT is better and the high efficiency range is wider when the blade inlet angle is designed in a reasonable range. Additionally, the energy loss within the impeller reaches the minimum if suitable blade inlet angle is selected. So considering the efficiency and the high efficiency range of PAT, the value of blade inlet angle is recommended in a reasonable range between 60° and 90° when the spiral volute of this high specific speed pump is used as turbine flume. This paper is very instructive to the design of the special impeller used in the PAT.

pumps; impellers; models; centrifugal pump as turbine; blade inlet angle; design flow rate; forward curved blades; performance prediction

10.11975/j.issn.1002-6819.2017.15.012

TH311

A

1002-6819(2017)-15-0098-07

2017-02-10

2017-06-10

國家自然科學基金資助項目(11602097、51379179);江蘇省普通高校研究生科研創(chuàng)新計劃資助項目(CXZZ13-0678);四川省教育廳重大培育項目

王 桃,女,四川成都人,博士生,副教授,主要從事流體機械及工程研究。成都 西華大學能源與動力工程學院,610039。

Email:mailtowangtao@163.com

※通信作者:孔繁余,男,江蘇揚州人,研究員,博士生導師,主要從事流體機械及工程研究。鎮(zhèn)江 江蘇大學流體機械工程技術(shù)研究中心,212013。Email:kongm@ujs.edu.cn

猜你喜歡
液力蝸殼葉輪
焊接蝸殼泵模型開發(fā)
液力回收透平性能改善的研究
DPM方法用于泥泵葉輪的耐磨選型
1.4317 QT2鋼在高能泵葉輪上的應用
污水泵蝸殼斷裂原因分析
基于AMEsim 的一種液力偶合器液壓系統(tǒng)仿真軟件
應用石膏型快速精密鑄造技術(shù)制造葉輪
傳動系液力緩速器系統(tǒng)介紹
基于CFD/CSD耦合的葉輪機葉片失速顫振計算
應用項目中的液力變矩器選型
陕西省| 阳江市| 固安县| 南乐县| 新津县| 田东县| 色达县| 海门市| 汉阴县| 新余市| 合作市| 喜德县| 彭泽县| 璧山县| 汉沽区| 偃师市| 西昌市| 黔南| 荆州市| 班玛县| 台中市| 永宁县| 子洲县| 陇川县| 岳池县| 韶山市| 新野县| 潜江市| 九台市| 武义县| 邢台市| 澄迈县| 渑池县| 黑山县| 天柱县| 四平市| 九龙县| 鹿泉市| 罗定市| 金阳县| 汉寿县|