邱麗芳,王棟,印思琪,楊德斌
(北京科技大學(xué) 機(jī)械工程學(xué)院,北京 100083)
X形柔性鉸鏈等效剛度分析及結(jié)構(gòu)特性研究*
邱麗芳,王棟,印思琪,楊德斌?
(北京科技大學(xué) 機(jī)械工程學(xué)院,北京 100083)
基于抗壓雙片段柔性鉸鏈,設(shè)計(jì)了4片段X形柔性鉸鏈,并對其結(jié)構(gòu)特性進(jìn)行了研究.X形柔性鉸鏈中的主要變形片段為彎扭耦合片段,分別運(yùn)用微分法和基于抗壓雙片段柔性鉸鏈等效剛度算法分析了其彎扭耦合等效剛度,推導(dǎo)出了X形柔性鉸鏈的等效剛度理論計(jì)算公式.設(shè)計(jì)了幾組不同尺寸的X形柔性鉸鏈實(shí)例,分別利用2種方法對這些實(shí)例進(jìn)行了計(jì)算,并在ABAQUS軟件中進(jìn)行了仿真分析,3種分析方法結(jié)果表明了理論計(jì)算公式和仿真模型的正確性.最后,通過對不同尺寸的X形柔性鉸鏈結(jié)構(gòu)特性的分析,得到了鉸鏈設(shè)計(jì)時(shí)應(yīng)該盡量避免的結(jié)構(gòu)參數(shù)范圍.
柔性鉸鏈;彎扭耦合;等效剛度;微分法;結(jié)構(gòu)特性
平面折展機(jī)構(gòu)(Lamina emergent mechanisms,LEMs)是柔順機(jī)構(gòu)的一種,由薄板材料加工制成,可實(shí)現(xiàn)平面外運(yùn)動.LEMs是通過柔性部件的彈性變形來完成運(yùn)動的,每一個(gè)平面層都具有整體性[1].它集合了正交機(jī)構(gòu)、變胞機(jī)構(gòu)和柔順機(jī)構(gòu)的特性[2],具有能提高精度、降低重量、無間隙、減少磨損和構(gòu)件數(shù)等柔順機(jī)構(gòu)的優(yōu)點(diǎn)[3].此外,還具有減少裝配時(shí)間、簡化加工工序以及降低振動和噪聲、節(jié)省運(yùn)輸空間等優(yōu)點(diǎn)[4],能實(shí)現(xiàn)四桿機(jī)構(gòu)、滑塊機(jī)構(gòu)、球面機(jī)構(gòu)、斯蒂芬森機(jī)構(gòu)等運(yùn)動[5-7].柔性機(jī)構(gòu)的應(yīng)用領(lǐng)域十分廣泛,文獻(xiàn)[8]將柔性機(jī)構(gòu)的主體應(yīng)用劃分為精密工程、仿生機(jī)器人和智能材料結(jié)構(gòu)三大主陣地;文獻(xiàn)[9]設(shè)計(jì)一種新型的柔順剝線鉗;文獻(xiàn)[10]中設(shè)計(jì)了一種柔性可回程扳手;文獻(xiàn)[11]設(shè)計(jì)了一種具有多種功能的不同大小形狀的信用卡機(jī)械機(jī)構(gòu).盡管柔性機(jī)構(gòu)具有很多優(yōu)勢,但其變形運(yùn)動范圍經(jīng)常受到限制,而且相比剛性機(jī)構(gòu),它的設(shè)計(jì)難度更大[12-14].
LEMs實(shí)現(xiàn)特性和發(fā)揮優(yōu)勢的關(guān)鍵在于柔性鉸鏈.對于LEMs柔性鉸鏈而言,幾何尺寸、邊界條件、材料特性等是影響其功能特性的關(guān)鍵因素[15].Jacobsen等[16]提出了關(guān)于LET柔性鉸鏈等效剛度的理論計(jì)算公式; Ferrell等[17]設(shè)計(jì)了兩種柔性鉸鏈——RUFF柔性鉸鏈和TUFF柔性鉸鏈;Delimont等[18]總結(jié)概括部分柔性鉸鏈等效剛度的理論計(jì)算公式;Delimont等[19]設(shè)計(jì)提出了一系列雙片段的柔性鉸鏈,并推導(dǎo)了其等效剛度計(jì)算公式;文獻(xiàn)[20]提出了一種新型S形柔性鉸鏈的等效剛度的理論計(jì)算公式.據(jù)作者所查文獻(xiàn),研究LEMs柔性鉸鏈的等效剛度理論計(jì)算公式時(shí),大部分定義為彎曲片段、扭轉(zhuǎn)片段或者連接片段.
本文基于文獻(xiàn)[19]中的雙片段柔性鉸鏈(Mixed Tension Resistant)類型衍生設(shè)計(jì)了四片段X形柔性鉸鏈,定義其主要的變形片段為彎扭耦合片段,運(yùn)用微分的思路分析了其彎扭耦合等效剛度,并對其結(jié)構(gòu)特性進(jìn)行了研究分析.
基于雙片段柔性鉸鏈(Mixed Tension Resistant)類型衍生出四片段X形柔性鉸鏈,其三維結(jié)構(gòu)圖如圖1所示,該鉸鏈的長度為l0,寬度為w0,厚度為t0.
圖1 X形柔性鉸鏈三維結(jié)構(gòu)圖Fig.1 3D model of X-shaped flexure hinge
X形鉸鏈可以分解為3部分,根據(jù)鉸鏈在轉(zhuǎn)動變形過程中所產(chǎn)生的變形不同,分為連接片段、彎扭耦合片段和彎曲片段,各個(gè)片段的位置如圖2所示.在鉸鏈?zhǔn)芰r(shí),圖中A,B,C,D片段發(fā)生彎曲變形和扭轉(zhuǎn)變形的程度相當(dāng),可以視為彎扭耦合片段,E片段主要為彎曲變形,所以視為彎曲片段.
圖2 X形柔性鉸鏈片段示意圖Fig.2 The segments of X-shaped flexure hinge
各個(gè)片段的尺寸如圖3所示,A,B,C,D片段的尺寸相同,長度為l1,寬度為w1,厚度為t0;E片段的長度為l2,寬度為w2,厚度為t0,彎扭耦合片段與y軸的夾角為α.
圖3 X形柔性鉸鏈片段尺寸示意圖Fig.3 Dimension labels of X-shaped flexure hinge
2.1 微分法
根據(jù)柔性鉸鏈的彈簧等效法,將X形柔性鉸鏈的A,B,C,D片段和E片段分別等效為彎扭彈簧和彎曲彈簧,根據(jù)彈簧的串并聯(lián)關(guān)系,即可得到X形柔性鉸鏈的等效彈簧模型,如圖4所示.
圖4 微分法的X形柔性鉸鏈等效彈簧模型圖Fig.4 The associated spring model of X-shaped flexure hinge with differential method
根據(jù)彈簧串并聯(lián)關(guān)系,可以得到X形柔性鉸鏈在轉(zhuǎn)動時(shí)的等效剛度:
(1)
由于A,B,C,D片段均為彎扭耦合片段,且尺寸相同,則有:
k1=k2=k4=k5=kBT
(2)
根據(jù)式(1)和式(2)可以得到
(3)
下面分別計(jì)算kBT和k3.
對于彎扭耦合片段而言,沒有現(xiàn)成的公式可以計(jì)算其等效剛度kBT,但可以利用微積分的思想分別求解彎曲等效剛度kB和扭轉(zhuǎn)等效剛度kT,再將其進(jìn)行耦合,即可得到彎扭耦合片段的等效剛度kBT.建立如圖5所示坐標(biāo)系,取出一個(gè)彎扭耦合片段進(jìn)行計(jì)算,設(shè)材料的彈性模量為E,泊松比為v.
圖5 彎扭耦合片段的坐標(biāo)示意圖Fig.5 X-Y plot of bending-torsional coupling segment
計(jì)算彎曲等效剛度kB,設(shè)彎扭耦合片段在轉(zhuǎn)矩T作用下彎曲變形轉(zhuǎn)角為θB,其微分圖如圖6所示.
圖6 彎扭耦合片段彎曲變形轉(zhuǎn)角的微分示意圖Fig.6 Differential diagram of bending angle in bending-torsional coupling segment
Δy=w1
(4)
(5)
(6)
(7)
(8)
計(jì)算彎曲等效剛度kT,設(shè)彎扭耦合片段在轉(zhuǎn)矩T作用下扭轉(zhuǎn)變形轉(zhuǎn)角為θT,其微分圖如圖7所示.
圖7 彎扭耦合片段扭轉(zhuǎn)變形轉(zhuǎn)角的微分示意圖Fig.7 Differential diagram of torsional angle in bending-torsional coupling segment
由于彎扭耦合片段的結(jié)構(gòu)特殊性,扭轉(zhuǎn)等效剛度需要分為3個(gè)區(qū)間進(jìn)行計(jì)算:
1)當(dāng)0 由于在0 (9) 2)當(dāng)w1 Δx=w1cotα (10) (11) (12) (13) (14) 3)當(dāng)L 由于在L (15) 在式(9)和式(15)中出現(xiàn)的Ki,Young等[21]給出了Ki的近似公式: (16) Lobontiu等[22]忽略了高次項(xiàng),將式(16)簡化為: (17) 式中:LTw為扭轉(zhuǎn)片段的寬度,t為鉸鏈的厚度,在本文中LTw=w1cotα,t=t0,則 (18) (19) 式中G為剪切模量,表示為: (20) 根據(jù)彈簧等效耦合關(guān)系有: (21) 由式(14),(19)和(21)可以得出彎扭耦合片段的扭轉(zhuǎn)等效剛度kT為: (22) 根據(jù)彈簧等效耦合關(guān)系有: (23) 由式(8),(22)和(23)即可得出彎扭耦合片段的等效剛度: (24) 對于E片段,視其為彎曲片段,可由以下公式計(jì)算得出其彎曲剛度 (25) (26) 將式(24)和(26)代入式(3)即可得到keq. 2.2 基于Mixed Tension Resistant算法 根據(jù)文獻(xiàn)[19]中對于Mixed Tension Resistant構(gòu)型的柔性鉸鏈推導(dǎo)出的等效剛度理論計(jì)算公式,結(jié)合彈簧等效法,可以將X形柔性鉸鏈的等效為如圖8所示彈簧模型. (27) kBm(cosα)2+kTm(sinα)2 (28) (29) (30) 由式(27)和(28)可以得到: (31) 圖8 基于Mixed Tension Resistant的等效彈簧模型Fig.8 The associated spring model of X-shaped flexure hinge with Mixed Tension Resistant method 選取鈹青銅作為X形柔性鉸鏈的材料,鈹青銅性能參數(shù)如表1所示. 表1 鈹青銅的性能參數(shù)Tab.1 Performance parameters of beryllium bronze 設(shè)計(jì)X形柔性鉸鏈的寬度w0為50 mm,厚度t0為1 mm,片段E長度l0為10 mm,考慮鉸鏈的尺寸不能過大,保持鉸鏈的結(jié)構(gòu)特性,E片段的寬度w2不能小于厚度t0,故鉸鏈長度l0在68 ~16 mm之間選取了14組數(shù)據(jù),具體參數(shù)如表2所示. 表2 X形鉸鏈實(shí)例尺寸Tab.2 The size of X-shaped flexure hinge examples 3.1 基于Mixed Tension Resistant算法 利用微分法計(jì)算上述不同尺寸X形柔性鉸鏈的等效剛度,得到結(jié)果如表3所示. 表3 微分法計(jì)算的等效剛度Tab.3 The equivalent stiffness calculated by differential method 利用基于Mixed Tension Resistant的等效剛度算法計(jì)算上述不同尺寸X形柔性鉸鏈的等效剛度,得到結(jié)果如表4所示. 3.2 有限元仿真及數(shù)據(jù)分析 在ABAQUS中建立以上14個(gè)尺寸X型柔性鉸鏈的有限元仿真模型,分別加載300 N·mm的轉(zhuǎn)矩,得到每個(gè)鉸鏈的角位移云圖,其中序號為14的角位移云圖如圖9所示.仿真得到轉(zhuǎn)角值及計(jì)算得到的等效剛度如表5所示. 表4 基于Mixed Tension Resistant算法計(jì)算的等效剛度Tab.4 The equivalent stiffness calculated by Mixed Tension Resistant method 圖9 X形鉸鏈實(shí)例的角位移云圖Fig.9 FEA model of the X-shaped flexure hinge showing the stress in bending condition 序號轉(zhuǎn)角/radkeq/(N·mm·rad-1)序號轉(zhuǎn)角/radkeq/(N·mm·rad-1)10.4302697.3580.3744801.2820.4181717.5390.3777794.2830.4069737.28100.3876773.9940.3966756.42110.4078735.6550.3878773.59120.4476670.2460.3808787.81130.5232573.3970.3758798.29140.6928433.02 根據(jù)上述仿真得到的等效剛度和兩種理論計(jì)算的等效剛度數(shù)據(jù)對比圖如圖10所示. 圖10 l2為10 mm的等效剛度數(shù)據(jù)對比圖Fig.10 Data comparison of the equivalent stiffness 10 mm in length of l2 由圖10和表3、表4、表5中的數(shù)據(jù)可以得到,在X形鉸鏈其他尺寸保持不變的情況下,當(dāng)鉸鏈角度30°<α<61°時(shí),微分法計(jì)算的等效剛度與ABAQUS仿真得到的等效剛度之間的誤差小于5%,而基于Mixed Tension Resistant算法計(jì)算的等效剛度與ABAQUS仿真得到的等效剛度之間誤差大于5%;當(dāng)鉸鏈角度61°<α<71°時(shí),微分法和基于Mixed Tension Resistant算法計(jì)算的等效剛度與ABAQUS仿真得到的等效剛度之間的誤差均在5%以內(nèi).文獻(xiàn)[16]中提到式(17)的適用條件為LTw>t,文獻(xiàn)[19]中提到式(30)的適用條件為w1cosα>t0,當(dāng)鉸鏈角度α≥71°時(shí),w1cosα 為進(jìn)一步驗(yàn)證微分法和基于Mixed Tension Resistant算法的正確性,在保證鉸鏈寬度w0為50 mm,厚度t0為1 mm不變的情況下,改變片段E長度l2為12 mm,同樣在鉸鏈長度l0在68~16 mm之間選取了14組數(shù)據(jù),分別利用微分法和基于Mixed Tension Resistant算法進(jìn)行等效剛度的計(jì)算,并在ABAQUS中建立模型進(jìn)行仿真分析,最后繪制等效剛度數(shù)據(jù)對比圖如圖11所示. 圖11 l2為12 mm的等效剛度數(shù)據(jù)對比圖Fig.11 Data comparison of the equivalent stiffness 12 mm in length of l2 圖11中的曲線和圖10曲線變化趨勢基本一致,進(jìn)一步驗(yàn)證了上述兩種計(jì)算方法的誤差范圍,即可將上述情況描述如下:對于X形鉸鏈等效剛度的計(jì)算,在保證其他尺寸不變的情況下,當(dāng)鉸鏈角度30°<α<11°時(shí),利用微分法計(jì)算;當(dāng)鉸鏈角度61°<α<71°時(shí),微分法和基于Mixed Tension Resistant算法均可;當(dāng)鉸鏈角度α≥71°時(shí),現(xiàn)有的理論公式無法進(jìn)行等效剛度的計(jì)算.并且在鉸鏈角度42°<α<50°時(shí),X形鉸鏈的等效剛度同樣為較大,即彎曲性能較差,設(shè)計(jì)時(shí)應(yīng)盡量避免. 1)基于雙片段柔性鉸鏈中的Mixed Tension Resistant類型鉸鏈衍生設(shè)計(jì)了X形柔性鉸鏈,分析了其彎扭耦合等效剛度,分別利用微分法和基于Mixed Tension Resistant算法推導(dǎo)出了X形柔性鉸鏈兩種不同的等效剛度理論計(jì)算公式. 2)設(shè)計(jì)了幾組不同尺寸的X形柔性鉸鏈實(shí)例,并對其進(jìn)行了理論分析和建模仿真,確定了微分法和基于Mixed Tension Resistant算法兩種理論計(jì)算公式的適用范圍:當(dāng)鉸鏈角度30°<α<61°時(shí),利用微分法計(jì)算;當(dāng)鉸鏈角度61°<α<71°時(shí),微分法和基于Mixed Tension Resistant算法均可;當(dāng)鉸鏈角度α≥71°時(shí),現(xiàn)有的理論公式無法進(jìn)行等效剛度的計(jì)算. 3)在X形柔性鉸鏈其他尺寸保持不變的情況下,當(dāng)鉸鏈角度42°<α<50°時(shí),鉸鏈的等效剛度較大,其彎曲性能較差,設(shè)計(jì)中應(yīng)該盡量避免選用鉸鏈結(jié)構(gòu)角度處于42°至50°之間的鉸鏈. [1] JACOBSEN J O,HOWELL L L,MAGLEBY S P.Components for the design of lamina emergent mechanisms [C]//Proceedings of the ASME International Mechanical Engineering Congress and Exposition,IMECE 2007.New York:American Society of Mechanical Engineers,2008:165-174. [2] JACOBSEN J O,WINDER B G,HOWELL L L,etal.Lamina emergent mechanisms and their basic elements [J].Journal of Mechanisms and Robotics,2010,2(1):1-9. [3] PARISE J J,HOWELL L L,MAGLEBY S P.Ortho-planar linear-motion springs[J].Mechanism and Machine Theory,2001,36(11/12):1281-1299. [4] 王雯靜,余躍慶,王華偉.柔順機(jī)構(gòu)國內(nèi)外研究現(xiàn)狀分析[J].機(jī)械設(shè)計(jì),2007,24(6):1-4. WANG Wenjing,YU Yueqing,WANG Huawei.Analysis on the research status of compliant mechanism at home and abroad [J].Journal of Machine Design,2007,24(6):1-4.(In Chinese) [5] GOLLNICK P S,BLACK J D,SAVAGE E E,etal.A preliminary study of actuation approaches for lamina emergent mechanisms [C]// Proceedings of the ASME Design Engineering Technical Conference,IDETC/CIE 2011.New York:American Society of Mechanical Engineers,2011:191-202. [6] ATEN Q T,ZIRBEL S A,JENSEN B D,etal.A numerical method for position analysis of compliant mechanisms with more degrees of freedom than inputs [J].Journal of Mechanical Design,2011,133(6):061009. [7] WILDING S E,HOWELL L L,MAGLEBY S P.Spherical lamina emergent mechanisms [J].Mechanism and Machine Theory,2012,49:187-197. [8] 于靖軍,郝廣波,陳貴敏,等.柔性機(jī)構(gòu)及其應(yīng)用研究進(jìn)展[J].機(jī)械工程學(xué)報(bào),2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,etal.State-of-art of compliant mechanisms and their applications [J].Journal of Mechanical Engineering,2015,51(13):53-68.(In Chinese) [9] 達(dá)選祥,勾燕潔,陳貴敏.一種基于變胞變換的柔順剝線鉗[J].機(jī)械工程學(xué)報(bào),2015,51(1):69-75. DA Xuanxiang,GOU Yanjie,CHEN Guimin.A compliant wire stripper based on metamorphic transformation [J].Journal of Mechanical Engineering,2015,51(1):69-75.(In Chinese) [10]馬付雷,劉小院,陳貴敏.一種用于狹小操作空間的柔性可回程扳手[J].機(jī)械工程學(xué)報(bào),2015,51(13):183-188. MA Fulei,LIU Xiaoyuan,CHEN Guimin.Design of a compliant reversible wrench for limited-space operations [J].Journal of Mechanical Engineering,2015,51(13):183-188.(In Chinese) [11]ALBRECHTSEN N B,MAGLEBY S P,HOWELL L L.Using lamina emergent mechanisms to develop credit-card-sized products [C]// Proceedings of the ASME Design Engineering Technical Conference,IDETC/CIE 2011.New York:American Society of Mechanical Engineers,2011:223-231. [12]SMITH S T.Flexures:elements of elastic mechanisms [M].Florida:CRC Press,2000:2-5. [13]LOBONTIU N.Compliant mechanisms:design of flexure hinges [M].Florida:CRC Press,2002:1-14. [14]HOWELL L L.Compliant mechanisms [M].New York:John Wiley & Sons,2001:6-8. [15]JACOBSEN J O,HOWELL L L,MAGLEBY S P.Components for the design of lamina emergent mechanisms [C]// Proceedings of the ASME International Mechanical Engineering Congress and Exposition,IMECE 2007.New York:American Society of Mechanical Engineers,2008:165-174. [16]JACOBSEN J O,CHEN Guimin,HOWELL L L,etal.Lamina Emergent Torsional (LET) joint [J].Mechanism and Machine Theory,2009,44(11):2098-2109. [17]FERRELL D B,ISAAC Y F,MAGLEBY S P,etal.Development of criteria for lamina emergent mechanism flexures with specific application to metals [J].Journal of Mechanical Design,2011,133(3):031009. [18]DELIMONT I L,MAGLEBY S P,HOWELL L L.Evaluating compliant hinge geometries for origami-inspired mechanisms [J].Journal of Mechanisms and Robotics,2015,7(1):011009. [19]DELIMONT I L,MAGLEBY S P,HOWELL L L.A family of dual-segment compliant joints suitable for use as surrogate folds [J].Journal of Mechanical Design,2015,137(9):92302. [20]邱麗芳,孟天祥,張九俏,等.平面折展機(jī)構(gòu)S形柔性鉸鏈設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):324-328. QIU Lifang,MENG Tianxiang,ZHANG Jiuqiao,etal.Design and test of lamina emergent mechanisms S-shaped flexure hinge [J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(9):324-328.(In Chinese) [21]YOUNG W C,BUDYNAS R G.Roark's formulas for stress and strain [M].7th Edition.New York:McGraw-Hill,2002:401-412. [22]LOBONTIU N,GARCIA E,CANFIELD S.Torsional stiffness of several variable rectangular cross-section flexure hinges for macro-scale and MEMS applications [J].Smart Materials and Structures,2004,13(1):12-19. Research on Equivalent Stiffness and Structure Characteristic of X-shaped Flexure Hinge QIU Lifang,WANG Dong,YIN Siqi,YANG Debin? (School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China) Based on compressed double segment flexure hinge,the four segment X-shaped flexure hinge was designed,and its structure characteristic was studied.As the major deformation segment of X-shaped flexure hinge is bending-torsional coupling segment,the analysis on the equivalent stiffness of bending torsion coupling was performed by differential method and the method based on compressed double segment flexure hinge,and the theoretical calculation formula of the equivalent stiffness of X-shaped flexure hinge was derived.Several examples of X-shaped flexure hinge with different sizes were presented,the equivalent stiffness of these examples was calculated by two calculation formulas,and the simulation analysis on these examples was then carried out through ABAQUS software.The results of the three methods have showed the correctness of the theoretical calculation formula and the simulation model.Finally,the range of structural parameters that should be avoided when designing the hinge was obtained by the analysis of the structure characteristic. flexure hinge;bending-torsional coupling;equivalent stiffness;differential method;structure characteristic 1674-2474(2017)08-0063-07 10.16339/j.cnki.hdxbzkb.2017.08.010 2016-07-26 國家自然科學(xué)基金資助項(xiàng)目(51475037),National Natural Science Foundation of China(51475037) 邱麗芳(1966-),女,浙江嘉興人,北京科技大學(xué)教授 ?通訊聯(lián)系人,E-mail:ydb@ustb.edu.cn TH122 A3 X形柔性鉸鏈結(jié)構(gòu)特性研究
4 結(jié) 論