Yanmei Li
(School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)
Classification of Phase Portraits ofZ2- Equivariant Planar Hamiltonian Vector Field of Degree 7 (Ⅶ)
Yanmei Li
(School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)
In this paper, by the use of the method of qualitative analysis of differential equations, 25 phase portraits of a newZ2- equivariant planar Hamiltonian vector fields of degree 7 are obtained and the parameter space is classified.
Hamiltonian vector field of degree 7;Z2- equivariant property; singular point; phase portrait
In[1―7], the phase portraits of planar Hamiltonian vector fields of degree 7 withZq- equivariant property have been discussed, but there are still many vector fields deserving to be studied. In this paper, we will deliberate a new planar Hamiltonian vector fields as follows and get 25 phase portraits
(1)
wherekis a parameter with k>1.
The Jacobian of this system is
in which
Discussing the Jacobians of these singular points, we get the following result:
Theorem 1 The singular points (0,0),(±1.2,0),(0,m),(±1,1),(±1.3,1),(±1.2,m),(±1,n)and (±1.3,n) are centers, and the others are saddle points.
The Hamiltonian of the system is
Itiseasytoget
H(±1,0)=-0.3892333, H(±1.2,0)=-0.385897,H(±1.3,0)=-0.3866327 ,
H(0,1)=-(10.8k2-5.6k+1)/24, H(0,m)=(2.6k4-8.8k3)/24 ,
H(0,n)=0.0486k4-0.324k3,
H(0,m)-H(0,1)=(k-1)3(2.6k-1)/24, H(0,m)-H(0,n)=0.512k3(1.4k-1)/12,
H(0,1)-H(0,n)=(1.8k-1)3(1-0.2k)/24,
andH(±1,0) ComparingtheHamiltoniansofthesingularpoints,weobtainthefollowingresults. Theorem2Thereexist25phaseportraitsofsystem(1)showninFig(1),andeveryoneofthemcorrespondstothevalueofkinthefollowingscopes: (1)1 (7)1.17555 (11)1.32046 ProofBecausethetrainofthoughtissimilar,weonlyprovethefirsttencases. WeseparatelydenoteH(0,0),H(±1,0),H(±1.2,0),H(±1.3,0),H(0,1),H(0,m),H(0,n),H(±1,1),H(±1,m),H(±1,n),H(±1.2,1),H(±1.2,m),H(±1.2,n),H(±1.3,1),H(±1.3,m)andH(±1.3,n)byh00,h10,hb0,hc0,h01,h0m,h0n,h11,h1m,h1n,hb1,hbm,hbn,hc1,hcmandhcm. Obviouslyhxy=hx0+h0y, h10 (1)When1 h1n andthephaseportraitisshownasFig.1(1). (2)Whenk=1.12831,wehavehc0=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities 對于苯、甲苯、環(huán)己烷和甲基環(huán)己烷等組分的定量分析,由于在色譜圖中,苯和環(huán)己烷出峰的保留時間在n-C6和n-C7之間,甲苯和甲基環(huán)己烷在n-C7和n-C8之間出峰,對這幾個組分的定量可采用式(6)計算。 h1n sothephaseportraitisshownasFig.1(2). (3)When1.12831 h1n sothephaseportraitisshownasFig.1(3). (4)Whenk=1.13101,wegeth10=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities h1n sothephaseportraitisshownasFig.1(4). (5)When1.13101 h1n h1n h1n h1n sothephaseportraitisshownasFig.1(5). (6)Whenk=1.17555,weobtainh10=h01,andtheHamiltoniansofthesingularpointssatisfytheinequalities h1n sothephaseportraitisshownasFig.1(6). (7)When1.17555 h1n sothephaseportraitisshownasFig.1(7). (8)Whenk=1.2025,weobtainhb1=hcm,andtheHamiltoniansofthesingularpointssatisfytheinequalities h1n sothephaseportraitofthesystem(1)isshownasFig.1(8). (9)If1.2025 h1n sothephaseportraitofthesystem(1)isshownasFig.1(9). (10)Ifk=1.32046,theHamiltoniansofthesingularpointssatisfytheinequalities h1n sothephaseportraitofthesystem(1)isshownasFig.1(10). Fig.1 The phase portraits of system (1) [1]YanmeiLi,ZhaoHu.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2012, 27(6):1-5. [2]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅱ)[J].JournalofChuxiongNormalUniversity, 2012, 27(9):1-5. [3]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅲ)[J].JournalofChuxiongNormalUniversity, 2013, 28(9):1-4. [4]YanmeiLi.GlobalPhasePortraitsandClassificationofZ2-EquivariantPlanarHamiltonianVectorFieldsofDegree7withinfinitesingularpoints(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2014, 29(3):1-4. [5]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅳ) [J].JournalofChuxiongNormalUniversity, 2014, 29(9):1-5. [6]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅴ) [J].JournalofChuxiongNormalUniversity, 2015, 30(6):1-4. [7]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅵ) [J].JournalofChuxiongNormalUniversity, 2015, 30(9):1-4. (責任編輯 司民真) 楚雄師范學院國家自然科學基金孵化項目“具有Z-q等變量性質的平面七次哈密頓向量場的相圖分類研究”。 2017 - 03 - 25 李艷梅(1966―),女,楚雄師范學院數(shù)學與統(tǒng)計學院教授,研究方向:非線性微分方程。 O175.29 A 1671 - 7406(2017)03 - 0001 - 04 具有Z2-等變性質的平面七次哈密頓向量場的相圖分類(Ⅶ) 李艷梅 (楚雄師范學院數(shù)學與統(tǒng)計學院,云南 楚雄 675000) 根據(jù)微分方程定性理論,本文得到了一類新的具有Z2-等變性質的七次平面哈密頓向量場的25個相圖,并對參數(shù)空間進行了劃分。 七次哈密頓向量場;Z2-等變性質;奇點;相圖