李毅念,陳俊生,丁啟朔,丁為民
軸流式和切流式機械脫粒對稻谷損傷及加工品質(zhì)的影響
李毅念,陳俊生,丁啟朔,丁為民
(南京農(nóng)業(yè)大學工學院,南京 210031)
為確定不同機械脫粒滾筒收獲方式對收獲后稻谷品質(zhì)性狀的影響,以手工收獲方式稻谷為對照組,對軸流式和切流式脫粒滾筒收獲方式收獲稻谷的品質(zhì)性狀進行研究,檢測不同收獲方式稻谷的裂紋率、裂穎率、發(fā)芽率、幼苗生長、腹部與背部作為承壓面糙米的三點彎曲破碎力、加工品質(zhì)指標等。測試結(jié)果表明:機械脫粒方式收獲稻谷與手工收獲方式相比,裂穎率增加,發(fā)芽和幼苗生長、三點彎曲破碎力和加工品質(zhì)降低,其中裂穎率最大增加約35.6%,發(fā)芽率降低最大達53%,莖稈長度最大降低15 mm,根數(shù)量最大降低2.4個,腹部和背部三點彎曲破碎力減小最大值為4.5和3.8 N,整精米率最大降低12.11%;而切流式脫粒滾筒收獲方式收獲稻谷與軸流式相比,裂穎率較大,發(fā)芽率降低達34%~51%,莖桿長度降低最大達12.6 mm,根數(shù)量降低最大達1.8個,腹部和背部三點彎曲破碎力差異較小,整精米率降低10.38%??傮w來說不同機械脫粒收獲方式對稻谷的品質(zhì)性狀影響具有差異性,軸流式脫粒收獲方式對稻谷的機械損傷小于切流式脫粒收獲方式,機械脫粒損傷稻谷品質(zhì)性狀的評價應該根據(jù)稻谷具體使用目的進行客觀全面的評價。
機械化;農(nóng)作物;加工;稻谷軸流式脫粒;切流式脫粒;脫粒損傷;加工品質(zhì)
李毅念,陳俊生,丁啟朔,丁為民. 軸流式和切流式機械脫粒對稻谷損傷及加工品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2017,33(15):41-48. doi:10.11975/j.issn.1002-6819.2017.15.005 http://www.tcsae.org
Li Yinian, Chen Junsheng, Ding Qishuo, Ding Weimin. Effects of axial flow and tangential flow mechanical threshing on rice damage and milling quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 41-48. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.005 http://www.tcsae.org
機械脫粒損傷是稻谷收獲過程中最為重要的損傷源頭,對稻谷籽粒產(chǎn)生的損傷包括外部損傷和內(nèi)部損傷,外部損傷例如稻殼破裂(裂穎)或破(脫)殼、糙米破碎等,內(nèi)部損傷是一種隱形的損傷,例如內(nèi)部裂紋或裂縫等[1],這種隱形損傷一般不能從表面觀察獲得,需要借助儀器或間接的方式進行檢測。與此同時脫粒損傷對稻谷籽粒品質(zhì)性狀產(chǎn)生一系列影響,例如水稻種子發(fā)芽勢和發(fā)芽率降低[2],幼苗生長性能降低,糙米裂紋率增加等[3]。
不同收獲方式或脫粒方式對稻谷籽粒的脫粒損傷作用可能存在較大差別。割曬收獲與直接收獲方式之間加工品質(zhì)的整精米率差異明顯[4-5]。脫粒方式對稻谷籽粒裂紋也存在影響,裂紋米率:大型直收機>小型直收機>人工脫粒機,截流滾筒式機械>軸流滾筒式機械[6]。收獲時期稻谷籽粒水分含量和脫粒滾筒轉(zhuǎn)速對籽粒破碎率和裂紋率都具有影響,速度越大且水分含量越小破碎率和裂紋率越大,反之亦然[7-8]。
現(xiàn)階段對于稻谷脫粒的研究主要關(guān)注脫粒裝置的未脫凈損失、夾帶損失、功耗等性能指標[9],主要研究脫粒裝置的結(jié)構(gòu)、運動參數(shù)與脫粒損傷之間的相關(guān)關(guān)系[10-13],但對稻谷和水稻種子機械脫粒損傷的系統(tǒng)全面研究仍然較少。針對現(xiàn)階段水稻收獲的2種主要機械脫粒方式切流式加雙軸流板齒分離滾筒和軸流式脫粒滾筒,以3個品種稻谷為樣本,手工收獲為對照組,對此2種機械脫粒收獲方式產(chǎn)生的稻谷籽粒損傷進行全面系統(tǒng)的對比研究,測試了稻谷裂紋率、裂穎率、發(fā)芽勢和發(fā)芽率、幼苗生長、力學性能以及加工品質(zhì)等指標,為建立準確評價稻谷機械收獲脫粒損傷品質(zhì)性狀指標和選擇合適的機械脫粒方式提供參考。
試驗稻谷樣品包括3個粳稻品種,淮稻5號、南粳51、南粳9108,本試驗的水稻種子的采集地點為江蘇省鹽城市大豐區(qū)上海農(nóng)場,采集時間為2015年10月下旬,每個品種分別按3種收獲方式:手工收獲、脫粒滾筒為切流式加雙軸流板齒分離滾筒結(jié)構(gòu)的大型聯(lián)合收獲機收獲(簡稱切流式)、脫粒滾筒為軸流式的中型聯(lián)合收獲機收獲(簡稱軸流式),共9個樣品。收獲后陰干到稻谷安全貯藏含水量,為避免稻谷種子休眠對種子發(fā)芽性能試驗的影響,在低溫環(huán)境下密封貯藏了5個月后進行試驗。試驗前清理出樣品中受到機械收獲損傷的破碎、脫殼等糙米籽粒以及發(fā)霉變質(zhì)等非正常的稻谷籽粒,避免對有關(guān)試驗測試品質(zhì)性狀指標的影響。
根據(jù)文獻[14]中方法對稻谷籽粒含水量進行試驗。每個稻谷樣品取10 g,在130 ℃下烘24 h,試驗重復3次,水稻樣品的含水量以濕基表示。
每個樣品隨機抽樣100粒,直接通過目測法檢測稻谷的裂穎情況,試驗重復5次,取其平均值得該樣品的裂穎率。每個樣品隨機抽樣100粒,手工剝?nèi)サ竟确f殼獲取糙米,利用通光法檢測糙米的裂紋情況,試驗重復5次,取其平均值得該樣品的裂紋率。
取100粒稻谷在去離子水中浸泡3 h,然后均勻地排布在透明發(fā)芽盒內(nèi)濕潤的發(fā)芽紙床上,粒與粒之間應保持一定間距,按國標GB/T3543.4-1995[15]中規(guī)定的條件進行培養(yǎng),在5 d后計算每個樣本的發(fā)芽勢,14 d后計算發(fā)芽率,試驗重復3次。每個樣本隨機抽取10株幼苗,測試每株幼苗的葉片數(shù)目、葉片長度、莖桿高度、根長、根數(shù)等幼苗生長指標[16]。
糙米抗彎折斷力學性能試驗采用三點彎曲測試方法[17]。為測試糙米籽粒腹部和北部三點彎曲破碎力,且能夠使糙米在腹部和背部方向固定,在試驗裝置寬3.4 mm的槽兩端加工出三角形的型槽,便于糙米腹部或背部作為承壓面進行測試。試驗裝置結(jié)構(gòu)參見文獻[18]。試驗使用TMS-PRO型質(zhì)構(gòu)儀(美國FTC公司)對籽粒力學性能進行測試,壓頭加載速度設(shè)置為30 mm/min,壓頭寬為1.2 mm,長度為10 mm。
試驗前從試驗樣品中隨機取出稻谷籽粒,先人工剝?nèi)プ蚜M獠康姆f殼,再分別以每個樣品糙米的腹背、背部作為承壓面來進行試驗。每個樣品腹部、背部測試籽粒數(shù)量各100粒,計算腹部、背部破碎力的平均值和不同受力段籽粒個數(shù)的分布情況。
根據(jù)國標GB/T 5495-2008[19]和國標GB/T 21719-2008[20]對3個品種稻谷樣品的加工品質(zhì)指標進行了測試。稻谷加工設(shè)備為試驗用礱谷機(型號:THU35C,佐竹機械(蘇州)有限公司)和試驗用碾米機(型號:CBS300AS,佐竹機械(蘇州)有限公司)。試驗每次加工100 g以上的稻谷籽粒,凈稻谷經(jīng)試驗礱谷機脫殼后得到糙米,計算糙米率指標。將得到的糙米進行3 min的碾米加工,用篩子將碎米篩選出來后得到精米率、整精米率和碎米率指標。試驗重復3次,誤差在準許范圍內(nèi)則可取其平均值作為加工品質(zhì)指標。
含水率在一定程度上會影響稻谷的加工品質(zhì)與力學特性,因此試驗前對含水率進行測定并分析。不同脫粒收獲方式水稻含水率檢測結(jié)果如表1所示。
3種脫粒方式采集得到的淮稻5號的平均含水率約為13.88%,南粳51的平均含水率約為14.16%,南粳9108的平均含水率約為13.86%。3種脫粒收獲方式采集的淮稻5號的含水率最大相差0.12%,南粳51含水率最大相差0.27%,南粳9108含水率最大相差0.42%,總體來說,切流式、軸流式、手工收獲稻谷水分含量依次減小,其中南粳51和南粳9108稻谷2個品種手工收獲與切流式收獲差異顯著,但每個品種在不同脫粒方式下得到的樣品含水率在一定范圍內(nèi),對其加工品質(zhì)和力學特性影響較小??傮w來說,切流式收獲稻谷籽粒中稻殼脫離和破碎籽粒較多,導致籽粒間間隙較小,孔隙率變小,空氣流動性降低[21],與手工收獲相比較含水量稍大。水分含量差異越接近對加工品質(zhì)和力學性能測試影響越小[22-23]。
3個品種3種脫粒收獲方式下水稻樣品的裂穎率和裂紋率指標如表1所示。
由表1可知,淮稻5號手工收獲較軸流式收獲裂穎率低35.6%,南粳51手工收獲較軸流式收獲裂穎率低8.4%,而南粳9108手工收獲與軸流式收獲相當;3個品種中,手工收獲較切流式收獲裂穎率低,淮稻5號低14.4%,南粳51低23.2%,南粳9108低7.5%,軸流式與切流式相比較,南粳51低14.8%,南粳9108低10.3%,而淮稻5號高21.2%??傮w來說,機械脫粒收獲對稻谷穎殼產(chǎn)生脫粒作用力使其穎殼開裂,導致裂穎率增加,其中切流式脫粒方式對稻谷穎殼產(chǎn)生的損傷作用較大,其裂穎率大于軸流式脫粒方式(除淮稻5號品種軸流式裂穎率較大外)。切流式和軸流式脫粒使糙米裂紋率增加,淮稻5號和南粳51品種,切流式裂紋率最大,軸流式其次,而南粳9108品種軸流式裂紋率最大,但與手工和切流式比較差異不大。除南粳51品種手工收獲與切流式收獲差異顯著外,其他所有品種3種收獲方式裂紋率差異性不顯著。機械脫粒過程中對糙米產(chǎn)生機械力作用,從糙米裂紋率來看,由于糙米表面穎殼保護,機械作用對糙米裂紋損傷程度較低,但對稻谷穎殼損傷程度較高。
水稻種子發(fā)芽勢和發(fā)芽率測試結(jié)果如表2所示。切流式收獲的水稻種子的發(fā)芽勢和發(fā)芽率較軸流式、手工收獲相比均明顯偏低,具有顯著差異,切流式與手工收獲相比較,淮稻5號發(fā)芽勢和發(fā)芽率差異最大達52%和 53%,南粳9108發(fā)芽勢和發(fā)芽率差異最小達32%和34%。在3個品種中,軸流式收獲與手工收獲水稻種子的發(fā)芽勢和發(fā)芽率較接近或略小,差異不明顯。在發(fā)芽試驗過程中發(fā)現(xiàn),切流式收獲的種子幼苗較其他2種收獲所得的種子的幼苗相比,葉片有輕微發(fā)黃現(xiàn)象。
軸流式收獲和手工收獲方式水稻種子幼苗生長的莖桿長度和平均根數(shù)量均大于切流式收獲方式,且軸流式與人工收獲方式較接近。切流式與手工收獲相比較,莖稈長度相差最大的為淮稻5號15 mm,根數(shù)量相差最大的為南粳51達2.4個,莖稈長度相差最小的為南粳51達7 mm,根數(shù)量最小的為淮稻5號達1.6個。軸流式收獲與切流式收獲比較,莖桿長度差異最大的是淮稻5號達12.6 mm,根數(shù)量差異最大是南粳9108達1.8個。3種收獲方式下水稻種子幼苗生長的平均根長度、平均葉片數(shù)量和葉長度無明顯差異。其中南粳51品種幼苗莖桿長度切流式與軸流式和人工收獲方式差值較小,南粳9108其次,淮稻5號差異最大,說明不同品種水稻種子對機械損傷特性存在差異。
通過種子發(fā)芽和幼苗生長分析可以看出,總體來說切流式機械脫粒收獲對水稻種子產(chǎn)生的機械損傷大,而軸流式機械脫粒收獲對水稻種子產(chǎn)生的機械損傷較小。軸流式脫粒與人工收獲水稻種子的發(fā)芽和幼苗生長較好,并且比較接近,因此在水稻種子機械收獲可考慮采用軸流式脫粒方式收獲機械,以減小機械收獲對水稻種子發(fā)芽和幼苗生長產(chǎn)生的損傷。
在糙米籽粒進行三點彎曲破碎力學性能試驗時,以腹部作為承壓面時,腹部受壓應力,背部受拉應力;相反之,當以背部作為承壓面時,則背部受壓應力,腹部受拉應力。籽粒壓應力強度極限遠遠大于拉應力強度極限[24-25],故籽粒首先應從籽粒承受拉應力一側(cè)斷裂并且向另一側(cè)延伸,直至籽粒完全斷裂。糙米腹部、背部作為承壓面的三點彎曲破碎力平均值如表3所示,除南粳51糙米籽粒腹部破碎力3種脫粒方式接近外,其他手工收獲方式的腹部和背部破碎力均大于機械收獲方式;糙米腹部作為承壓面的三點彎曲破碎力大于背部作為承壓面的三點彎曲破碎力,根據(jù)稻谷籽粒拉壓強度極限值,可推測糙米籽粒背部的拉應力強度大于腹部的拉應力強度,即籽粒背部結(jié)構(gòu)強度大于腹部結(jié)構(gòu)強度[26]。機械收獲導致糙米籽粒腹部和背部三點彎曲破碎力與人工收獲相比較減小,淮稻5號切流式腹部和背部減小4.5和3.8 N,軸流式腹部和背部減小2.6和1.1 N;南粳9108切流式腹部和背部減小0.3和2.9 N,軸流式腹部和背部減小3.5和3.1 N;南粳51切流式和軸流式腹部與人工收獲變化不大,近似相等,背部減小1.7和2.3 N;說明機械脫粒對稻谷籽粒產(chǎn)生了損傷使其結(jié)構(gòu)強度降低從而使三點彎曲破碎力減小。
淮稻5號3種收獲方式的糙米腹部、背部受力的三點彎曲破碎力區(qū)間分布特性如圖1a所示,很明顯手工收獲腹部破碎力區(qū)間分布率在破碎力較大一側(cè)大于切流式和軸流式腹部破碎力分布率,說明手工收獲糙米籽粒腹部破碎力值較大部分比例較大,而切流式和軸流式收獲糙米籽粒腹部破碎力值較小部分比例較大;手工背部破碎力分布率與切流式和軸流式背部分布率相類似。機械收獲糙米籽粒腹部和背部作為承壓面的三點彎曲破碎力整體小于手工收獲稻谷籽粒三點彎曲破碎力,因此機械脫粒收獲對糙米籽粒的力學強度產(chǎn)生了損傷。手工收獲糙米籽粒腹部三點彎曲破碎力整體分布率較背部破碎力分布率偏向破碎力較大一側(cè),說明籽粒腹部作為承壓面的三點彎曲破碎力大于背部破碎力。
南粳51和南粳9108不同脫粒收獲方式的糙米籽粒腹部、背部受力的三點彎曲破碎力分布特性如圖1b和1c所示,不同脫粒收獲方式腹部、背部三點彎曲破碎力分布情況同樣亦存在差異,三點彎曲破碎力分布特性與淮稻5號不同收獲脫粒方式類似。
評價稻谷的加工品質(zhì)的相關(guān)指標有糙米率、精米率、整精米率和碎米率,測試結(jié)果如表4所示。
圖1 不同機械脫粒收獲方式糙米籽粒腹部、背部三點彎曲破碎力分布特性Fig.1 Distribution features of three-point bending breaking force on ventral side and dorsal side of brown rice under different mechanical threshing patterns
表4 不同機械脫粒方式稻谷加工品質(zhì)Table 4 Milling quality of rice under different mechanical threshing patterns
由表4可知,3個品種稻谷在不同脫粒收獲方式下所得的糙米率基本相當,糙米率均大于80%,相差較小。3個品種稻谷在不同脫粒收獲方式下所得的精米率和整精米率有所差異。切流式和軸流式收獲的淮稻5號與手工收獲比較,切流式精米率和整精米率最小,軸流式其次,切流式相差1.90%和2.86%,軸流式相差0.63%和1.52%。另外2個品種切流式收獲與軸流式和手工收獲相比較其精米率和整精米率相差較大。對于南粳51,切流式收獲樣品與軸流式相比,精米率低7.39%,整精米率低16.00%;切流式收獲與手工收獲相比,精米率低4.82%,整精米率低12.11%;而對于南粳9108,切流式收獲樣品與軸流式相比,精米率低7.12%,整精米率低10.38%;切流式收獲與手工收獲相比,精米率低6.71%,整精米率低9.76%。3個品種稻谷樣品,軸流式收獲與手工收獲所得精米率和整精米率之間差值較小,南粳9108差異性不顯著,而南粳51和淮稻5號差異性顯著;切流式收獲與手工收獲所得精米率和整精米率之間差值較大,差異性均顯著;軸流式收獲與切流式收獲所得精米率和整精米率之間差值亦較大,3個品種差異性均顯著。相應的整精米率高,碎米率就低,軸流式和人工收獲稻谷碎米率都較低。
切流式收獲得到的精米與其他2種收獲所得精米相比,顏色偏黃,有較大差異,軸流式和手工收獲水稻的加工品質(zhì)效果較接近。機械收獲對稻谷籽粒有一定的機械損傷,經(jīng)碾米加工,損傷稻谷籽粒更容易破碎,造成碎米率增加,整精米率降低。切流式脫粒收獲方式在脫粒過程中稻谷籽粒受到的損傷程度更大,其裂穎率和裂紋率都較大,從而導致機械加工過程中受到損傷的稻谷籽粒易破碎,整精米率降低和碎米率增加。軸流式脫粒收獲方式在脫粒過程中稻谷籽粒受到的損傷程度較小,其裂穎率和裂紋率較小,在機械加工過程中糙米籽粒不易破碎,整精米率降低較小或碎米率不高。因此,選擇合適的收獲方式是獲得優(yōu)質(zhì)大米的有效方法之一,為減小稻谷脫粒損傷可以選用軸流式收獲方式。從加工品質(zhì)整精米率來看,機械脫粒收獲對糙米內(nèi)部產(chǎn)生了較大的損傷,因此整精米率下降較大,但從糙米裂紋率來看各種收獲方式下降并不是較大,差異性并不顯著,說明機械脫粒損傷仍然可能以比較隱形的方式存在于糙米內(nèi)部,因此這種機械損傷如何評價和衡量有待進一步分析。
稻谷籽粒在機械脫粒過程中產(chǎn)生損傷,其中稻谷籽粒的脫殼、破碎、裂穎和裂紋損傷,這是一種顯性的損傷,與此同時通過測試機械脫粒稻谷籽粒發(fā)芽性能、幼苗生長、力學性能和加工品質(zhì)指標降低才能獲知其品質(zhì)性狀的稱為隱形損傷,稻谷籽粒產(chǎn)生了某種隱形損傷導致這些相應的表觀指標下降。通過對這些品質(zhì)性狀指標的相關(guān)分析(表5)可以看出,顯性損傷品質(zhì)指標裂穎率和裂紋率之間互相關(guān),而顯性損傷品質(zhì)指標與隱形損傷指標之間卻不相關(guān);表現(xiàn)水稻種用性能的發(fā)芽勢、發(fā)芽率、幼苗莖桿長度和根數(shù)各指標之間互相關(guān),除莖桿長度與背部三點彎曲破碎力互相關(guān)外,其他表現(xiàn)種子種用性能的指標與所有其他品質(zhì)指標均不相關(guān);腹部三點彎曲破碎力與背部三點彎曲破碎力互相關(guān),力學性能指標與其他品質(zhì)指標都不相關(guān);精米率與整精米率互相關(guān),加工品質(zhì)指標與其他指標都不相關(guān)。
表5 不同機械脫粒方式下稻谷籽粒品質(zhì)評價指標之間相關(guān)關(guān)系分析Table 5 Correlation analysis of appraise indices for rice quality under different mechanical threshing patterns
機械收獲稻谷籽粒的裂穎率和裂紋率增加,發(fā)芽性能、幼苗生長、力學性能和加工品質(zhì)指標降低等與采用不同脫粒收獲方式有關(guān),軸流式脫粒滾筒脫粒的形式,滾筒轉(zhuǎn)速505 r/min,對水稻損傷較??;切流式脫粒滾筒加雙軸流板齒分離滾筒的組合結(jié)構(gòu),滾筒轉(zhuǎn)速800~900 r/min,分離滾筒長度3 344 mm,且為雙滾筒結(jié)構(gòu),分離面積更大,脫粒能力更強,稻谷籽粒和秸稈一起被送入脫粒裝置進行脫粒,秸稈與稻谷籽粒纏繞在一起,脫粒需要較大的速度和撞擊力,對稻谷籽粒作用時間亦較長,因此,對稻谷籽粒損傷也較嚴重。
通過本研究可以發(fā)現(xiàn),稻谷收獲機械脫粒損傷是不可避免的,其影響程度直接與收獲機械脫粒方式有關(guān),因此研究盡可能減少機械損傷的收獲方式具有現(xiàn)實意義。為了降低水稻種子的裂紋率和裂穎率,提高發(fā)芽性能和加工品質(zhì)等指標,根據(jù)本研究盡可能采用軸流式機械脫粒方式進行收獲,也可采用以柔性材料做脫粒齒的柔性脫粒系統(tǒng)以減小脫粒過程中對種子的損傷[27-30]。目前雖然國內(nèi)有從事柔性脫粒方面的研究[31],并且已經(jīng)證明柔性機械脫粒能夠減少對種子的損傷,提高種子發(fā)芽性能[2],但仍然需要對此類機械脫粒方式稻谷品質(zhì)性狀損傷程度進行全面分析。
現(xiàn)階段稻谷機械脫粒收獲后對稻谷的檢測主要側(cè)重于谷外糙米含量(脫殼)、破碎等外在損傷方面,通過本研究可以看出,收獲機械作用在對稻谷籽粒產(chǎn)生外在損傷的同時對其內(nèi)部亦產(chǎn)生損傷,導致稻谷籽粒在裂穎率和裂紋率增加的同時,發(fā)芽性能降低,三點彎曲破碎力降低和加工品質(zhì)降低,因此現(xiàn)階段對稻谷收獲機械脫粒損傷定量化研究的指標仍然不夠客觀全面。對于水稻種子的機械收獲要求更高,在檢測機械收獲后水稻種子谷外糙米含量、破碎等指標基礎(chǔ)上,應同時考慮測試收獲機械脫粒后種子裂穎率、裂紋率、發(fā)芽勢和發(fā)芽率、幼苗生長性能,對于主要用于食用的稻谷,可考慮測試收獲后裂穎率、裂紋率、力學性能和加工性能等。因此收獲機械脫粒性能評價應考慮收獲后機械脫粒損傷對稻谷的品質(zhì)性狀指標影響。
從試驗數(shù)據(jù)和顯著性分析可以看出,稻谷籽粒機械收獲產(chǎn)生脫粒損傷表現(xiàn)為裂穎率和裂紋率增加,發(fā)芽率降低,幼苗生長性能下降,糙米力學強度降低,加工性能降低等,并且切流式與軸流式2種機械脫粒方式差異性顯著,但發(fā)芽和幼苗生長性能降低與脫粒損傷中何種特性有關(guān)有待進一步研究。
稻谷籽粒在脫粒過程中受到脫粒機械作用力,導致糙米籽粒產(chǎn)生損傷,力學性能降低,稻谷的整精米率降低,因此糙米的整精米率與其籽粒力學強度可能存在一定的相關(guān)關(guān)系,糙米的整精米率與籽粒在兩平面間的壓縮性能相關(guān)性較小[32],與籽粒抵抗三點彎曲破碎力強度大于20 N的百分率密切相關(guān),即此百分率越大稻谷的加工整精米率越大[33],但本研究中相關(guān)性仍然較低,因此有待進一步研究。
1)機械脫粒收獲稻谷籽粒裂穎率較手工收獲大,裂穎率最大增加約35.6%,機械脫粒收獲稻谷發(fā)芽勢和發(fā)芽率降低,切流式與手工收獲相比較發(fā)芽勢和發(fā)芽率降低最大達52%和53%,最小達32%和34%;幼苗生長性能亦降低,莖稈長度最大降低15 mm,最小7 mm,根數(shù)量最大降低2.4,最小1.6個;切流式脫粒滾筒收獲方式收獲稻谷與軸流式相比,裂穎率較大,發(fā)芽率降低達34%~51%,莖桿長度降低最大達12.6 mm,根數(shù)量降低最大達1.8個;
2)機械脫粒收獲糙米腹部和背部三點彎曲破碎力小于手工收獲糙米腹部和背部三點彎曲區(qū)破碎力,切流式脫粒收獲破碎力降低最大,腹部和背部減小最大值為4.5和3.8 N,軸流式脫粒收獲其次,腹部和背部減小最大值為3.5和3.1 N,因此機械脫粒對稻谷籽粒結(jié)構(gòu)強度產(chǎn)生了損傷;切流式脫粒滾筒收獲方式收獲稻谷與軸流式相比,腹部和背部三點彎曲破碎力差異較??;
3)機械脫粒收獲稻谷的加工品質(zhì)較手工收獲方式降低,其整精米率降低,碎米率增加,切流式脫粒收獲方式整精米率最低,與手工收獲相比較最大差異為12.11%,最小為2.86%,軸流式脫粒收獲方式其次;切流式脫粒滾筒收獲方式收獲稻谷與軸流式相比,整精米率降低10.38%;
4)通過對比分析切流式、軸流式和手工3種脫粒收獲方式,機械脫粒收獲對稻谷籽粒產(chǎn)生了損傷,切流式脫粒收獲對稻谷的損傷最大,軸流式收獲方式對稻谷籽粒的機械損傷較小,水稻種子機械收獲宜選用軸流式脫粒收獲方式。機械脫粒損傷稻谷品質(zhì)性狀的評價應根據(jù)稻谷具體使用目的進行客觀全面的評價。
[1] 徐立章,李耀明,王顯仁. 稻谷脫粒損傷的量化與檢測方法[J]. 農(nóng)業(yè)機械學報,2007,38(11):185-188.
[2] 謝方平,羅錫文,蘇愛華,等. 剛性弓齒與桿齒及柔性齒的脫粒對比試驗[J]. 湖南農(nóng)業(yè)大學學報,2005,31(6):648-651.
Xie Fangping, Luo Xiwen, Su Aihua, et al. Contrastive experiment on threshing by using rigid wire-loop, rigid pole tooth and flexible pole tooth[J]. Journal of Hunan Agricultural University, 2005, 31(6): 648-651. (in Chinese with English abstract)
[3] Javid H, Esfahani M, Sabouri S. Effect of three threshing methods on kernel fissuring, seed germination and seedling growth in rice (oryza sativa l.) cv. Hashemi[J]. Seed and Plant Production Journal, 2011, 27(1): 57-72.
[4] 苗得雨,魏玉光,賀海生. 不同收獲時期和收獲方式對水稻碾米品質(zhì)和產(chǎn)量的影響[J]. 北方水稻,2007(4):25-27.
Miao Deyu, Wei Yuguang, He Haisheng. Effect of harvesting time and pattern on milling quality and yield of rice[J]. North Rice, 2007(4): 25-27. (in Chinese with English abstract)
[5] 張振宇,黨姝,林秀華,等. 不同收獲時間和方式對水稻外觀品質(zhì)及加工品質(zhì)的影響[J]. 黑龍江農(nóng)業(yè)科學,2010(2):22-24.
Zhang Zhenyu, Dang Shu, Lin Xiuhua, et al. Effect of the different harvest time and method on processing quality and appearance quality in rice[J]. Heilongjiang Agricultural Sciences, 2010(2): 22-24. (in Chinese with English abstract)
[6] 張國民,李銳,劉士勇,等. 寒地稻區(qū)水稻裂紋米發(fā)生機理及其防御對策的研究Ⅱ栽培措施和收獲加工措施對裂紋米率的影響[J]. 黑龍江農(nóng)業(yè)科學,2006(2):13-16.
Zhang Guomin, Li Rui, Liu Shiyong, et al. Study on occurrence mechanism and preventive measure ofcrackle-rice in cold region Ⅱ the influence of cultivation, harvest and processing methods on the rate of crackle-rice[J]. Heilongjiang Agricultural Sciences, 2006(2): 13-16. (in Chinese with English abstract)
[7] Sharma A D, Kunze O R, Sarker N N. Impact damage on rough rice[J]. Transactions of the ASAE, 1992, 35(6): 1929-1934.
[8] Alizadeh M R, Khodabakhshipour M. Effect of threshing drum speed and crop moisture content on the paddy grain damage in axial-flow thresher[J]. Cercet?ri Agronomice ?n Moldova, 2010, 43(4): 5-11.
[9] 李耀明,陳洋,徐立章,等. 斜置切縱流聯(lián)合收獲機脫粒分離裝置結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學報,2016,47(9):56-61.
Li Yaoming, Chen Yang, Xu Lizhang, et al. Optimization of structural parameters for threshing and separating device in oblique tangential-longitudinal combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 56-61. (in Chinese with English abstract)
[10] 徐立章,李耀明,李洪昌. 水稻谷粒脫粒損傷的影響因素分析[J]. 農(nóng)業(yè)機械學報,2008,39(12):55-59.
Xu Lizhang, Li Yaoming, Li Hongchang. Analysis on factors affecting performance of rice kernel damage during threshing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(12): 55-59. (in Chinese with English abstract)
[11] 王顯仁,李耀明,徐立章. 水稻脫粒破碎率與脫粒元件速度關(guān)系研究[J]. 農(nóng)業(yè)工程學報,2007,23(8):16-19.
Wang Xianren, Li Yaoming, Xu Lizhang. Relationship between thresher velocities and rice grain broken rate [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(8): 16-19. (in Chinese with English abstract)
[12] 徐立章,李耀明,丁林峰. 水稻谷粒與脫粒元件碰撞過程的接觸力學分析[J]. 農(nóng)業(yè)工程學報,2008,24(6):146-149.
Xu Lizhang, Li Yaoming, Ding Linfeng. Contacting mechanics analysis during impact process between rice and threshing component[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 146-149. (in Chinese with English abstract)
[13] 徐立章,李耀明. 水稻谷粒沖擊損傷臨界速度分析[J]. 農(nóng)業(yè)機械學報,2009,40(8):54-57.
Xu Lizhang, Li Yaoming. Speed of impact damage on a rice kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 54-57. (in Chinese with English abstract)
[14] Jindal V K, Siebenmorgen T J. Effects of oven drying temperature and drying time on rough rice moisture content determination[J]. Transactions of the ASAE, 1987, 30(4): 1185-1192.
[15] 全國農(nóng)作物種子標準化技術(shù)委員會. 農(nóng)作物種子檢驗規(guī)程:發(fā)芽試驗:GB/T3543.4-1995[S]. 北京:中國標準出版社,1995.
[16] 申寶營,李毅念,趙三琴,等. 暗期補光對黃瓜幼苗形態(tài)調(diào)節(jié)效果及綜合評價[J]. 農(nóng)業(yè)工程學報,2014,30(22):201-208.
Shen Baoying, Li Yinian, Zhao Sanqin, et al. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 201-208. (in Chinese with English abstract)
[17] ASAE. Shear and three point bending test of animal bone: ASAE Standards S459[S]. American Society of Agricultural Engineers, St. Joseph, MI. 2001.
[18] 李毅念,徐小琴,丁為民. 糙米三點彎曲破碎力學性能試驗分析[J]. 農(nóng)業(yè)機械學報,2010,41(8):121-124.
Li Yinian, Xu Xiaoqin, Ding Weimin. Experiment analysis on three-point bending breaking force of brown rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 121-124. (in Chinese with English abstract)
[19] 全國糧油標準化技術(shù)委員會. 糧食檢驗 糙米出糙率檢驗:GB/T 5495-2008[S]. 北京:中國標準出版社,2009.
[20] 全國糧油標準化技術(shù)委員會. 稻谷整精米率檢驗法:GB/T 21719-2008[S]. 北京:中國標準出版社,2008.
[21] 袁越錦,楊彬彬,徐英英,等. 非固結(jié)多孔介質(zhì)干燥的雙尺度孔道網(wǎng)絡(luò)模型與模擬[J]. 工程熱物理學報,2010,31(2):302-306.
Yuan Yuejin, Yang Binbin, Xu Yingying, et al. Dual-scale pore network simulation on drying of unconsolidated porous media[J]. Journal of Engineering Thermophysics, 2010, 31(2): 302-306. (in Chinese with English abstract)
[22] Kamst G F, Bonazzi C, Vasseur J, et al. Effect of deformation rate and moisture content on the mechanical properties of rice grains[J]. Transactions of the ASAE, 2002, 45(1): 145-151.
[23] 賈富國,南景富,白士剛. 糙米的含水率與其碾米性能的影響規(guī)律研究[J]. 東北農(nóng)業(yè)大學學報,2006,37(5):665-668.
Jia Fuguo, Nan Jingfu, Bai Shigang. Study on the relationship between the moisture content of rice and milling characteristics[J]. Journal of Northeast Agricultural University, 2006, 37(5): 665-668. (in Chinese with English abstract)
[24] Kamst G F, Vasseur J, Bonazzi C, et al. A new method for the measurement of the tensile strength of rice grains by using the diametral compression test[J]. Journal of Food Engineering, 1999, 40(4): 227-232.
[25] Bamrungwong S, Satake T, Vargas D, et al. Fundamental studies on mechanical properties of long-grain rice varieties: II. Bending properties of long-grain rice[J]. Japanese Journal Tropical Agriculture, 1988, 32(1): 6-15.
[26] 李毅念,丁為民. 稻谷腹部、背部微觀結(jié)構(gòu)差異性分析[J].中國農(nóng)業(yè)科學,2010,43(16):3473-3480.
Li, Yinian, Ding Weiming. Analysis on microstructure difference of ventral and dorsal side of rice grain[J]. Scientia Agricultura Sinica, 2010, 43(16): 3473-3480. (in Chinese with English abstract)
[27] 謝方平,羅錫文,盧向陽,等. 柔性桿齒滾筒脫粒機理[J].農(nóng)業(yè)工程學報,2009,25(8):110-114.
Xie Fangping, Luo Xiwen, Lu Xiangyang, et al. Threshing principle of flexible pole-teeth roller for paddy rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 110-114. (in Chinese with English abstract)
[28] 師清翔,姬江濤,劉師多,等. 小麥的控速喂入柔性脫粒試驗研究[J]. 農(nóng)業(yè)工程學報,1995,11(2):183-188.
Shi Qingxiang, Ji Jiangtao, Liu Shiduo, et al. The experimental studies on speed-controlled feed and soft threshing for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1995, 11(2): 183-188. (in Chinese with English abstract)
[29] 師清翔,劉師多,姬江濤,等. 控速喂入柔性脫粒機理研究[J]. 農(nóng)業(yè)工程學報,1996,12(2):173-176.
Shi Qingxiang, Liu Shiduo, Ji Jiangtao, et al. Studies on the mechanism of speed-controlled feed and soft threshing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1996, 12(2): 173-176. (in Chinese with English abstract)
[30] 師清翔,劉師多,姬江濤,等. 水稻的控速喂入柔性脫粒試驗研究[J]. 農(nóng)業(yè)機械學報,1996,27(1):41-45.
Shi Qingxiang, Liu Shiduo, Ji Jiangtao, et al. Research onspeed-control feed and soft threshing for rice[J]. Transactions of the Chinese Society of Agricultural Machinery, 1996, 27(1): 41-45. (in Chinese with English abstract)
[31] 任述光,謝方平,羅錫文,等. 柔性齒與剛性齒脫粒水稻功耗比較分析與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(5):12-18.
Ren Shuguang, Xie Fangping, Luo Xiwen, et al. Analysis and test of power consumption in paddy threshing using flexible and rigid teeth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 12-18. (in Chinese with English abstract)
[32] Siebenmorgen T J, Qin G. Relating rice kernel breaking force distributions to milling quality[J]. Transactions of the ASAE, 2005, 48(1): 223-228.
[33] Lu R, Siebenmorgen T J. Correlation of HRY to selected physical and mechanical properties of rice kernels[J]. Transactions of the ASAE, 1995, 38(3): 889-894.
Effects of axial flow and tangential flow mechanical threshing on rice damage and milling quality
Li Yinian, Chen Junsheng, Ding Qishuo, Ding Weimin
(School of Engineering, Nanjing Agricultural University, Nanjing 210031, China)
Rice grains would be damaged by the mechanical threshing equipment during harvesting, and mechanical damage extent of rice grains was directly correlated to the threshing cylinder patterns and operating parameters of threshing cylinder, such as roration speed of cylinder and threshing time. On the other hand, there were not objective and whole indices to appraise the mechanical threshing damage extent of rice grains. In order to ascertain the effect of harvest pattern with different mechanical threshing cylinder on rice quality characters, taking manual harvesting rice as control group, the quality characters of the rice harvested by axial flow and tangential flow mechanical threshing cylinder were investigated. The appraisal indices of rice quality characters, fissuring rate and glume-opening rate, germination potential and rate and seedling growth properties, three-point bending breaking force, head rice yield and broken rice rate, were selected and tested according to relevant methods and standards. Experiment results show that the fissuring rate and glume-opening rate for mechanically harvesting rice are higher than that for the hand-harvested rice, and the maximum difference of glume-opening rate is about 35.6%; the fissuring rate and glume-opening rate for axial flow mechanical threshing cylinder are less than that for tangential flow mechanical threshing cylinder. But the germination potential and rate for mechanically harvested rice are lower than that for the hand-harvested rice, and the maximum difference of germination rate is 53%. The germination potential and germination rate for axial flow mechanical threshing cylinder are larger than that for tangential flow mechanical threshing cylinder, and the maximum difference of germination rate is 34%-51%. The stem length and number of roots of rice seedling for axial flow mechanical threshing cylinder and that of the hand-harvested rice are larger than that for tangential flow mechanical threshing cylinder. The maximum differences of the stem length and number of roots between tangential flow mechanical threshing cylinder harvesting and hand-harvesting are respectively 15 mm and 2.4, and those between tangential flow threshing cylinder and axial flow threshing cylinder are respectively 12.6 mm and 1.8. The stem length and number of roots of rice seedling for axial flow mechanical threshing cylinder are adjacent to that for the hand-harvested rice. There are not significant differences for root length and number of leaves and leaves length between the hand-harvested rice and mechanical threshing harvested rice. The three-point bending breaking force for mechanical harvested rice is also lower than that for the hand-harvested rice, and the maximum differences of the three-point bending breaking force for ventral side and dorsal side are 4.5 and 3.8 N respectively. There is not large difference for the three-point bending breaking force between axial flow and tangential flow mechanical threshing cylinder harvesting. The milling quality of hand-harvested rice is also superior to mechanically harvested rice, and the maximum difference of the head rice yield between them is 12.11%. The head rice yield for axial flow mechanical threshing cylinder is 10.38% higher than that for tangential flow mechanical threshing cylinder. The broken rice rate for the hand-harvested rice is correspondingly lower than that for mechanically harvested rice. Cross correlation analysis for all appraisal indices of rice quality characters manifests that the fissuring rate and glume-opening rate are cross-correlated, the germination potential, germination rate and stem length and number of roots for rice seedling are cross-correlated, the three-point bending breaking force for ventral side and dorsal side are cross-correlated, and the milled rice rate and head rice yield are cross-correlated. The mechanical threshing harvest causes the damage to rice quality, and the damage extent of rice quality for different mechanical threshing cylinder harvesting is different. The threshing damage to rice quality for axial flow threshing harvest cylinder is lower than that for tangential flow threshing harvest cylinder. Rice seeds should be harvested by using harvester with axial flow threshing cylinder. On the other hand, the appraisal indices of quality characters of rice seeds harvested by the mechanical threshing cylinder should select the fissuring rate and glume-opening rate, germination potential and rate and seedling growth properties. The appraisal indices of quality characters of food rice harvested by the mechanical threshing cylinder should be the fissuring rate and glume-opening rate, three-point bending breaking force, head rice yield and broken rice rate. The appraisal indices for the rice harvested by mechanical threshing cylinder should been wholly determined according to the used aim of rice.
mechanization; crops; processing; rice axial flow threshing; tangential flow threshing; threshing damage; milling quality
10.11975/j.issn.1002-6819.2017.15.005
TS212.2
A
1002-6819(2017)-15-0041-08
2017-01-13
2017-05-07
江蘇省政策引導類計劃(產(chǎn)學研合作)——前瞻性聯(lián)合研究項目(BY2016060-01);中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(KYZ201161);高等學校博士學科點專項科研基金資助課題(20130097110042)
李毅念,男,副教授,主要從事農(nóng)產(chǎn)品加工及其品質(zhì)方面的研究。南京 南京農(nóng)業(yè)大學工學院,210031。Email:liyinian@163.com