謝彬月+熊舒婷+梅潔
摘要:為探索黃顙魚(Pelteobagrus fulvidraco)性別決定和分化的分子機制,在黃顙魚性腺轉(zhuǎn)錄組數(shù)據(jù)中篩選到13個相關(guān)基因。表達譜分析表明,雄性相關(guān)基因中,piwi-1和amhr2在XY雄魚和YY超雄魚中表達量明顯高于XX雌魚,amh在XY雄魚中表達量高于XX雌魚和YY超雄魚。雌性相關(guān)基因中,cyp19a和foxl2在XY雄魚和YY超雄魚中幾乎不表達,但在XX雌魚中有一定表達。amh和amhr2的進一步研究表明,amh和amhr2在性腺中均有高表達量。XY雄魚腹腔注射EE2后,amh和amhr2呈現(xiàn)先上升隨后下調(diào)的趨勢。XX雌魚腹腔注射MT后,48 h和72 h時amh的表達量均低于正常水平,120 h恢復正常;amhr2在MT處理48 h后表達顯著下調(diào),72 h和120 h時約為正常水平的3/5。
關(guān)鍵詞:黃顙魚(Pelteobagrus fulvidraco);基因表達;性別決定和分化;激素處理
中圖分類號:Q953+.3 文獻標識碼:A 文章編號:0439-8114(2017)12-2362-06
DOI:10.14088/j.cnki.issn0439-8114.2017.12.041
Identification and Expression of Genes Related to Sex Determination and Differentiation in Pelteobagrus fulvidraco
XIE Bin-yue, XIONG Shu-ting, MEI Jie
(College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding,
Ministry of Agriculture,Wuhan 430070,China)
Abstract:To investigate the molecular mechanism of sex determination and differentiationin Yellow Catfish(Pelteobagrus fulvidraco),we screened out 13 related genes from the transcriptome data of gonads. The expression profile of these 13 genes indicated that the male sex-related genes such as piwi-1 andamhr2had higher expression in XY and YY testsis than in XX ovary, and the expression of amhin XY testis was higher than in XX ovary and YY testis. There were almost no expression of cyp19a and foxl2 in XY and YY testis, whereas their expressions in XX ovary were detected. We chose amh and amhr2genes for further research.RT-PCR results indicated that amh and amhr2 were highly expressed in the gonad among the hypothalamus-pituitary-gonad axis and liver. For the hormone treatment experiment, healthy XX female individuals were injected with 17α-methyltestosterone (MT) and XY male individuals with 17α-ethinylestradiol(EE2). EE2 treatment resulted in upregulation of amh and amhr2 at first and subsequent downregulation in males. After MT treatment in females,the relative expression of amhin ovary was lower than normal level at 48 hours and 72 hours post treatment(hpt) but return to normal at 120 hpt. The amhr2 expression was significantly reduced at 48 hpt and was about 3/5 of the control at 72 and 120 h.
Key words: Pelteobagrus fulvidraco; gene expression; sex determination and differentiation; hormone treatment
硬骨魚類的性別決定與性腺分化受遺傳因素和外界環(huán)境因素共同作用的影響。大多數(shù)魚類性別主要決定于基因型,其性腺分化和發(fā)育過程受到內(nèi)在因素和外部環(huán)境(激素、溫度、pH、密度)的調(diào)控[1],并通過下丘腦-垂體-性腺(Hypothalamus-pituitary-gonads axis,HPG軸)來實現(xiàn)[2]。黃顙魚(Pelteobagrus fulvidraco)是中國一種重要的淡水經(jīng)濟魚類,雌雄生長差異顯著,在相同的生長條件下,雄性黃顙魚生長速度明顯高于雌性。劉漢勤等[3]、Wang等[4]采用激素性逆轉(zhuǎn)結(jié)合雌核發(fā)育技術(shù),從XY雌魚產(chǎn)生可育YY超雄黃顙魚,大大提高了后代的雄性比例。
魚類中首次鑒定到的性別決定基因是日本青鳉Y染色體連鎖的Dmy/Dmrt1bY基因[5]。隨后,呂宋青鳉(Oryziasluzonensis)中的gsdf、恒河青鳉(Oryziasdancena)中的sox3、河豚(Takifugurubripes)中的amhr2、牙漢魚(Odontestheshatcheri)和羅非魚中的amhy以及虹鱒中的sdY也相繼被鑒定為性別決定基因。研究證實,Dmy、sox3、amhr2、sdY和amhy基因的突變或敲除都導致了XY型雌魚,sox3、SdY、gsdf和amhy的轉(zhuǎn)基因過表達則產(chǎn)生XX型雄魚,說明它們是雄性決定基因,在雄性決定過程中起著關(guān)鍵作用;而foxl2基因的敲除導致了XX型雄魚,說明foxl2在雌性決定過程中起著關(guān)鍵作用[6-11]。vasa的功能性缺失可以導致雌性不孕或者雄性不育,但在不同物種中有不同表型,如斑馬魚中vasa基因突變可以導致雄性因不能形成生殖細胞而不育[12],而果蠅中vasa基因沉默會導致雌性個體因卵子發(fā)生嚴重缺陷而不育[13]。
前期研究中,對1齡黃顙魚中的XX雌魚、XY雄魚和YY超雄魚的性腺進行比較轉(zhuǎn)錄組分析,其中XY精巢和YY精巢的比較結(jié)果已經(jīng)發(fā)表,發(fā)現(xiàn)一些與精巢發(fā)育和精子生成相關(guān)的基因[14]。對未發(fā)表的XX卵巢轉(zhuǎn)錄組和已經(jīng)發(fā)表的XY精巢轉(zhuǎn)錄組進行比較分析,發(fā)現(xiàn)了一些與魚類性別決定和分化相關(guān)基因。參照已有研究中總結(jié)的XX/XY性別決定系統(tǒng)魚類的性別決定基因[1],農(nóng)業(yè)部淡水生物繁育重點實驗室黃顙魚轉(zhuǎn)錄組數(shù)據(jù)鑒別出來的基因中篩選到13個可能與性別決定和分化相關(guān)的基因,并使用轉(zhuǎn)錄組測得的RPKM值制作了XX雌魚、XY雄魚、YY超雄魚中各基因的表達譜作進一步分析。
抗繆勒氏管激素(Anti-mullerian hormone,Amh)為糖蛋白,屬于轉(zhuǎn)化生長因子-β(Transforming growth factor-β,TGF-β)細胞因子家族[15],在精巢和卵巢中都有表達[16,17],在哺乳動物中amh誘導雌性生殖原基繆勒氏管退化,使個體向雄性方向發(fā)育,抗繆勒氏管激素特異性受體Ⅱ(AMH specific type Ⅱ receptor,Amhr2)為其特異性受體。最初認為amh只能特異性作用于性腺和生殖器官上,并被稱為“具有多種功能的性激素”[18],然而近些年研究人員發(fā)現(xiàn)amh和amhr2也存在于小鼠的腦中,特別是下丘腦、垂體中[19-21],并通過HPG軸參與調(diào)節(jié)雌雄性腺類固醇激素的生成、胸腺與前列腺生長及卵泡增生等多種生物學功能[21]。因此,本試驗檢測了amh和amhr2在黃顙魚HPG和肝臟中的表達量,并選取17α-乙炔雌二醇(ethinylestradiol,EE2)和17α-甲基睪酮(17α-methyltestosterone,MT)兩種類固醇激素分別處理了雄性和雌性黃顙魚,檢測其對amh和amhr2基因表達的影響。
1 材料與方法
1.1 試驗動物
試驗魚采集于湖北省荊州市的養(yǎng)殖基地,選擇1齡性成熟、大小均一的健康黃顙魚個體于實驗室水缸中暫養(yǎng)1周,給水體不間斷充氣,水溫維持在26 ℃。試驗魚的遺傳性別鑒定采用Dan等[22]開發(fā)的性別特異分子標記。所有的試驗操作均按照華中農(nóng)業(yè)大學動物保護和使用委員會的要求進行。
1.2 黃顙魚轉(zhuǎn)錄組數(shù)據(jù)的分析
將已發(fā)表文章中的1齡XY黃顙魚精巢轉(zhuǎn)錄組數(shù)據(jù)[14]和同齡同批次測的XX卵巢轉(zhuǎn)錄組數(shù)據(jù)進行比較分析。對于所有未處理的讀長,按照已報道的方法[23]使用LUCY和Seq-Clean軟件剔除低質(zhì)量的堿基和接頭引物。使用Newbler software package(Roche公司)進行序列組裝。利用本地BLAST軟件搜索NCBI非冗余核苷酸數(shù)據(jù)庫(Nt)、STRING數(shù)據(jù)庫、GENE數(shù)據(jù)庫進行基因注釋,E≤le-5。每條序列按照BLAST匹配中取得的最高比對分指定基因名稱。
1.3 激素處理
激素處理采取腹腔注射的方法,從胸鰭后對雄性個體注射17α-乙炔雌二醇(17α-ethinylestradiol,EE2),雌性個體注射17α-甲基睪酮(17α-methyltestosterone,MT)。在注射前,先將EE2和MT溶解到5%乙醇/95%生理鹽水混合溶液中,對照組只注射5%乙醇/95%生理鹽水混合溶液。Xiong等[24]發(fā)現(xiàn)10 μg MT/g注射處理是對內(nèi)源性性激素產(chǎn)生相對穩(wěn)定效果的最佳劑量,可以使內(nèi)源性17β-雌二醇(17β-estradiol,E2)持續(xù)下降,內(nèi)源性11-酮基睪酮(11-ketotestosterone,11-KT)持續(xù)增長。10 μg EE2/g是魚類注射的常用濃度,對黃顙魚的近緣物種瓦氏黃顙魚(Pelteobagrus vachelli)具有明顯的雌激素效應[25]。本試驗中MT和EE2均采用10 μg/g的劑量注射。分別取處理后不同時間的精巢和卵巢組織(每組4或5條魚)。取樣的組織即可放入液氮中冷凍保存,等待提取RNA。
1.4 RNA提取、反轉(zhuǎn)錄和熒光定量PCR
使用美國QIAGEN公司的miRNeasy Mini Kit提取總RNA,按照使用說明書進行操作。使用Invitrogen公司的GoldScript cDNA Synthesis Kit對1 μg總RNA進行反轉(zhuǎn)錄。引物設計采用Primer 5.0軟件。引物經(jīng)過PCR驗證不會產(chǎn)生二聚體,序列也經(jīng)過測序驗證。qRT-PCR在Bio-Rad公司的Bio-Rad PCR system by CFX96 Optics Module CFX96實時熒光定量PCR儀系統(tǒng)上進行,使用SYBR Green I染料[26,27]。qPCR體系為20 μL,包括10 μL 2×SYBR green master mix,1 μL模板,8 μL H2O,引物(10 μmmol/L)各0.5 μL。qPCR程序為95 ℃ 1 min,95 ℃ 15 s,56 ℃ 20 s,72℃ 20 s,77 ℃ 5 s,79 ℃ 5 s,81 ℃ 5 s,溶解曲線65~95 ℃,按照0.5 ℃/s的速度升溫,每個溫度持續(xù)0.5 s。無模板反應作為陰性對照,每個反應的擴增特異性使用CFX管理軟件(Bio-Rad)中的溶解曲線進行分析。前期檢測性激素處理后6個管家基因(β-actin、rp17、GAPDH、e1fa、b2m及18S rRNA)的轉(zhuǎn)錄穩(wěn)定性,經(jīng)過geNorm軟件分析,發(fā)現(xiàn)β-actin(M=1.039<1.5)是最穩(wěn)定的[25],因此選擇β-actin作為內(nèi)參基因。每個試驗重復3次。
1.5 數(shù)據(jù)分析
參照Wei等[28]的方法,將基因表達譜中的RPKM值劃分為7個等級,并用不同的顏色予以表示。相對表達量由qRT-PCR分析得出。使用SPSS 20.0軟件(SPSS,USA)進行統(tǒng)計學分析,3個獨立的試驗數(shù)據(jù)用mean±SD表示。對照組和處理組的顯著差異使用單因素方差分析t值檢驗,P<0.05被視為統(tǒng)計學顯著性差異。
2 結(jié)果與分析
2.1 在黃顙魚轉(zhuǎn)錄組數(shù)據(jù)中篩選并確認與性別決定和分化相關(guān)的基因
在黃顙魚轉(zhuǎn)錄組數(shù)據(jù)中篩選到13個可能與性別決定和性腺發(fā)育相關(guān)的基因,經(jīng)BlAST比對分析確認以下Unigene為正確拼接序列并提交到GenBank獲得序列號(表1)。
2.2 黃顙魚性別決定和分化相關(guān)基因的表達譜
黃顙魚性別決定和分化相關(guān)基因在轉(zhuǎn)錄組中的表達水平分析如圖1,雄性相關(guān)基因中,Piwi-1在3種魚中表達量均較高,XY雄魚和YY超雄魚中表達量明顯高于XX雌魚。amh和amhr2在3種魚中表達量均較低,但是amh在XY雄魚中表達量各為XX雌魚和YY超雄魚的5倍左右,amhr2在XX雌魚中幾乎不表達,在XY雄魚和YY超雄魚中的表達量明顯高于XX雌魚。
雌性相關(guān)基因中,cyp19a和foxl在XY雄魚和YY超雄魚中幾乎不表達,但在XX雌魚中有低表達。vasa在3種魚中表達量均較高,其在YY超雄魚中表達量最高,XY雄魚中次之,各約為XX雌魚中的5倍和4倍。wnt4在XX雌魚和XY雄魚中幾乎不表達,但在YY超雄魚中低表達。在XY雄魚中,cyp19a幾乎不表達。
2.3 amh和amhr2在HPG軸和肝臟中的相對表達量
如圖2中的定量PCR結(jié)果所示,amh和amhr2在1齡雌、雄黃顙魚性腺中表達量最高,并且都在下丘腦、垂體和肝臟中有表達。amh在雄魚性腺和垂體中的表達量顯著高于雌魚,而肝臟雌魚amh水平高于雄魚。amhr2在雌、雄黃顙魚性腺中表達差異不顯著,而在雄魚下丘腦、垂體和肝臟中的表達水平顯著高于雌性。
2.4 性激素對amh和amhr2在性腺中表達的影響
圖3A和3B表明,XY雄魚腹腔注射EE2處理后,amh在處理后48 h之前呈現(xiàn)上升的趨勢隨后顯著下調(diào)并低于正常水平;而amhr2的表達量在36 h之前呈上升趨勢,隨后逐漸下調(diào)。圖3C表明,XX雌魚腹腔注射MT后,48 h和72 h時amh的表達量均低于正常水平,120 h恢復正常;圖3D表明,雌魚MT處理48 h時amhr2的表達量與正常水平相當,72 h和120 h約為正常水平的3/5。
3 討論
已有研究證實,dmy、sox3、amhr2、sdY和amhy等基因的突變或敲降都導致了XY型雌魚,sox3、SdY、gsdf和amhy的轉(zhuǎn)基因過表達則產(chǎn)生XX型雄魚,說明它們是雄性決定基因,在雄性決定過程中起著關(guān)鍵作用;而foxl2基因的敲除導致了XX型雄魚,說明foxl2在雌性決定過程中起著關(guān)鍵作用[6-11]。本研究中,與性別決定相關(guān)基因的表達譜分析顯示,amh、amhr2和piwi-1可能在雄性黃顙魚性腺發(fā)育過程中發(fā)揮重要作用,cyp19a、foxl可能在雌性性腺發(fā)育中發(fā)揮重要作用。
vasa基因最先在果蠅中發(fā)現(xiàn),在果蠅母源性基因的篩選過程中首次發(fā)現(xiàn)其在卵母細胞發(fā)育方面的重要作用[13]。已有研究表明,vasa基因在不同物種生殖系中有不同的作用,斑馬魚中雄性個體vasa基因缺失會導致精巢發(fā)育缺陷而不育[12];果蠅中vasa基因沉默會導致雌性個體因卵子發(fā)生嚴重缺陷而不育[13]。本研究中vasa在雄魚中的高表達量暗示其在黃顙魚雄性生殖發(fā)育中起著重要的功能。
芳香化酶在雄激素向雌激素的轉(zhuǎn)變過程中必不可少,有研究顯示amh和芳香化酶基因之間存在負相關(guān)性,如在斑馬魚[29]、虹鱒[30]中amh在精巢中的高表達可以抑制芳香化酶的釋放,從而抑制雄激素向雌激素轉(zhuǎn)變的進程。但也有研究表明amh和芳香化酶基因的表達各不相關(guān),如在尼羅羅非魚(Oreochromis niloticus)[31]中。外源性類固醇激素作為一種有效的合成激素,被吸收到魚類身體里,并且可能擾亂初始的體內(nèi)穩(wěn)態(tài)。據(jù)報道,雌激素在斑馬魚、日本比目魚、銀漢魚(Atherina bleekeri)、黑頭軟口鰷(Pimephales promelas)、黑鯛(Sparus macrocephlus)5種魚中抑制amh的表達。在黑頭軟口鰷中,雄魚使用10 ng EE2/L曝露處理后引起amh表達下降;在斑馬魚幼魚中EE2處理導致雌性化,并引起amh表達下降;而在青鳉和紅樹林鳉魚(Kryptolebias marmoratus)2種魚中對amh的表達沒有作用[32]。但在本試驗中,EE2腹腔注射導致雄性黃顙魚精巢amh表達量上升,推測可能與處理方式和注射劑量有關(guān),即暴露處理使小劑量的EE2進入到斑馬魚體內(nèi),可以抑制amh的表達;而腹腔注射使大劑量的EE2進入到斑馬魚體內(nèi),并且直接作用于精巢,故而引起amh的表達應激性升高。已有研究表明,出生后amh的水平受到促卵泡激素(follicle-stimulating hormone,F(xiàn)sh)和雄激素的調(diào)節(jié),在雄性中Fsh促進amh的分泌,但是雄激素抑制amh的表達[33,34]。EE2對下丘腦和垂體有正、負反饋作用,推測在雄魚中小劑量的EE2可以抑制垂體合成和釋放Fsh,從而降低amh的表達量;大劑量的EE2可以促進垂體合成和釋放Fsh,從而提高amh的表達量。
參考文獻:
[1] 梅 潔,桂建芳.魚類性別異形和性別決定的遺傳基礎(chǔ)及其生物技術(shù)操控[J].中國科學―生命科學,2014,44(12):1198-1212.
[2] 桂建芳,朱作言.水產(chǎn)動物重要經(jīng)濟性狀的分子基礎(chǔ)及其遺傳改良[J].科學通報,2012,59(19):1719-1729.
[3] 劉漢勤,崔書勤,侯昌春,等.從XY雌魚雌核發(fā)育產(chǎn)生YY超雄黃顙魚[J].水生生物學報,2007,31(5):718-725.
[4] WANG D,MAO H L,CHEN H X,et al. Isolation of Y-and X-linked SCAR markers in yellow catfish and application in the production of all-male populations[J].Animal Genetics,2009, 40(6):978-981.
[5] MATSUDA M,NAGAHAMA Y,SHINOMIYA A,et al.DMY is a Y-specific DM-domain gene required for male development in the medaka fish[J].Nature,2002,417(6888):559-563.
[6] MYOSHO T,OTAKE H,MASUYAMA H,et al. Tracing the emergence of a novel sex-determining gene in medaka,Oryzias luzonensis[J].Genetics,2012,191(1):163-170.
[7] TAKEHANA Y,MATSUDA M,MYOSHO T,et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena[J].Nature communications,2014,5:4157.
[8] KAMIYA T,KAI W,TASUMI S,et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes(fugu)[J].PLoS Genet,2012,8(7):e1002798.
[9] HATTORI R S,MURAI Y,OURA M,et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination[J]. Proceedings of the National Academy of Sciences,2012,109(8):2955-2959.
[10] YANO A,GUYOMARD R,NICOL B,et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss[J].Current Biology,2012,22(15):1423-1428.
[11] LI M H,YANG H H,LI M R,et al. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs[J].Endocrinology,2013, 154(12):4814-4825.
[12] HARTUNG O,F(xiàn)ORBES M M,MARLOW F L. Zebrafish vasa is required for germ-cell differentiation and maintenance[J]. Molecular Reproduction and Development,2014,81(10):946-961.
[13] STYHLER S,NAKAMURA A,SWAN A,et al. Vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development [J]. Development,1998,125(9):1569-1578.
[14] WU J,XIONG S,JING J,et al. Comparative transcriptome analysis of differentially expressed genes and signaling pathways between XY and YY testis in yellow catfish[J].PLoS One,2015,10(8):e0134626.
[15] CATE R L,MATTALIANO R J,HESSION C,et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells[J]. Cell,1986,45(5):685-698.
[16] TEIXEIRA J,MAHESWARAN S,DONAHOE P K. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications[J].Endocrine Reviews,2001,22(5):657-674.
[17] DURLINGER A L,VISSER J A,THEMMEN A P. Regulation of ovarian function: The role of anti-Mullerian hormone[J]. Reproduction,2002,124(5):601-609.
[18] LEE M M, DONAHOE P K. Mullerian inhibiting substance: A gonadal hormone with multiple functions[J]. Endocrine Reviews,1993,14(2):152-164.
[19] WANG P Y,KOISHI K,MCGEACHIE A B,et al. Mullerian inhibiting substance acts as a motor neuron survival factor in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(45):16421-16425.
[20] LEBEURRIER N,LAUNAY S,MACREZR,et al. Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin[J].Journal of Cell Science,2008,121(20):3357-3365.
[21] B?魪D?魪CARRATS G Y,?譫NEILL F H,NORWITZ E R,et al. Regulation of gonadotropin gene expression by Müllerian inhibiting substance[J]. Proceedings of the National Academy of Sciences,2003,100(16):9348-9353.
[22] DAN C,MEI J,WANG D,et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y-and X-linked markers in yellow catfish[J]. International Journal of Biological Sciences,2013,9(10):1043-1049.
[23] LIAO X,CHENG L,XU P,et al. Transcriptome analysis of crucian carp(Carassius auratus), an important aquaculture and hypoxia-tolerant species[J]. PloS one,2013,8(4):e62308.
[24] XIONG S,JING J,WU J,et al. Characterization and sexual dimorphic expression of Cytochrome P450 genes in the hypothalamic-pituitary-gonad axis of yellow catfish[J]. General and comparative endocrinology,2015,216:90-97.
[25] YUN L,ZHIQIANG Z H U,QIN Y,et al. Estrogenic effect of 17 β-estradiol on male bagrid catfish Pelteobagrus vachelli[J].Oceanologia et Limnologia Sinica/Hai Yang Yu Hu Chao, 2009,40(2):195-200.
[26] WANG Y,ZHOU L,LI Z,et al. Apolipoprotein C1 regulates epiboly during gastrulation in zebrafish[J]. Science China Life Sciences,2013,56(11):975-984.
[27] ZHONG J X,ZHOU L,LI Z,et al. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis[J]. Cell Death & Differentiation,2014,21(6):1013-1024.
[28] WEI L,YANG C,TAO W,et al. Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the nile tilapia (Oreochromis niloticus)[J]. International Journal of Molecular Sciences,2016,17(3):270-286.
[29] RODR?魱GUEZ-MAR?魱 A,YAN Y L,BREMILLER R A,et al. Characterization and expression pattern of zebrafish Anti-Mullerian hormone(Amh) relative to sox9a,sox9b, and cyp19a1a, during gonad development[J].Gene Expression Patterns,2005, 5(5):655-667.
[30] VIZZIANO D,BARON D,RANDUINEAU G,et al. Rainbow trout gonadal masculinization induced by inhibition of estrogen synthesis is more physiological than masculinization induced by androgen supplementation[J]. Biology of Reproduction, 2008,78(5):939-946.
[31] POONLAPHDECHA S,PEPEY E,CANONNE M,et al. Temperature induced-masculinisation in the Nile tilapia causes rapid up-regulation of both dmrt1 and amh expressions[J]. General and comparative endocrinology,2013,193:234-242.
[32] PFENNIG F,STANDKE A,GUTZEIT H O. The role of Amh signaling in teleost fish-Multiple functions not restricted to the gonads[J]. General and comparative endocrinology,2015, 223:87-107.
[33] REY R,LUKAS-CROISIER C,LASALA C,et al. AMH/MIS: What we know already about the gene, the protein and its regulation[J].Molecular and Cellular Endocrinology,2003,211(1):21-31.
[34] GRINSPON R P,REY R A. Anti-müllerian hormone and sertoli cell function in paediatric male hypogonadism[J].Hormone Research in Paediatrics,2010,73(2):81-92.