邱麗芳 黃 鋼 陳海翔
(北京科技大學(xué)機械工程學(xué)院, 北京 100083)
基于特征參數(shù)的DCA-LET結(jié)構(gòu)設(shè)計與性能分析
邱麗芳 黃 鋼 陳海翔
(北京科技大學(xué)機械工程學(xué)院, 北京 100083)
設(shè)計了一種基于雙C型結(jié)構(gòu)的柔性鉸鏈,稱為DCA-LET柔性鉸鏈。定義了影響該柔性鉸鏈性能的特征參數(shù),通過對8組不同特征參數(shù)實例的仿真分析,擬合了特征參數(shù)與等效彈簧剛度之間的關(guān)系,推導(dǎo)了基于該鉸鏈特征參數(shù)的等效彈簧剛度的理論計算公式并且引入了修正系數(shù)。通過3組實例的理論計算和有限元仿真分析,驗證了理論計算公式以及修正系數(shù)的正確性。通過對比3組不同特征參數(shù)的DCA-LET柔性鉸鏈與內(nèi)LET柔性鉸鏈的彎曲性能與抗拉性能,得出控制特征參數(shù)能夠控制該柔性鉸鏈的彎曲性能,同時保證其抗拉壓性能并沒有明顯下降。
DCA-LET; 等效剛度; 特征參數(shù); 柔性鉸鏈; 抗拉性能
柔性(柔順)機構(gòu)主要通過柔性構(gòu)件的變形來進行力或運動的傳遞[1]。柔順機構(gòu)具有加工方便、成本低廉、結(jié)構(gòu)緊湊等特點。平面折展機構(gòu)(Lamina emergent mechanisms,LEMs)由薄板材料加工制成,可實現(xiàn)在平面外運動的一類柔順機構(gòu)[2]。LEMs在電子工業(yè)、汽車制造、生物醫(yī)學(xué)、搜救設(shè)備等領(lǐng)域有著廣泛的應(yīng)用[3],在飛機機翼[4]以及太陽能帆板[5]等航空機械方面也具有廣闊的應(yīng)用前景,在微機電系統(tǒng)如細胞夾持裝置[6]、升降平臺[7]以及機器人關(guān)節(jié)方面[8]等也有涉及,而柔性機構(gòu)的設(shè)計綜合還有待進一步探索與發(fā)展。
LEMs主要通過柔性鉸鏈來完成運動與力的傳遞,故而對柔性鉸鏈的設(shè)計非常重要[9]。在LEMs柔性鉸鏈設(shè)計方面,國內(nèi)外學(xué)者都作了大量的研究[10-15]。近幾年國內(nèi)對柔性鉸鏈的研究發(fā)展較快,如田延嶺等[16]對V型柔性鉸鏈進行了研究,陳貴敏等[17]提出了深切口橢圓柔性鉸鏈,于靖軍等[18]對柔性鉸鏈設(shè)計方法進行了探討。邱麗芳等[19-21]設(shè)計了S型柔性鉸鏈、Triple-LET、S-LET復(fù)合型鉸鏈等。
目前,柔性鉸鏈在應(yīng)用中存在的主要問題是柔度和精度問題,也是柔性鉸鏈設(shè)計的關(guān)鍵問題,一般情況下,在提高柔性鉸鏈的彎曲性能時,其抗拉性能往往會下降,并且其轉(zhuǎn)動中心漂移會加大,也就是柔度提高,但精度下降。本文考慮精度,首先設(shè)計一種雙C型結(jié)構(gòu)的柔性鉸鏈,為了進一步提高雙C型結(jié)構(gòu)柔性鉸鏈的彎曲性能,即考慮柔度,設(shè)計基于該結(jié)構(gòu)的柔性鉸鏈,稱之為DCA-LET柔性鉸鏈,對其彎曲性能進行分析,定義影響該柔性鉸鏈性能的特征參數(shù),推導(dǎo)等效剛度計算公式,在其抗拉壓性能下降不明顯的情況下,通過控制特征參數(shù)來控制鉸鏈的彎曲等效剛度,以期為該鉸鏈的設(shè)計提供一種思路。
1.1 結(jié)構(gòu)設(shè)計
為提高LET柔性鉸鏈的抗拉壓性能,設(shè)計雙C型結(jié)構(gòu)的柔性鉸鏈(Double C-type flexure hinge,DC-LET)如圖1所示。在其抗拉壓性能下降不明顯的前提下,為了進一步提高雙C型結(jié)構(gòu)柔性鉸鏈的彎曲性能,以一定規(guī)律去除雙C型柔性鉸鏈圓形片段上的部分結(jié)構(gòu),設(shè)計了基于雙C型結(jié)構(gòu)的新型柔性鉸鏈(Double C-type flexure hinge with arc gaps, DCA-LET),其結(jié)構(gòu)如圖2所示,設(shè)厚度為t,總寬度為W,總長度為L。
圖1 DC-LET柔性鉸鏈三維結(jié)構(gòu)圖Fig.1 3D model of DC-LET
圖2 DCA-LET柔性鉸鏈三維結(jié)構(gòu)圖Fig.2 3D model of DCA-LET
DCA-LET柔性鉸鏈尺寸示意圖如圖3所示,根據(jù)等效法,柔性片段的等效彈簧模型如圖4所示。
圖3 DCA-LET柔性鉸鏈尺寸示意圖Fig.3 Dimension labels of DCA-LET
圖4 DCA-LET柔性鉸鏈等效彈簧模型Fig.4 Associated spring model of DCA-LET
1.2 等效剛度仿真分析
下面的分析均設(shè)定DCA-LET柔性鉸鏈的L為50 mm,W為50 mm,t為0.5 mm。設(shè)計DCA-LET柔性鉸鏈尺寸如表1所示。選取材料為鈹青銅,其彈性模量E=128 GPa,泊松比ν=0.29,屈服強度[σs]=1 170 MPa。
由于設(shè)計的DCA-LET柔性鉸鏈是由DC-LET柔性鉸鏈去除部分結(jié)構(gòu)得到的,因此定義與去除結(jié)構(gòu)相關(guān)的尺寸Δθ、ΔR以及去除結(jié)構(gòu)個數(shù)為DCA-LET柔性鉸鏈的特征參數(shù),如圖3所示??紤]到分析的復(fù)雜性,首先確定ΔR為一個定值,并且確定去除結(jié)構(gòu)的具體個數(shù)為每四分之一半圓環(huán)去除4個結(jié)構(gòu)(圖3),下面討論特征參數(shù)Δθ與等效剛度的關(guān)系。
將實例1的特征參數(shù)設(shè)置為:Δθ=10°,在ABAQUS中建立DCA-LET柔性鉸鏈實例1的有限元仿真模型。圖5所示為DCA-LET柔性鉸鏈受到T=178 N·mm的彎矩后所產(chǎn)生的變形量。由圖5可得轉(zhuǎn)角θ=1.490 rad(約為86°),應(yīng)力為1 149 MPa,小于屈服強度1 170 MPa,鉸鏈變形量在彈性變形量范圍之內(nèi)。
表1 DCA-LET柔性鉸鏈尺寸Tab.1 Dimensions of DCA-LET
圖5 DCA-LET(Δθ=10°)有限元分析Fig.5 Finite element analysis results of DCA-LET(Δθ=10°)
由式(1)可求得特征參數(shù)Δθ=10°時DCA-LET
柔性鉸鏈等效剛度仿真值為kf=119.463 N·mm/rad(表2)。
(1)
式中T——作用于鉸鏈的轉(zhuǎn)矩,N·mmθ——柔性鉸鏈轉(zhuǎn)角,rad
設(shè)計實例2的特征參數(shù)為:Δθ=3°,同樣在ABAQUS中建立DCA-LET柔性鉸鏈實例2的有限元仿真模型。同理可得特征參數(shù)Δθ=3°時DCA-LET柔性鉸鏈等效剛度仿真值為kf=157.986 N·mm/rad (表2)。
用ABAQUS仿真得到不同特征參數(shù)的設(shè)計實例3~8的等效剛度仿真值如表2所示,根據(jù)表2得到特征參數(shù)與等效剛度的關(guān)系曲線如圖6所示。
表2 不同特征參數(shù)DCA-LET柔性鉸鏈等效剛度仿真值Tab.2 Simulation equivalent stiffness of DCA-LET with different characteristic parameters
圖6 DCA-LET等效剛度與特征參數(shù)關(guān)系曲線Fig.6 Relationship curves between characteristic parameters and equivalent stiffness of DCA-LET
1.3 等效剛度理論公式推導(dǎo)
依據(jù)彈簧的串并聯(lián)關(guān)系,該鉸鏈等效剛度為
(2)
由圖3可知,該柔性鉸鏈結(jié)構(gòu)關(guān)于x、y軸對稱,片段1、2、3、4形狀完全相同,若各片段等效剛度用k表示,則式(2)可簡化為
keq=k
(3)
圖7 DCA-LET柔性片段劃分Fig.7 Dividing of DCA-LET segments
當(dāng)鉸鏈受到如圖2所示轉(zhuǎn)矩T時,設(shè)圖7所示9個片段所產(chǎn)生的變形量分別為θi(i=1,2,…,9),則總變形量θ為
θ=θ1+θ2+θ3+θ4+θ5+θ6+θ7+θ8+θ9
(4)
根據(jù)文獻[22]可得
(5)
(6)
(7)
(8)
(9)
將式(4)~(9)代入式(1)中可得DCA-LET柔性鉸鏈的等效剛度理論計算公式為
(10)
簡化后可得
(11)
將DCA-LET柔性鉸鏈實例1~ 8不同特征值參數(shù)代入式(11)計算得到等效剛度理論值,如圖6所示,由圖6得到仿真值與理論值曲線趨勢基本一致,但不吻合,可能是去除部分結(jié)構(gòu)之后,變形片段的彎扭耦合更加明顯所致,為了使理論值更加接近仿真值,引入修正系數(shù)μ,修正后的等效剛度為
kx=μk
(12)
設(shè)修正系數(shù)為μ=0.84,將實例1~8不同特征值的DCA-LET柔性鉸鏈使用式(12)計算得到修正后的等效剛度理論值如圖6所示。由圖6可知,經(jīng)過引入修正系數(shù)μ進行修正后,等效剛度仿真值與理論值基本吻合。
綜上得到修正后等效剛度理論計算公式為
(13)
為驗證式(13)的正確性,另取一組外徑R和內(nèi)徑r,并取3個不同特征參數(shù)的驗算實例,如表3所示,其余尺寸同前。設(shè)修正系數(shù)μ為 0.9,由式(13)計算得到DCA-LET柔性鉸鏈等效剛度理論值,如表3所示。在ABAQUS中建立3個驗算實例的有限元仿真模型,得到等效剛度仿真值,如表3所示。
表3 特征參數(shù)為Δθ 為6°、8°和10°的DCA-LET柔性鉸鏈等效剛度的仿真值、理論值及相對誤差Tab.3 Simulated and theoretical equivalent stiffnesses and their relative error of DCA-LET with characteristic parameter Δθ of 6°, 8° and 10°
設(shè)等效剛度理論計算值與仿真值的相對誤差為δ,則
(14)
由式(14)計算3個不同特征參數(shù)實例的相對誤差如表3所示。
由表3可得,鉸鏈等效剛度的有限元仿真值和理論值基本一致,相對誤差均在1.4%以內(nèi),驗證了DCA-LET柔性鉸鏈的等效剛度理論計算公式的正確性。
圖8 特征參數(shù)Δθ為10°、5.5°和3°的DCA-LET柔性鉸鏈與內(nèi)LET柔性鉸鏈結(jié)構(gòu)圖Fig.8 Schematics of DCA-LET with characteristic parameter Δθ of 10°, 5.5° and 3° and inside LET
為了分析DCA-LET柔性鉸鏈的性能,選取了3個不同特征參數(shù)的DCA-LET柔性鉸鏈進行彎曲性能與抗拉性能仿真分析,并且同內(nèi)LET柔性鉸鏈性能進行對比,3個DCA-LET柔性鉸鏈外形尺寸及內(nèi)LET柔性鉸鏈外形尺寸同前,如圖8所示。通過ABAQUS有限元仿真得到3個特征參數(shù)下DCA-LET柔性鉸鏈以及內(nèi)LET柔性鉸鏈在不同轉(zhuǎn)矩與拉力作用下的轉(zhuǎn)角與位移,如圖9、10所示。
圖9 轉(zhuǎn)矩與轉(zhuǎn)角關(guān)系曲線Fig.9 Relationship curves between torque and bending angles
圖10 拉力與位移關(guān)系曲線Fig.10 Relationship curves between force and displacement
由圖9、圖10可知,DCA-LET柔性鉸鏈在彎曲性能方面均優(yōu)于內(nèi)LET柔性鉸鏈,在相同拉力作用下,特征參數(shù)Δθ為5.5°與3°的DCA-LET柔性鉸鏈在抗拉性能方面均優(yōu)于內(nèi)LET柔性鉸鏈,而特征參數(shù)Δθ為10°的DCA-LET柔性鉸鏈的抗拉性能略低于內(nèi)LET柔性鉸鏈,但其彎曲性能遠優(yōu)于內(nèi)LET柔性鉸鏈,也優(yōu)于特征參數(shù)Δθ為5.5°與3°的DCA-LET柔性鉸鏈,因此特征參數(shù)Δθ為10°的DCA-LET柔性鉸鏈綜合性能較好。
(1)設(shè)計了一種基于雙C型結(jié)構(gòu)的柔性鉸鏈,即DCA-LET柔性鉸鏈的結(jié)構(gòu),定義了影響該鉸鏈特性的特征參數(shù)。通過8組實例的仿真分析,得到該鉸鏈等效剛度與一個特征參數(shù)的關(guān)系曲線,在此基礎(chǔ)上推導(dǎo)出了DCA-LET柔性鉸鏈等效剛度的理論計算公式,并引入了修正系數(shù)。用3組不同特征參數(shù)和外形尺寸實例的理論計算和仿真分析驗證了理論計算公式的正確性。
(2)對3個不同特征參數(shù)的DCA-LET柔性鉸鏈進行了彎曲性能與抗拉性能仿真分析并與內(nèi)LET柔性鉸鏈進行了性能對比,得到特征參數(shù)Δθ為10°、5.5° 及3°的DCA-LET柔性鉸鏈的彎曲性能均優(yōu)于內(nèi)LET柔性鉸鏈,特征參數(shù)Δθ為5.5° 與3°的DCA-LET柔性鉸鏈的抗拉性能同樣優(yōu)于內(nèi)LET柔性鉸鏈,而特征參數(shù)Δθ為10°的DCA-LET柔性鉸鏈在抗拉性能方面略低于內(nèi)LET柔性鉸鏈,但其彎曲性能遠優(yōu)于內(nèi)LET柔性鉸鏈,因此DCA-LET柔性鉸鏈的綜合性能優(yōu)于內(nèi)LET柔性鉸鏈。
1 HOWELL L L. Compliant mechanisms[M]. New York: Wiley, 2001.
2 ALBRECHTSEN N B, MAGLEBY S P, HOWELL L L. Identifying potential applications for lamina emergent mechanisms using technology push product development[C]∥ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010: 513-521.
3 JACOBSEN J O. Fundamental components for lamina emergent mechanisms[D]. Utah:Brigham Young University,2008.
4 LANDON S D, MAGLEBY S P, HOWELL L L. Preliminary concepts for deployable wings on small UAVs using compliance[C]∥ASME 2005 International Mechanical Engineering Congress and Exposition, 2005:353-363.
5 ZIRBEL S A, TREASE B P, MAGLEBY S P, et al. Deployment methods for an origami-inspired rigid-foldable array[C]∥Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center, 2014:189-194.
6 ATEN Q T, JENSEN B D, BURNETT S H, et al. A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes[J]. Review of Scientific Instruments, 2014, 85(5):055005-055005-10.
7 邱麗芳,陳家興,張九俏,等. 平面折展升降柔順機構(gòu)設(shè)計[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2015,46(10): 370-375. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20151050&journal_id=jcsam. DOI: 10.6041/j.issn.1000-1298.2015.10.050. QIU Lifang, CHEN Jiaxing, ZHANG Jiuqiao, et al. Design of lamina emergent elevator mechanism[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(10): 370-375. (in Chinese)
8 田浩, 余躍慶, 呂強. 片簧型柔順并聯(lián)機器人運動規(guī)劃與軌跡跟蹤技術(shù)[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2015, 46(3):372-378.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20150354&journal_id=jcsam. DOI: 10.6041/j.issn.1000-1298.2015.03.054. TIAN Hao, YU Yueqing, Lü Qiang. Motion planning and trajectory tracking of parallel robot with leaf compliant joint[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3):372-378. (in Chinese)
9 WILDING S E, HOWELL L L, MAGLEBY S P. Spherical lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2012, 49: 187-197.
10 JACOBSEN J O, WINDER B G, HOWELL L L, et al. Lamina emergent mechanisms and their basic elements[J]. Journal of Mechanisms and Robotics, 2010, 2(1): 298-320.
11 TREASE B P, MOON Y M, KOTA S. Design of large-displacement compliant joints [J]. Journal of Mechanical Design, 2005, 127(4): 788-798.
12 FERRELL D B, ISAAC Y F, MAGLEBY S P, et al. Development of criteria for lamina emergent mechanism flexures with specific application to metals[J]. Journal of Mechanical Design, 2011, 133(3): 586-599.
13 JACOBSEN J O, CHEN G, HOWELL L L, et al. Lamina emergent torsional (LET) joint[J]. Mechanism and Machine Theory, 2009, 44(11): 2098-2109.
14 WILDING S E, HOWELL L L, MAGLEBY S P. Introduction of planar compliant joints designed for combined bending and axial loading conditions in lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2012, 56: 1-15.
15 ATEN Q T, JENSEN B D, HOWELL L L. Geometrically non-linear analysis of thin-film compliant MEMS via shell and solid elements[J]. Finite Elements in Analysis and Design, 2012, 49(1): 70-77.
16 TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design[J]. Precision Engineering, 2010, 34(3):408-418.
17 陳貴敏, 韓琪. 深切口橢圓柔性鉸鏈[J]. 光學(xué)精密工程, 2009, 17(3):570-575. CHEN Guimin, HAN Qi. Deep-notch elliptical flexure hinges[J]. Optics and Precision Engineering, 2009, 17(3):570-575. (in Chinese)
18 于靖軍, 裴旭, 畢樹生,等. 柔性鉸鏈機構(gòu)設(shè)計方法的研究進展[J]. 機械工程學(xué)報, 2010, 46(13):2-13. YU Jingjun, PEI Xu, BI Shusheng, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13):2-13. (in Chinese)
19 邱麗芳, 孟天祥, 張九俏,等. 平面折展機構(gòu)S形柔性鉸鏈設(shè)計與試驗[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2014, 45(9):324-328.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20140952&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2014.09.052. QIU Lifang, MENG Tianxiang, ZHANG Jiuqiao, et al. Design and test of lamina emergent mechanisms S-shaped flexure hinge[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 324-328.(in Chinese)
20 邱麗芳, 印思琪, 謝仲添,等. 基于串聯(lián)式Triple-LET的LEMs滑塊機構(gòu)分析[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2016, 47(6):381-386.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160650&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2016.06.050. QIU Lifang, YIN Siqi, XIE Zhongtian, et al. Analysis of lamina emergent slider mechanism based on the series Triple-LET[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6):381-386.(in Chinese)
21 邱麗芳, 龐大千, 陳家興,等. S-LET復(fù)合型柔性鉸鏈設(shè)計與性能研究[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2016,47(2):408-412.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160255&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2016.02.055. QIU Lifang, PANG Daqian, CHEN Jiaxing, et al. Design and performance analysis of lamina emergent mechanisms S-LET-shaped flexure hinge[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(2):408-412.(in Chinese)
22 邱麗芳, 韋志鴻, 徐金梧. 新型平面折展機構(gòu)柔性鉸鏈等效剛度分析[J]. 機械工程學(xué)報, 2014,50(17):25-30. QIU Lifang, WEI Zhihong, XU Jinwu. Analysis of equivalent stiffness of new LEMs flexure hinge[J]. Journal of Mechanical Engineering, 2014,50(17):25-30.(in Chinese)
Structure Design and Performance Analysis of DCA-LET Based on Characteristic Parameters
QIU Lifang HUANG Gang CHEN Haixiang
(SchoolofMechanicalEngineering,UniversityofScienceandTechnologyBeijing,Beijing100083,China)
LEMs achieve the movement and force transmission through flexure hinges, so it is very important to design flexure hinges. A new type of flexure hinge based on double C-type structure was proposed, named as DCA-LET flexure hinge. The characteristic parameters influencing the performance of the flexure hinge were defined. Based on the simulation analysis of eight examples of different characteristic parameters, the fitting curve of the relationship between the characteristic parameters and the simulation values of the equivalent stiffness was obtained. The theoretical formula of equivalent spring stiffness based on the characteristic parameters of the hinge was deduced and the correction factor was introduced. The correctness of theoretical calculation formula and correction factor was verified by theoretical calculation and finite element simulation of three examples. The bending and tensile properties of three DCA-LET flexure hinges with different characteristic parameters and inside LET flexure hinge were compared, and the results showed that the DCA-LET flexure hinge had better overall performance than the LET flexure hinge. The characteristic parameters can control the bending performance of DCA-LET hinge, and its tensile and compression properties had no significant decrease, which provided an effective method for the design of the flexure hinges.
DCA-LET; equivalent stiffness; characteristic parameters; flexure hinge; anti-tensile performance
10.6041/j.issn.1000-1298.2017.08.048
2017-01-14
2017-03-08
國家自然科學(xué)基金項目(51475037)
邱麗芳(1966—),女,教授,主要從事機械設(shè)計及理論和柔順機構(gòu)研究,E-mail: qlf@ustb.edu.cn
TH122
A
1000-1298(2017)08-0399-06