朱寶國(guó),張春峰※,賈會(huì)彬,王囡囡,孟慶英,匡恩俊,王秋菊,高中超,劉 峰,張立波,高雪冬
秸稈心土混合犁改良白漿土效果
朱寶國(guó)1,2,張春峰1,2※,賈會(huì)彬1,2,王囡囡1,2,孟慶英1,2,匡恩俊3,王秋菊3,高中超3,劉 峰3,張立波1,2,高雪冬1
(1. 黑龍江省農(nóng)業(yè)科學(xué)院 佳木斯分院,佳木斯 154007; 2. 黑龍江省白漿土改良工程中心,佳木斯 154007;3. 黑龍江省農(nóng)業(yè)科學(xué)院 土壤肥料與環(huán)境資源研究所,哈爾濱 150086)
為將表層秸稈施入心土,改善貧瘠的心土層創(chuàng)造有利條件,該文設(shè)計(jì)了將白漿土“上翻20 cm,下混30~40 cm,同時(shí)將有機(jī)物料施入心土層”的秸稈心土混合犁。該研究通過(guò)設(shè)置秸稈心土混合區(qū)和淺翻深松區(qū)田間對(duì)比試驗(yàn),調(diào)查機(jī)械作業(yè)后土壤理化性質(zhì),指示作物農(nóng)藝性狀以及產(chǎn)量指標(biāo)等,明確秸稈心土混合的改土增產(chǎn)機(jī)理,進(jìn)一步拓寬白漿土改良途徑,為機(jī)械改土技術(shù)的廣泛應(yīng)用提供技術(shù)支撐。研究結(jié)果表明:與淺翻深松相比,秸稈心土混合改善心土層土壤物理性質(zhì),20~40 cm土層土壤含水率提高2.69~4.90個(gè)百分點(diǎn);硬度降低44.45%左右,且沒(méi)有出現(xiàn)峰值;改善土壤通透性,固相降低幅度為4.51~2.14個(gè)百分點(diǎn),液相增加幅度為1.17~4.13個(gè)百分點(diǎn),氣相增加幅度為0.38~0.98個(gè)百分點(diǎn),容重下降幅度為0.16~0.11 g/cm3;提高心土層養(yǎng)分含量,堿解氮提高17.33%,有效磷提高116.39%,速效鉀提高37.86%,有機(jī)質(zhì)提高36.66%,同時(shí)提高心土層全量養(yǎng)分含量,緩解土壤酸性。連續(xù)2 a調(diào)查大豆產(chǎn)量,秸稈心土混合區(qū)比對(duì)照區(qū)增產(chǎn)15.77%~16.33%,一次改土后效時(shí)間長(zhǎng),增產(chǎn)效果顯著。該研究結(jié)果可為白漿土及其同類低產(chǎn)土壤改良及作物高產(chǎn)提供技術(shù)支撐。
土壤;秸稈;物理特性;化學(xué)特性;秸稈心土混合犁;土壤改良;白漿土
朱寶國(guó),張春峰,賈會(huì)彬,王囡囡,孟慶英,匡恩俊,王秋菊,高中超,劉峰,張立波,高雪冬. 秸稈心土混合犁改良白漿土效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):57-63. doi:10.11975/j.issn.1002-6819.2017.15.007 http://www.tcsae.org
Zhu Baoguo, Zhang Chunfeng, Jia Huibin, Wang Nannan, Meng Qingying, Kuang Enjun, Wang Qiuju, Gao Zhongchao, Liu Feng, Zhang Libo, Gao Xuedong. Effect of planosol improvement by using straw subsoil mixed layer plough[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 57-63. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.007 http://www.tcsae.org
白漿土是中國(guó)東北地區(qū)主要農(nóng)田土壤之一,黑龍江和吉林兩省分布相對(duì)集中。在黑龍江省其總面積約為331.2萬(wàn)hm2。該省東部三江平原地區(qū)是白漿土集中分布區(qū),耕地面積達(dá)到88.4萬(wàn)hm2,約占該區(qū)總耕地面積的25.4%[1]。白漿土的心土在作物生育期間經(jīng)常呈現(xiàn)“硬、板、瘦”的理化特性[2-3],不但引發(fā)耕層嚴(yán)重的表旱表澇,而且致使作物根系有效土層淺至20 cm左右。白漿土是區(qū)域性低產(chǎn)土壤,低產(chǎn)原因主要有3個(gè)方面:一是黒土層薄,總養(yǎng)分蓄量低;二是白漿層土質(zhì)堅(jiān)硬,作物根系難以下扎;三是土壤墾殖后偏酸加劇[4-5]。因此,改良和利用好這類土壤資源,對(duì)于改變白漿土區(qū)低產(chǎn)面貌,提高中國(guó)糧食總產(chǎn)具有重要意義。
多年來(lái),白漿土改土實(shí)踐受到持續(xù)關(guān)注,雖然取得一定成效,但也面臨很大的局限性。在生產(chǎn)中應(yīng)用相當(dāng)廣泛的深松改土措施,因土壤粉砂含量高,深松遇雨后白漿層很快沉實(shí)[6-7],改土效果一般只在當(dāng)年,因此需要年年深松,作業(yè)成本逐年累加,而白漿土的低產(chǎn)障礙并沒(méi)有從根本上得到有效克服。
根據(jù)白漿土在機(jī)械組成上呈現(xiàn)兩層性的特點(diǎn),趙德林[8-10]先生提出了以淀積層的“黏”來(lái)治白漿層的“砂”的改土路線,經(jīng)過(guò)多年試驗(yàn)研究,明確了“上翻20 cm,下混30~40 cm”的改土原理。Araya等[11]、Liu[12-14]等根據(jù)其改土理論成功地研制了三段式心土混層犁,這一改土機(jī)械可以在保持黑土層位置不變的條件下,即將白漿層和淀積層按約1∶1厚度混拌以后,土壤通透性能和貯水能力顯著改善,同時(shí)由于耕作深度可達(dá)50 cm以上。在三江平原國(guó)營(yíng)農(nóng)場(chǎng)和地方市縣進(jìn)行的大面積改土示范表明,其對(duì)白漿土物理性質(zhì)的改良效果十分明顯,一次改土后效可持續(xù)5 a以上[15-16]。但該種改土機(jī)械只是改變了白漿土不良物理性狀,白漿土心土養(yǎng)分貧瘠的不良化學(xué)性狀并沒(méi)有改變。隨著改土實(shí)踐的不斷深入,在已有三段式心土混層犁的基礎(chǔ)上,具有將根茬和秸稈混入心土的秸稈心土混合犁被研制開(kāi)發(fā)出來(lái),這一兼具綜合改土目標(biāo)的改土機(jī)械為進(jìn)一步解決白漿土心土養(yǎng)分貧瘠的不良化學(xué)性提供了可行性,也為解決作物結(jié)構(gòu)調(diào)整以后出現(xiàn)的秸稈過(guò)剩問(wèn)題開(kāi)辟了新的途徑。本項(xiàng)研究通過(guò)設(shè)置秸稈心土混合區(qū)和淺翻深松區(qū)田間對(duì)比試驗(yàn),調(diào)查機(jī)械作業(yè)后土壤理化性質(zhì),指示作物農(nóng)藝性狀以及產(chǎn)量指標(biāo)等,明確秸稈心土混合的改土增產(chǎn)機(jī)理,進(jìn)一步拓寬白漿土改良途徑,為機(jī)械改土技術(shù)的廣泛應(yīng)用提供技術(shù)支撐。
1.1.1 工作原理
秸稈心土混合犁及工作原理如圖1所示。作業(yè)時(shí),第1犁翻耕20 cm表土層(Ap);第2犁隨即將下一垡表層根茬約3~5 cm刮入第1犁耕起的犁溝中;第3犁沿著第1犁的犁溝表面向下耕起約20 cm心土(Aw),同時(shí),第4犁沿著第3犁犁溝表面再向下耕起約10~15 cm心土(B層)。第2犁耕起的根茬與第3犁、第4犁耕起的兩層心土,經(jīng)第4犁的柵條末端落下,橫垡變立垡,產(chǎn)生土層混拌和秸稈與心土隨機(jī)混拌。重復(fù)作業(yè)時(shí),下一垡已經(jīng)被刮掉根茬的厚約15~17 cm的表土層被翻扣在已經(jīng)混拌和培肥的心土之上。
圖1 秸稈心土混合犁及其工作原理Fig.1 Straw subsoil mixed layer plough and its working principle
1.1.2 機(jī)械性能參數(shù)
1)外形尺寸:主梁長(zhǎng)3 820 mm,犁架寬2 480 mm,犁架高2 065 mm。2)全機(jī)質(zhì)量0.85 t。3)作業(yè)指標(biāo):耕作幅寬:46~60 cm,耕作深度:40~60 cm,入土行程3.1 m,牽引阻力:2.0~3.5 t,作業(yè)效率:0.2~0.4 hm2/h。
1.2.1 試驗(yàn)地點(diǎn)
試驗(yàn)于2014-2015年在黑龍江省八五四農(nóng)場(chǎng)旱田試驗(yàn)站進(jìn)行。試驗(yàn)采取持續(xù)定位測(cè)定,供試土壤類型為白漿土,土壤基礎(chǔ)肥力:有機(jī)質(zhì)32.1 g/kg、全氮1.74 g/kg、全磷0.98 g/kg、全鉀26.3 g/kg。土壤速效養(yǎng)分:堿解氮98.7 g/kg、有效磷26.8 g/kg、速效鉀132.4 g/kg。土壤pH值5.84。
1.2.2 氣象條件
2014年8月和2015年7月與其他年份相比降雨偏少,對(duì)作物生長(zhǎng)產(chǎn)生影響。
表1 2014-2015年八五四農(nóng)場(chǎng)降雨量Table 1 Rainfall of 854 State Farm during years of 2014-2015
1.2.3 試驗(yàn)處理
試驗(yàn)采用大田對(duì)比試驗(yàn),設(shè)2個(gè)處理,每個(gè)處理面積0.2 hm2。具體處理如下:
1)淺翻深松區(qū)(CK),采用普通翻地犁進(jìn)行作業(yè),作業(yè)深度為0~20 cm;
2)秸稈心土混合區(qū)(SSML):采用自主研發(fā)的秸稈心土混合犁作業(yè),該犁為上翻下混的作業(yè)模式,上翻20 cm,下混30~40 cm,作業(yè)深度50~60 cm。作業(yè)時(shí),將前茬機(jī)械收獲后的粉碎秸稈全部翻入心土層,實(shí)現(xiàn)前茬作物秸稈全量還田,不設(shè)重復(fù)。
供試品種:2014年為‘墾豐16號(hào)大豆’,密度為30萬(wàn)株/hm2。2015年為‘合豐55號(hào)大豆’,密度為25萬(wàn)株/hm2。
施肥量:尿素60 kg/hm2,二銨150 kg/hm2,氯化鉀45 kg/hm2。不同處理施肥量和田間除草與當(dāng)?shù)匾话闵a(chǎn)田一致。
1.3.1 土壤含水率測(cè)定
土壤含水率采用土鉆取土烘干法測(cè)定,選擇大豆需水關(guān)鍵時(shí)期開(kāi)花期、結(jié)莢期采樣,采樣深度60 cm,按0~20、>20~40、>40~60 cm分層取樣,每個(gè)處理取3點(diǎn),每點(diǎn)取3層,每層取3次重復(fù),結(jié)果取平均值。取樣時(shí)間是2014年8月結(jié)莢期1次,2015年的7月開(kāi)花期1次。
1.3.2 土壤硬度測(cè)定
土壤硬度用日本DIK-5521貫入式土壤硬度計(jì)測(cè)定,圓錐底面2 cm2,測(cè)定深度60 cm,按0、5、10、15、20、25、30、35、40、45、50、55、60 cm深度點(diǎn)測(cè)定,每個(gè)處理取10點(diǎn),每點(diǎn)間隔10 cm,結(jié)果取平均值,測(cè)定時(shí)間與土壤含水率取樣時(shí)間一致。
1.3.3 土壤容重測(cè)定
土壤容重用環(huán)刀法取樣烘干測(cè)定,采取人工方式挖土壤剖面,每個(gè)處理去掉四周邊際按三角形選點(diǎn),挖3個(gè)100 cm×100 cm×120 cm 土壤剖面,用環(huán)刀取原狀土樣,環(huán)刀規(guī)格為高5 cm,容積100 cm3,環(huán)刀按0~20、>20~40、>40~60 cm分層取樣,每點(diǎn)取3層,每層取3次重復(fù),結(jié)果取平均值,環(huán)刀樣扣蓋,密封后備用。
1.3.4 土壤化學(xué)指標(biāo)測(cè)定
土壤pH值采用美國(guó)產(chǎn)原位土壤pH計(jì)測(cè)定,土壤堿解氮采用擴(kuò)散吸收法測(cè)定;土壤速效磷采用碳酸氫鈉提取法測(cè)定;速效鉀采用鹽酸浸提-AAS法測(cè)定;土壤有機(jī)質(zhì)采用重鉻酸鉀外加熱法測(cè)定;土壤全氮采用半微量開(kāi)氏法;土壤全磷采用NaOH熔融-鉬銻鈧比色法;土壤全鉀采用NaOH熔融-火焰光度法測(cè)定[17]。土壤采樣深度60 cm,按0~20、>20~40、>40~60 cm分層取樣,每個(gè)處理取3點(diǎn),每點(diǎn)取3層,每層取3次重復(fù),結(jié)果取平均值。
1.3.5 產(chǎn)量指標(biāo)測(cè)定
全區(qū)收獲測(cè)產(chǎn)。每區(qū)選有代表性的30株進(jìn)行產(chǎn)量構(gòu)成因素測(cè)定。
采用DPS 7.05和Excel 2003軟件進(jìn)行數(shù)據(jù)處理和分析。
圖2是秸稈心土混合犁改土后2a的土壤含水率調(diào)查結(jié)果。
圖2 不同耕作方式下土壤含水率變化Fig.2 Changes of soil water content under different tillage methods
從圖2中可以看出,改土2 a內(nèi),0~20和>40~60 cm土層土壤含水率與對(duì)照相比雖有提高,但變化不明顯。>20~40 cm土層土壤含水率明顯高于對(duì)照區(qū),與對(duì)照相比第1年土壤含水率提高4.90個(gè)百分點(diǎn),第2年土壤含水率提高2.69個(gè)百分點(diǎn)。說(shuō)明秸稈心土混拌犁改土處理后,土壤致密的白漿層被破碎和心土層進(jìn)行隨機(jī)混拌,提高土壤通透性,增大了>20~40 cm土層土壤儲(chǔ)水庫(kù)容,提高土壤含水量。
白漿土低產(chǎn)原因之一是土壤硬度過(guò)大,作物根系很難下扎,嚴(yán)重影響作物生長(zhǎng)發(fā)育。圖3是改土后2a內(nèi)土壤硬度測(cè)定結(jié)果,從圖3中可以看出,秸稈心土混合犁改土處理后,改變了白漿土不同層次土壤硬度值。0~60 cm土層土壤硬度值對(duì)照區(qū)先增大后減小,在>20~40 cm土層內(nèi)出現(xiàn)峰值,硬度最大值在9 kg/cm2左右;秸稈心土混合區(qū)土壤隨著土層加深硬度值逐漸變大,>20~40 cm土層沒(méi)有出現(xiàn)峰值,硬度在5 kg/cm2左右,秸稈心土混合區(qū)較對(duì)照區(qū)硬度值降低44.45%左右,對(duì)照和改土區(qū)>0~20和>40~60 cm土層土壤硬度值變化不明顯。說(shuō)明秸稈心土混合犁改土后打破了白漿土堅(jiān)硬的白漿層,硬度降低到了適合作物根系生長(zhǎng)范圍內(nèi),有利于作物根系生長(zhǎng),改土2 a內(nèi)土壤硬度沒(méi)有恢復(fù)原狀,改土效果顯著。
圖3 不同耕作方式下土壤硬度(kg·cm-2)變化Fig.3 Changes of soil hardness (kg·cm-2) under different tillage methods
白漿土存在障礙層白漿層,導(dǎo)致土壤物理性質(zhì)差,水、氣空間少,水分性狀不良。秸稈心土混合犁能夠使白漿層和淀積層進(jìn)行隨機(jī)混拌,徹底打破白漿層不良物理特性。2014年8月和2015年7月用環(huán)刀取樣,測(cè)定土壤三相和容重,從表2可以看出,與對(duì)照區(qū)相比,秸稈心土混合犁改土2 a內(nèi)0~60 cm土層土壤固相減小,液相和氣相增大,導(dǎo)致容重降低。2 a內(nèi)>20~40 cm土層與對(duì)照相比固相降低4.51個(gè)百分點(diǎn)和2.14個(gè)百分點(diǎn),液相提高4.13個(gè)百分點(diǎn)和1.17個(gè)百分點(diǎn),氣相提高0.38個(gè)百分點(diǎn)和0.98個(gè)百分點(diǎn),容重降低0.16和0.11 g/cm3。>40~ 60 cm土壤三相雖有變化,但不明顯。說(shuō)明經(jīng)過(guò)秸稈心土混合犁處理過(guò)的土壤,土壤通透性得到提高,物理性質(zhì)得到明顯改善。
表2 不同耕作方式下土壤物理性質(zhì)變化Table 2 Changes of soil physical properties under different tillage methods
白漿土白漿層粉砂含量高,養(yǎng)分含量低,特別是有效磷含量低。利用秸稈心土混合犁把大豆秸稈還入心土層,達(dá)到提高心土層養(yǎng)分的目的。表3是秸稈心土混合犁改土2 a后土壤養(yǎng)分測(cè)定結(jié)果,從表3中看出,秸稈心土混合犁將地表秸稈還入>20~40 cm心土層,使秸稈與心土隨機(jī)混拌,>20~40 cm層速效養(yǎng)分得到明顯提高,與對(duì)照相比堿解氮提高17.33%,有效磷提高116.39%,速效鉀提高37.86%;提高全量養(yǎng)分、全氮和全磷含量,全鉀變化不明顯;有機(jī)質(zhì)含量提高36.66%,pH值也有所提高。>40~60 cm土層土壤速效養(yǎng)分和全量養(yǎng)分雖有提高,但與>20~40 cm變化相比,變化不明顯。說(shuō)明秸稈還入心土層后,顯著提高了>20~40 cm土層養(yǎng)分供給能力。
表3 不同耕作方式下土壤養(yǎng)分變化Table 3 Change of soil nutrient under different tillage methods
從表4中看出,秸稈心土混層犁改土處理可提高大豆的單株株高、節(jié)數(shù)、莢數(shù),增加大豆單株粒數(shù)和百粒質(zhì)量,提高大豆產(chǎn)量。改土后第1年秸稈心土混層區(qū)比對(duì)照區(qū)大豆增產(chǎn)16.33%,第2年增產(chǎn)15.77%。說(shuō)明秸稈心土混層犁改土后2個(gè)作物生育期內(nèi)大豆增產(chǎn)15%以上,改土效果顯著。
表4 大豆產(chǎn)量性狀及產(chǎn)量Table 4 Yield and yield properties of soybeans
白漿土是黑龍江省主要低產(chǎn)土壤之一[18],白漿土低產(chǎn)原因包括土壤物理性質(zhì)與化學(xué)性質(zhì)2個(gè)方面,而這2個(gè)方面的原因多出在白漿層上,所以白漿土改良技術(shù)應(yīng)以消除白漿層的障礙作用為突破口,普通深松機(jī)械主要是對(duì)土壤進(jìn)行深松,沒(méi)有打破白漿層,經(jīng)過(guò)一個(gè)作物生育期后,土壤很可能恢復(fù)原狀,需要年年深松,增加作業(yè)成本。三段式心土混層犁與普通深松機(jī)械相比能夠?qū)崿F(xiàn)耕層土壤不變的情況下,白漿層和淀積層進(jìn)行隨機(jī)混拌,打破白漿層不良物理結(jié)構(gòu)[19-21],但心土層有效養(yǎng)分沒(méi)有改變。國(guó)內(nèi)外研究結(jié)果表明,秸稈還田具有改善土壤結(jié)構(gòu)[22-23]、強(qiáng)化土壤有機(jī)質(zhì)積累[24-25]、提高營(yíng)養(yǎng)元素含量[26-27],本文設(shè)計(jì)的秸稈心土混合犁在改良白漿土不良物理性狀的基礎(chǔ)上,把前茬作物秸稈全部還入心土層,既解決土壤心土層養(yǎng)分貧瘠的問(wèn)題,又克服土壤水氣失調(diào)帶來(lái)的不良影響,一次改土后效時(shí)間長(zhǎng),不需要年年深松。
白漿土白漿層土壤粉砂含量高,養(yǎng)分含量低[28-29],容易沉實(shí),造成土壤板結(jié)、緊實(shí),水分上下溝通困難,作物根系很難下扎,嚴(yán)重影響作物生長(zhǎng)發(fā)育,淀積層混拌白漿層后,土壤機(jī)械組成由原來(lái)的兩層性變?yōu)槿龑有裕锤麑?、混拌層和淀積層各自擁有不同的沙黏比,顯著降低了白漿土白漿層土壤的硬度,硬度可降低2倍左右,白漿層處沒(méi)有出現(xiàn)峰值。增大貯水庫(kù)容,提高土壤含水量,降低土壤容重,同時(shí)能把有機(jī)物料及秸稈施入心土層,活化心土層[30],兩者結(jié)合既提高心土層養(yǎng)分,又解決了白漿土區(qū)土壤表旱表澇的嚴(yán)重問(wèn)題。
秸稈心土混合犁能夠徹底解決白漿土障礙因子,是改良低產(chǎn)白漿土最有效的方法之一。作物平均產(chǎn)量提高15%左右,該技術(shù)得到當(dāng)?shù)赝茝V部門(mén)的認(rèn)可,應(yīng)用推廣前景十分廣闊。但隨著現(xiàn)代化農(nóng)業(yè)機(jī)械動(dòng)力水平的提高,該技術(shù)也存在一定的弊端,主要是機(jī)械作業(yè)效率低,動(dòng)力節(jié)余,浪費(fèi)能源。下一步將對(duì)該機(jī)械進(jìn)行改進(jìn),適應(yīng)動(dòng)力機(jī)械農(nóng)藝要求,提高作業(yè)效率,為白漿土區(qū)機(jī)械土壤改良和糧食增產(chǎn)提供技術(shù)保障。
秸稈心土混合犁在保持表土層位置不變的情況下,實(shí)現(xiàn)了“上翻20 cm,下混30~40 cm,同時(shí)將有機(jī)物料還入心土層”的新農(nóng)藝參數(shù),改善心土層土壤理化性狀,影響作物產(chǎn)量。
1)秸稈心土混合犁改善白漿土物理性狀。提高土壤含水量、降低硬度和容重;提高液相和氣相比例,降低固相比例,>20~40 cm土層各項(xiàng)指標(biāo)變化幅度明顯。
2)秸稈心土混合犁改善白漿土化學(xué)性狀。提高心土層養(yǎng)分含量,>20~40 cm土層速效氮、磷、鉀和全量氮、磷、有機(jī)質(zhì)變化明顯,減少土壤酸化。
3)在對(duì)大豆產(chǎn)量及產(chǎn)量性狀影響上,秸稈心土混合犁可增加大豆株高、節(jié)數(shù)、莢數(shù)和粒數(shù),增加百粒質(zhì)量,進(jìn)而提高大豆產(chǎn)量,2 a增產(chǎn)幅度為15.77%~16.33%。
[1] 趙德林. 三江平原低產(chǎn)土壤與改良[M]. 哈爾濱:黑龍江科學(xué)技術(shù)出版社,1992.
[2] 劉婷婷,高中超,匡恩俊,等. 白漿土某些物理性質(zhì)的研究.Ⅰ與土壤緊實(shí)和通透性質(zhì)相關(guān)的幾個(gè)物理特性[J]. 黑龍江農(nóng)業(yè)科學(xué),2012(4):49-52.
Liu Tingting, Gao Zhongchao, Kuang Enjun, et al. Study on physical characteristics of planosol I. some physical characteristics about soil compaction and permeability[J]. Heilongjiang Agricultural Sciences, 2012(4): 49-52. (in Chinese with English abstract)
[3] 劉婷婷,高中超,匡恩俊,等. 白漿土某些物理性質(zhì)的研究Ⅲ.白漿土微結(jié)構(gòu)及孔隙特征[J]. 黑龍江農(nóng)業(yè)科學(xué),2012(6):45-48.
Liu Tingting, Gao Zhongchao, Kuang Enjun, et al. Study on physical characteristics of planosol III. Microstructure and porosity features[J]. Heilongjiang Agricultural Sciences, 2012(6): 45-48. (in Chinese with English abstract)
[4] 賈會(huì)彬,劉峰,趙德林,等. 白漿土某些理化特性與改良研究[J]. 土壤學(xué)報(bào),1997,34(2):130-137.
Jia Huibin, Liu Feng, Zhao Delin, et al. Research on some physical-chemical properties and improvement of Plano sols[J]. Acta Pedologica Sinica, 1997, 34(2): 130-137. (in Chinese with English abstract)
[5] 田秀平,張之一. 不同耕作制下白漿土pH變化規(guī)律研究[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(3):37-40.
Tian Xiuping, Zhang Zhiyi. Study on pH varation under different tillage system in ablic soil[J]. Journal of Northeast Agricultural University, 2015, 46(3): 37-40. (in Chinese with English abstract)
[6] 羅丁. 白漿土改良耕作機(jī)[J]. 農(nóng)牧與食品機(jī)械,1994(2):8-10,19.
Luo Ding. Plano sols improved farming machine[J]. Machinery for Cereals, oil and Food Processing, 1994(2): 8-10, 19. (in Chinese with English abstract)
[7] 霍云鵬,劉興久,張宏. 白漿土的水分物理性質(zhì)與白漿土的改良[J]. 東北農(nóng)學(xué)院學(xué)報(bào),1983(3):69-75.
Huo Yunpeng, Liu Xingjiu, Zhang Hong. Discussion on the problem of planosol improvement based on the study of its physical property of moisture[J]. Journal of Northeast Agricultural College, 1983(3): 69-75. (in Chinese with English abstract)
[8] 趙德林,洪福玉. 三江平原主要土壤土體構(gòu)造特點(diǎn)與治理途徑的探討[J]. 中國(guó)農(nóng)業(yè)科學(xué),1983,16(1):54-61.
Zhao Delin, Hong Fuyu. Investigation on the characters of soil constitution of the major soils in the sanjiang plain, and the way for soil conservation[J]. Scinetia Argrcultura sinica, 1983, 16(1): 54-61. (in Chinese with English abstract)
[9] 趙德林,劉豐,洪福玉,等. 白漿土土體構(gòu)型改造的研究[J].中國(guó)農(nóng)業(yè)科學(xué),1989,22(5):47-55.
Zhao Delin, Liu Feng, Hong Fuyu, et al. Studies on transforming constitution of plansol solum[J]. Scinetia Argrcultural Sinica, 1989,22(5): 47-55. (in Chinese with English abstract)
[10] 趙德林,劉豐,賈會(huì)彬,等. 心土混層耕改良白漿土效果研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),1994,27(4):37-44.
Zhao Delin, Liu Feng, Jia Huibin, et al. The effect of transforming planosol by using subsoil mixed plough[J]. Scinetia Argrcultura Sinica, 1994, 27(4): 37-44. (in Chinese with English abstract)
[11] Araya K, Kudoh M, Zhao Delin, et al. Improvement of planosol solum: Part 6: Field experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 151-158.
[12] Liu Feng, Jia Huibin, Zhang Chunfeng, et al. Improvement of planosol solum. Part9: Fertilizer distributor for subsoil[J]. Journal of Agricultural Engineering Research, 1998, 71: 213-219.
[13] Jia Huibin, Liu Feng, Zhang Chunfeng, et al. Improvement of planosol solum. Part10: Mixing of wheat straw and cron stalk into subsoil[J]. Journal of Agricultural Engineering Research, 1998, 71: 221-226.
[14] 劉峰,高盼,王秋菊,等. 心土改良的研究進(jìn)展[J]. 中國(guó)土壤與肥料,2015(1):7-11.
Liu Feng, Gao Pan, Wang Qiuju, et al. Research progress in improvement of subsoil [J]. Soil and Fertilizer Sciences in China, 2015(1): 7-11. (in Chinese with English abstract)
[15] 賈會(huì)彬,于忠和,石鳳善,等. 撫遠(yuǎn)縣應(yīng)用三段式心土混層犁改良白漿土的可行性分析[J]. 黑龍江農(nóng)業(yè)科學(xué),2005(1):4-8.
Jia Huibin, Yu Zhonghe, Shi Fengshan, et al. Reasonable analysis of a three-stage subsoil mixing plough for the improvement of albic soil in fuyuan county[J]. Heilongjiang Agricultural Sciences, 2005(1): 4-8. (in Chinese with English abstract)
[16] 劉峰,張玉龍,賈會(huì)彬,等. 三段式心土混層犁及其改良自漿土效果的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2001,17(3):57-61.
Liu Feng, Zhang Yulong, Jia Huibin, et al. Three-Stage subsoil mixing plough and its improvement of planosol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(3): 56-61. (in Chinese with English abstract)
[17] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000:22-101.
[18] 陳德祥,張春峰,王慶勝,等. 三江平原主要土壤資源利用現(xiàn)狀及對(duì)策[J]. 農(nóng)學(xué)學(xué)報(bào),2012,2(3):21-24.
Chen Dexiang, Zhang Chunfeng, Wang Qingsheng, et al. The status and countermeasures of the major soil resources utilization in Sanjiang Plain[J]. Journal of Agriculture, 2012, 2(3): 21-24. (in Chinese with English abstract)
[19] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 5: Soil bin experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 143-149.
[20] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 6: Field experiments with a three-stage subsoil mixing plough[J]. Journal of Agricultural Engineering Research, 1996, 65: 151-158.
[21] Araya K, Zhao Delin, Liu Feng, et al. Improvement of planosol solum, part 4: Field experiments with prototype roll-in and drop-down ploughs[J]. Journal of Agricultural Engineering Research, 1996, 63: 275-282.
[22] 張志國(guó),徐琪,Blevins R L. 長(zhǎng)期秸稈覆蓋免耕對(duì)土壤某些理化性質(zhì)及玉米產(chǎn)量的影響[J]. 土壤學(xué)報(bào),1998,35(3):384-391.
Zhang Zhiguo, Xu Qi, Blevins R L. Influences of long-term mulched no-tillage treatment on some soil physical and chemical properties and corn yields[J]. Acta Pedologica Sinica, 1998, 35(3): 384-391. (in Chinese with English abstract)
[23] 蘇衍濤,王凱榮,劉迎新,等. 稻草覆蓋對(duì)紅壤旱地土壤溫度和水分的調(diào)控效應(yīng)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008,27(2):670-676.
Su Yantao, Wang Kairong, Liu Yingxin, et al. Effects of rice straw mulching on soil temperature and moisture regulation in an upland red soil[J]. Journal of Agro Environment Science, 2008, 27(2): 670-676. (in Chinese with English abstract)
[24] 王小彬,蔡典雄,張鏡清,等.旱地玉米秸稈還田對(duì)土壤肥力的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2000,33(4):54-61.
Wang Xiaobin, Cai Dianya, Zhang Jingqing, et al. Effects of corn stover incorporated in dry farmland on soil fertility[J]. Scientia Agricultura Sinica, 2000, 33(4): 54-61. (in Chinese with English abstract)
[25] 董亮,田慎重,王學(xué)君,等. 秸稈還田對(duì)土壤養(yǎng)分及土壤微生物數(shù)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(11):77-80.
Dong Liang, Tian Shenzhong, Wang Xuejun, et al. Effect of straw turnover on soil nutrients and soil microbial population[J]. Chinese Agricultural Science Bulletin, 2017, 33(11): 77-80. (in Chinese with English abstract)
[26] 王囡囡,朱鳳莉,張春峰,等. 不同秸稈還田方式對(duì)白漿土土壤養(yǎng)分及大豆產(chǎn)量的影響[J]. 中國(guó)土壤與肥料,2016(1):94-97.
Wang Nannan, Zhu Fengli, Zhang Chunfeng, et al. Effect of different returning method of straw to soil on soil chemical property and soybean yield[J]. Soil and Fertilizer Sciences in China, 2016(1): 94-97. (in Chinese with English abstract)
[27] 孟慶英,韓旭東,張春峰,等. 白漿土施有機(jī)肥及石灰對(duì)土壤酶活性與大豆產(chǎn)量的影響[J]. 中國(guó)土壤與肥料,2017(3):56-60.
Meng Qingying, Han Xudong, Zhang Chunfeng, et al. Effects of organic fertilizer and lime application on soil enzyme and soybean yield in planosol[J]. Soil and Fertilizer Sciences in China, 2017(3): 56-60. (in Chinese with English abstract)
[28] 依艷麗,萬(wàn)曉曉,沈月,等. 不同利用方式及不同開(kāi)墾年限白漿土的肥力變化[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,43(4):449-455.
Yi Yanli, Wang Xiaoxiao, Shen Yue, et al. Baijiang soil fertility changes under different land use type and reclamation years[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 449-455. (in Chinese with English abstract)
[29] 李會(huì)彬,李東坡,武志杰,等. 不同開(kāi)墾年限白漿土土壤磷庫(kù)特征[J]. 土壤通報(bào),2014,45(1):135-140.
Li Huibin, Li Dongpo, Wu Zhijie, et al. Albic soil phosphorus fractions after different years of cultivation[J]. Chinese Journal of Soil Science, 2014, 45(1): 135-140. (in Chinese with English abstract)
[30] 匡恩俊,劉 峰,賈會(huì)彬,等. 心土培肥改良白漿土的研究Ⅰ白漿土心土培肥的效果[J]. 土壤通報(bào),2008,39(5):1106-1109.
Kuang Enjun, Liu Feng, Jia Huibin, et al. Research on Subsoil Fertilization of Albic Luvisol ImprovementI. Study on Subsoil Amendment of Baijiang Soil[J]. Chinese Journal of Soil Science, 2008, 39(5): 1106-1109. (in Chinese with English abstract)
Effect of planosol improvement by using straw subsoil mixed layer plough
Zhu Baoguo1,2, Zhang Chunfeng1,2※, Jia Huibin1,2, Wang Nannan1,2, Meng Qingying1,2, Kuang Enjun3, Wang Qiuju3, Gao Zhongchao3, Liu Feng3, Zhang Libo1,2, Gao Xuedong1
(1. Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China; 2. The Planosol Improvement Engineering Center of Heilongjiang Province, Jiamusi 154007, China; 3. Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
The subsoil of planosol is usually extremely hard, compacted and poorly nutrient during the growing stage of upland crops. These unreasonable physical-chemical properties of the subsoil trigger the problems on its topsoil, which makes upland crops frequently suffer dry and wet damage so called the surface dry and surface wet damage. Meanwhile it also functions as an obstacle layer limiting root extension, and hence the effective layer of root system of planosol is only about 20 cm. The research formerly carried out has proved that it could cease the problems of subsoil when the Aw (planosol layer) horizon and the B horizon (illuvia horizon) were mixed with the ratio of 1:1 while leaving the topsoil undisturbed. Through this method, the permeability and the water storage capability of the subsoil were increased. As a result, the machine named the three-stage subsoil mixing plough was developed. Since its working is deeper more than 50 cm, the plough provides the opportunity to return stalks into the mixed subsoil, and the poor nutrient condition of the subsoil can be therefore improved. Based on such kind of principle of planosol improvement, the machine so called the stalk-subsoil mixing plough was developed. This machine can make it come truth to leave the Ap (topsoil) horizon in depth of 20 cm undisturbed, while mixing the subsoil and stalk in depth of 30-40 cm. In this study, the large-size field tests were carried out with the stalk-subsoil mixing plough and the conventional plough at the 854 State Farm of the Sanjiang Plain, Heilongjiang Province of China. The physical-chemical properties after the machine operation were investigated. The agronomic characteristics and yield of the indicating crops were checked. The results showed that compared with the conventional plough, the stalk-subsoil mixing plough could significantly improve the soil physical properties. In the depth of >20-40 cm, soil moisture was increased by 2.69-4.90 percent points; soil hardness was reduced by 44.45%, and there was no hardness peak appearing. In 2014 and 2015, it also could improve soil permeability; solid phase was reduced by 4.51 to 2.14 percent points, water phase was increased by 1.17 to 4.31 percent points, air phase was increased by 0.38 to 0.98 percent points, and soil bulk density was decreased by 0.11-0.16 g/cm3. The soil chemical properties were also improved. In the depth where subsoil was mixed with stalks, available nitrogen (N) was increased by17.33%, available phosphorus (P) was increased by 116.39%, available potassium (K) was increased by 37.86%, and organic matter was increased by 36.66%. By the way, soil total N, P, and K and soil pH value were increased. During the 2 years the soybean yield in the field operated by the stalk-subsoil mixing plough was increased by 15.77%-16.33% compared with the field operated by the conventional plough. Thus long term effect for Planosol improvement can be achieved by using the technique of returning stalks.
soils; straw; physical properties; chemical properties; stalk subsoil mixed layer plough; soil improvement; planosol
10.11975/j.issn.1002-6819.2017.15.007
S223
A
1002-6819(2017)-15-0057-07
2017-04-11
2017-07-10
國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503116-01)資助
朱寶國(guó),男,黑龍江依蘭人,助理研究員,主要從事土壤肥料與低產(chǎn)土壤改良研究。佳木斯 黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,154007。Email:zhubaoguo82@163.com
※通信作者:張春峰,男,黑龍江湯原人,研究員,博士,碩士生導(dǎo)師,主要從事土壤肥料與低產(chǎn)土壤改良研究。佳木斯 黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,154007。Email:chunfeng-1@163.com