王娟+李金鑫+李建麗+高文遠(yuǎn)
[摘要] 植物組織培養(yǎng)技術(shù)以其獨(dú)特的優(yōu)勢(shì)被廣泛的應(yīng)用于中藥資源領(lǐng)域,在中藥資源保護(hù)方面發(fā)揮了重要的作用。該文綜述了近年來(lái)植物組織培養(yǎng)的一些應(yīng)用,包括植物組織培養(yǎng)生產(chǎn)藥用植物活性化合物、遺傳多樣性分析、道地藥材、誘導(dǎo)子應(yīng)用、生物合成及轉(zhuǎn)基因植物等。通過以上研究將進(jìn)一步促進(jìn)植物組織培養(yǎng)技術(shù)的發(fā)展,使其在中藥資源領(lǐng)域發(fā)揮更大的作用。
[關(guān)鍵詞] 植物組織培養(yǎng); 中藥資源; 誘導(dǎo)子; 生物合成
[Abstract] Plant tissue culture technology has been widely used in the field of traditional Chinese medicine(TCM) resources with its unique advantages, playing an important role in the protection of TCM resources. In this review, some applications of plant tissue culture were summarized, including production of active compounds by using plant tissue culture, genetic diversity analysis, Dao-di herbs, elicitor application, biosynthesis and transgenic plants. Through the above researches will promote the further development of plant tissue culture technology, making it play a greater role in the field of TCM resources.
[Key words] plant tissue culture; Chinese medicine resources; elicitor; biosynthesis
中藥資源是我國(guó)中藥產(chǎn)業(yè)的基石,隨著我國(guó)中藥工藝的快速發(fā)展,大型和超大型企業(yè)不斷涌現(xiàn)、形成和發(fā)展,對(duì)我國(guó)的中藥資源形成了很大的壓力,近些年中藥材瀕危資源的不斷增加,中藥材價(jià)格的不斷增長(zhǎng),足以表明我國(guó)資源保護(hù)和可持續(xù)利用工作的緊迫性和重要性。通過發(fā)展植物組織培養(yǎng)技術(shù)來(lái)解決中藥材的資源問題,對(duì)我國(guó)具有特殊而且重要的意義。植物組織培養(yǎng)技術(shù)的應(yīng)用可以體現(xiàn)在以下幾個(gè)方面:①通過植物組織和器官培養(yǎng)生產(chǎn)活性成分,保護(hù)瀕危和珍稀藥用植物資源;②通過遺傳多樣性分析,對(duì)植物組織培養(yǎng)材料進(jìn)行評(píng)價(jià);③通過植物組織培養(yǎng)技術(shù)研究道地藥材遺傳機(jī)制和環(huán)境機(jī)制;④通過誘導(dǎo)子的添加提高培養(yǎng)物中活性成分含量;⑤利用植物組織培養(yǎng)物進(jìn)行基因功能篩選、驗(yàn)證及遺傳轉(zhuǎn)化研究。本文將從以上幾個(gè)方面綜述近年來(lái)植物組織培養(yǎng)技術(shù)在中藥資源領(lǐng)域中的應(yīng)用。
1 植物組織培養(yǎng)生產(chǎn)藥用植物活性化合物
藥用植物細(xì)胞,毛狀根和不定根培養(yǎng)技術(shù)是生產(chǎn)藥用植物次級(jí)代謝產(chǎn)物的一種非常有價(jià)值的工具。因此,通過細(xì)胞培養(yǎng)生產(chǎn)次級(jí)代謝產(chǎn)物的植物將近1 000種,超過600種的活性成分直接由植物細(xì)胞培養(yǎng)提供。目前,100多種毛狀根已經(jīng)成功的被發(fā)根土壤農(nóng)桿菌誘導(dǎo)[1],主要通過優(yōu)化培養(yǎng)基和關(guān)鍵生理因素去增加毛狀根培養(yǎng)的次級(jí)代謝產(chǎn)物的生成。目前,人參,三七,柴胡,甘草,丹參,雷公藤和許多種藥用植物已經(jīng)制定了不定根培養(yǎng)體系。目前,為了大量的生產(chǎn)次級(jí)代謝產(chǎn)物,細(xì)胞、不定根、毛狀根已經(jīng)成功地應(yīng)用于大規(guī)模培養(yǎng)。例如,人參不定根培養(yǎng)已經(jīng)達(dá)到3萬(wàn)L。金絲桃不定根已經(jīng)達(dá)到500 L,紫錐菊不定根已經(jīng)達(dá)到1 000 L[2]。韓國(guó),CBN生物科技公司,每年生產(chǎn)大約40~45 t人參不定根,這是一個(gè)利用植物組織培養(yǎng)生產(chǎn)藥品、食品和化妝品的成功范例。主要研究了培養(yǎng)條件的優(yōu)化和誘導(dǎo)子的使用來(lái)提高次級(jí)代謝產(chǎn)物的含量。由WHO資助的半合成青蒿素已經(jīng)被賽諾菲公司研制成功,其用發(fā)酵方法由單糖生產(chǎn)的青蒿酸在2013年已形成60 t左右產(chǎn)能。Phyton為成為世界領(lǐng)先的高品質(zhì)紫杉醇生產(chǎn)商已進(jìn)行了巨額投資。我國(guó)具有通過植物細(xì)胞發(fā)酵生產(chǎn)紫杉醇的巨大產(chǎn)能,杜絕了對(duì)紫杉樹種植的依賴,也避免了他們與環(huán)境、可持續(xù)性、可靠性和質(zhì)量穩(wěn)定性相關(guān)的固有問題。近年來(lái)藥用植物細(xì)胞,毛狀根和不定根次級(jí)代謝產(chǎn)物的積累情況見表1。
近年來(lái),藥用植物細(xì)胞,毛狀根和不定根培養(yǎng)受到了廣泛關(guān)注,因?yàn)樗峁┝嗽S多植物次級(jí)代謝產(chǎn)物??偟膩?lái)說,藥用植物的細(xì)胞,毛狀根和不定根是逐年增加的,并且它的培養(yǎng)規(guī)模已經(jīng)逐漸擴(kuò)大。
2 遺傳多樣性分析
植物組織培養(yǎng)是植物快速大量增值的一種潛在工具,并且有利于控制重要次級(jí)代謝產(chǎn)物的生成。然而再生植株的遺傳基因會(huì)發(fā)生一定程度的變異,從而造成植株化學(xué)成分的改變及其臨床療效的差異,影響組織培養(yǎng)的優(yōu)點(diǎn)[40]。因此,必須保證組培植株基因的一致性,以確保植株的質(zhì)量。用于監(jiān)測(cè)遺傳基因變化的方法有簡(jiǎn)單重復(fù)序列,隨機(jī)擴(kuò)增多態(tài)性DNA和相關(guān)序列擴(kuò)增多態(tài)性。
簡(jiǎn)單重復(fù)序列通常形成具有具體基因,少許具體標(biāo)記物的種族。隨機(jī)擴(kuò)增多態(tài)性DNA方法是一種PCR技術(shù),隨機(jī)擴(kuò)增DNA片段,使用低于最低退火溫度的核苷酸序列的單一引物。這個(gè)技術(shù)已經(jīng)廣泛用于種族分類,遺傳作圖和種系發(fā)生[41-42]。在吊燈花屬快繁的研究中,在植株的直接芽器官發(fā)生,間接芽器官發(fā)生和母本植物之間比較基因穩(wěn)定性,結(jié)果顯示通過簡(jiǎn)單重復(fù)序列和隨機(jī)擴(kuò)增多態(tài)性DNA方法,直接芽器官發(fā)生的基因和母本植物是相似的,間接芽器官發(fā)生的隨機(jī)擴(kuò)增多態(tài)性DNA指紋圖譜顯示出低的變異率[40]。相關(guān)序列擴(kuò)增多態(tài)性是簡(jiǎn)單的有效地生產(chǎn)高再生性和多功能性的全組基因片段。在人參懸浮細(xì)胞培養(yǎng)中,通過隨機(jī)擴(kuò)增多態(tài)性DNA方法在懸浮細(xì)胞與幼苗之間比較基因穩(wěn)定性,結(jié)果顯示懸浮細(xì)胞的基因和幼苗是相似的[43]。在擬南芥懸浮細(xì)胞培養(yǎng)中,通過簡(jiǎn)單重復(fù)序列方法來(lái)比較懸浮細(xì)胞和擬南芥植株的基因穩(wěn)定性,發(fā)現(xiàn)懸浮細(xì)胞的基因和幼苗是相似的[44]。
3 道地藥材
道地性歸根結(jié)底是道地藥材所擁有的基因型受到特定生境(道地產(chǎn)區(qū))中環(huán)境因子誘導(dǎo)后表達(dá)的產(chǎn)物。因此,基因表達(dá)是道地藥材研究的重要環(huán)節(jié),而功能基因表達(dá)的調(diào)控是道地藥材研究的目標(biāo)之一[45]。揭示道地藥材和非道地藥材在基因表達(dá)方面的差異是道地藥材功能基因研究的重要內(nèi)容。由于基因表達(dá)對(duì)研究所用RNA材料的要求較高,且通常需要通過對(duì)比實(shí)驗(yàn)來(lái)完成,造成道地藥材基因表達(dá)及調(diào)控實(shí)驗(yàn)?zāi)壳爸饕性趯?shí)驗(yàn)室中。由于細(xì)胞培養(yǎng)和組織培養(yǎng)周期較短,材料易于獲得,均勻性較好,因此道地藥材功能基因表達(dá)與調(diào)控研究多是在植物組織和細(xì)胞中開展[46]。
例如,黃新等[47]利用mRNA差異顯示技術(shù)研究茉莉酸甲酯對(duì)紅豆杉細(xì)胞mRNA表達(dá)的差異。李娟等[48]考察了碳源、氮源、有機(jī)成分對(duì)HBsAg轉(zhuǎn)基因人參細(xì)胞生長(zhǎng)和HBsAg表達(dá)量的影響。劉峻等[49]研究了真菌誘導(dǎo)子影響人參毛狀根總皂苷的合成量。以上研究,雖然距離真正的實(shí)現(xiàn)道地藥材功能基因的表達(dá)和調(diào)控尚有一段距離,但為道地藥材功能基因表達(dá)和調(diào)控研究積累了思路和方法。
4 誘導(dǎo)子作用機(jī)制及其應(yīng)用
4.1 誘導(dǎo)子的作用機(jī)制
誘導(dǎo)子被植物細(xì)胞膜或細(xì)胞質(zhì)中的接受體識(shí)別后,細(xì)胞膜便開始去極化,引起離子通道的開閉,如Ca2+從環(huán)境中流入細(xì)胞質(zhì),K+和Cl-流出,或者通過 G 蛋白偶聯(lián),激活第二信使系統(tǒng),進(jìn)一步的擴(kuò)大這種效應(yīng),產(chǎn)生植物防御分子,如鈣離子(Ca2+)、活性氧(ROS)、水楊酸(SA)、茉莉酸(JA)、一氧化氮(NO)、乙烯(ET)等,進(jìn)而引起下游防衛(wèi)基因的表達(dá),改變相關(guān)酶的活性,并最終導(dǎo)致次級(jí)代謝產(chǎn)物的積累,見圖1[50]。
4.1.1 細(xì)胞內(nèi)信號(hào)分子和作用機(jī)制 植物細(xì)胞信號(hào)分子主要作用偶合各種胞內(nèi)外刺激,包括生物或者非生物刺激,再通過細(xì)胞內(nèi)信號(hào)傳導(dǎo)系統(tǒng)使得刺激和細(xì)胞間信號(hào)級(jí)聯(lián)放大,最終導(dǎo)致相關(guān)酶活性的改變,進(jìn)而引起一系列生理生化反應(yīng)。例如,誘導(dǎo)子刺激后,細(xì)胞質(zhì)中鈣離子(Ca2+) 濃度的升高、一氧化氮合成、活性氧迸發(fā)、茉莉酸合成途徑激活等,誘導(dǎo)防御基因的開啟,刺激代謝途徑中關(guān)鍵酶的合成,最終促進(jìn)植物次級(jí)代謝產(chǎn)物的合成[51]。
鈣離子:誘導(dǎo)子刺激后,植物細(xì)胞在短時(shí)間內(nèi)出現(xiàn)離子流,如Ca2+和H+從環(huán)境中流入細(xì)胞質(zhì),K+和Cl-流出等。這些Ca2+可以驅(qū)動(dòng)鈣離子受體鈣調(diào)蛋白(CaM)的反應(yīng),一旦鈣調(diào)蛋白激活后,可以進(jìn)一步激活與鈣調(diào)蛋白相關(guān)的蛋白激酶,從而引發(fā)蛋白的磷酸化,進(jìn)而引起防御基因的表達(dá)[90]。例如,Ca2+含量迅速上升后,激活鈣調(diào)蛋白,會(huì)使大量的NAD(P)H氧化酶被激活,NADPH氧化酶可以催化過氧化物的產(chǎn)生和積累,從而進(jìn)一步引起并下游一系列的反應(yīng),刺激次級(jí)代謝物的積累[52]。Ca2+內(nèi)流以后,可作為信號(hào)分子激活磷脂酸 C,進(jìn)而使磷脂酰肌醇-4,5-二磷酸(PIP2)水解產(chǎn)生 2 個(gè)第二信使: IP3(三磷酸肌醇)和 DAG(甘油二酯)。其中,DAG 可以與蛋白激酶結(jié)合,激活蛋白激酶 C,從而觸發(fā)蛋白磷酸化信號(hào)級(jí)聯(lián),引起細(xì)胞內(nèi)代謝物的積累。IP3 可以與細(xì)胞內(nèi)鈣庫(kù)(如內(nèi)質(zhì)網(wǎng)、線粒體、葉綠體、液泡等)上的鈣離子通道受體結(jié)合,進(jìn)而動(dòng)員細(xì)胞內(nèi)鈣庫(kù)中鈣離子的釋放。IP3-Ca2+信號(hào)途徑被認(rèn)為是誘導(dǎo)植物抗毒素產(chǎn)生的調(diào)節(jié)物質(zhì)[53]。在長(zhǎng)春花懸浮細(xì)胞過程中加入真菌粗提物作為誘導(dǎo)子時(shí),IP3信號(hào)轉(zhuǎn)導(dǎo)途徑被激活,從而進(jìn)一步使長(zhǎng)春花細(xì)胞中生物堿的含量提高[54]。
活性氧:植物防御早期的另一個(gè)重要變化是活性氧的迸發(fā)現(xiàn)象?;钚匝鯘舛壬呖梢宰鳛榈诙攀挂l(fā)胞內(nèi)一系列抗性反應(yīng),如可以促進(jìn)結(jié)構(gòu)蛋白和木質(zhì)素的合成使細(xì)胞壁增厚,細(xì)胞超敏死亡等,另外,活性氧介導(dǎo)的脂質(zhì)氧化可以刺激茉莉酸及相關(guān)化合物的合成,誘導(dǎo)次級(jí)代謝防御基因和次生代謝物合成基因的表達(dá),進(jìn)而誘導(dǎo)次級(jí)代謝[55]。在紅豆杉細(xì)胞培養(yǎng)過程中,經(jīng)尖孢鐮刀菌的細(xì)胞壁粗提物誘導(dǎo)后,紅豆杉細(xì)胞中活性氧大量積累,最終會(huì)導(dǎo)致細(xì)胞中紫杉醇的含量顯著上升,與對(duì)照相比提高了近4倍[56]。但是高濃度的活性氧,如 O2-,H2O2,OH-,1O2會(huì)損傷細(xì)胞內(nèi)的成分。抗氧化酶體系,如超氧化物歧化酶 (SOD)、過氧化物酶 (POD)以及過氧化氫酶 (CAT)等,會(huì)被激活,從而減輕活性氧的毒性作用,增強(qiáng)植物的耐受性[57]。在丹參細(xì)胞培養(yǎng)過程中,Dong等[58]發(fā)現(xiàn)在丹參細(xì)胞培養(yǎng)基中加入水楊酸,酚類化合物的含量會(huì)顯著增加,同時(shí)抗氧化物酶SOD,POD,CAT 的活性也會(huì)增加。
茉莉酸類:在許多的植物細(xì)胞培養(yǎng)體系中,誘導(dǎo)子都可以誘導(dǎo)內(nèi)源的茉莉酸類物質(zhì)的合成,其可作為細(xì)胞內(nèi)和細(xì)胞間的信號(hào)分子,與轉(zhuǎn)錄因子相互作用,進(jìn)而調(diào)節(jié)防御基因的表達(dá),最終導(dǎo)致次生代謝物質(zhì)的合成[59]。茉莉酸類也可以刺激次級(jí)代謝產(chǎn)物合成相關(guān)的基因的表達(dá),從而促進(jìn)一系列次級(jí)代謝產(chǎn)物的合成,包括萜類物質(zhì)、黃酮類物質(zhì)、生物堿和苯丙烷類物質(zhì)[50]。在貫葉連翹細(xì)胞懸浮培養(yǎng)過程中,在培養(yǎng)基中加入黑曲霉細(xì)胞壁的粗提物作為誘導(dǎo)子時(shí),茉莉酸的合成量迅速增加,同時(shí)細(xì)胞中金絲桃素的含量也迅速增加,而加入茉莉酸合成抑制劑后,細(xì)胞中金絲桃素的含量顯著下降[57]。
一氧化氮和水楊酸:在自然界中,水楊酸(SA)是植物與病原菌相互作用的誘導(dǎo)物,它能夠誘導(dǎo)發(fā)病機(jī)制相關(guān) (PR) 基因的表達(dá)及和致病相關(guān)蛋白的產(chǎn)生,但是,水楊酸不是存在于所有植物防御代謝中[1]。研究發(fā)現(xiàn),在部分植物的細(xì)胞中,水楊酸的迅速合成,可以誘導(dǎo)一些與代謝相關(guān)基因的表達(dá),促使一些次生代謝產(chǎn)物的積累,例如,在茜草的培養(yǎng)過程中,SA可以增加細(xì)胞中蒽醌類物質(zhì)的積累[60]。一氧化氮(NO)作為信號(hào)化合物,近年來(lái)才逐漸被認(rèn)識(shí)。在植物體內(nèi),NO可以通過一氧化氮合成酶(NOS)、硝酸鹽還原酶(NR)或者非酶促反應(yīng)來(lái)合成[59]。轉(zhuǎn)錄組測(cè)序的結(jié)果表明,NO處理后,可以引起植物細(xì)胞內(nèi)與壓力和抗病性相關(guān)的基因的表達(dá),說明了NO信號(hào)途徑可能與細(xì)胞內(nèi)的次生代謝相關(guān)[61]。另外,NO還可以作用于水楊酸(SA)等信號(hào)分子的上游,參與和調(diào)控植物細(xì)胞中SA等信號(hào)分子的生物合成[62]。
其他信號(hào)分子:除了上述信號(hào)分子外,乙烯和脫落酸都是植物的內(nèi)源性激素,參與調(diào)節(jié)植物細(xì)胞內(nèi)生長(zhǎng)和發(fā)育的多種生理活動(dòng),如生長(zhǎng)、衰老、植物應(yīng)激反應(yīng)等[50]。此外,乙烯、脫落酸等也在誘導(dǎo)子誘導(dǎo)的抗性反應(yīng)中起重要作用,在不同濃度下它們從抑制和促進(jìn)兩方面影響次生代謝產(chǎn)物的積累[53]。例如,在加拿大紅豆杉的培養(yǎng)過程中,乙烯可以促進(jìn)低聚糖和茉莉酸甲酯對(duì)紅豆杉細(xì)胞的誘導(dǎo)作用,增加紫杉醇的積累[63]。但是在丹參毛狀根培養(yǎng)中,加入乙烯的抑制劑,反而會(huì)促進(jìn)細(xì)胞中3種丹參酮的合成[64]。
4.1.2 轉(zhuǎn)錄因子 轉(zhuǎn)錄因子也稱為反式作用因子,是指能夠與真核基因啟動(dòng)子區(qū)域中順式作用因子特異性結(jié)合的 DNA 結(jié)合蛋白。通過蛋白與基因之間以及蛋白與蛋白之間的相互作用,激活或抑制轉(zhuǎn)錄[65]。
誘導(dǎo)子刺激植物以后,往往是多種信號(hào)途徑構(gòu)成一個(gè)相互交錯(cuò)的工作網(wǎng)共同起作用,它們通過相互協(xié)調(diào),刺激次生代謝物質(zhì)的合成。其中,轉(zhuǎn)錄因子可以對(duì)多個(gè)信號(hào)途徑進(jìn)行整合,激活防御基因,使得宿主關(guān)閉一些基因表達(dá)而開啟另一些基因表達(dá)的信號(hào)傳遞和調(diào)控,產(chǎn)生特定的次級(jí)代謝產(chǎn)物[66]。例如,真菌誘導(dǎo)子或者茉莉酸甲酯誘導(dǎo)后,可以引起細(xì)胞中AP2/ERF轉(zhuǎn)錄因子家族的轉(zhuǎn)錄因子的迅速積累,然后AP2/ERF轉(zhuǎn)錄因子識(shí)別的順式元件GCCbox,從而激活乙烯響應(yīng)基因的表達(dá),進(jìn)而激活下游異胡豆苷合酶的基因和生物堿合成相關(guān)的基因的表達(dá),最終促進(jìn)生物堿的積累[67]。
4.1.3 抗性基因的表達(dá) 誘導(dǎo)子與植物受體的相互識(shí)別后,第二信使的形成,會(huì)使抗性相關(guān)基因激活,從而相應(yīng)的mRNA累積及相應(yīng)酶的才會(huì)增加,最后促進(jìn)次級(jí)代謝物質(zhì)的產(chǎn)生。
目前研究得比較多并且己經(jīng)得到克隆的抗性基因主要有:病程相關(guān)蛋白P(R)的基因如幾丁質(zhì)酶、β-1,3-葡聚糖酶等基因; 木質(zhì)素合成相關(guān)酶的基因如PAL,PO等的基因; 富含輕脯氨酸糖蛋白和富含甘氨酸糖蛋白的基因; 鈣離子依賴蛋白激酶的基因;谷胱甘肽S-轉(zhuǎn)移酶基因等。研究發(fā)現(xiàn),許多植物防御反應(yīng)基因都是誘導(dǎo)表達(dá)的[68]。例如,在草莓的培養(yǎng)過程中,Landi等[69]考察了殼聚糖、苯并噻二唑和有機(jī)酸對(duì)草莓細(xì)胞中抗性相關(guān)基因表達(dá)量的影響,結(jié)果表明,3種誘導(dǎo)子都可以激活與鉀離子通道、聚半乳糖醛酸酶、β-1,3-葡聚糖酶相關(guān)的抗性基因的表達(dá),另外,苯并噻二唑也可以上調(diào)與鈣離子依賴蛋白激酶、β-1,4-葡聚糖酶、抗壞血酸過氧化酶、谷胱甘肽-S-轉(zhuǎn)移酶相關(guān)的抗性基因的表達(dá)量。
4.2 誘導(dǎo)子在組織培養(yǎng)中的應(yīng)用
4.2.1 誘導(dǎo)子的定義與分類 從植物病理學(xué)方面來(lái)講,誘導(dǎo)子是一種可以引起植物自身產(chǎn)生抗病反應(yīng)以產(chǎn)生抗毒素(植保素)和過敏反應(yīng)來(lái)保護(hù)自己的化學(xué)物質(zhì)或生物因子;從植物組織培養(yǎng)方面來(lái)講,誘導(dǎo)子是一種能促進(jìn)植物細(xì)胞產(chǎn)生目標(biāo)代謝物以及能引起某一組織內(nèi)生理變化的化學(xué)物質(zhì)或生物因子[70]。根據(jù)來(lái)源,誘導(dǎo)子可分為生物誘導(dǎo)子和非生物誘導(dǎo)子。生物誘導(dǎo)子主要包括真菌、細(xì)菌、病毒的滅活菌體,細(xì)胞粗提物以及某種成分、菌體分泌物以及當(dāng)病原體或害蟲侵染植物時(shí)植物的分泌物等。非生物誘導(dǎo)子主要包括金屬離子、植物內(nèi)源激素(茉莉酸、水楊酸、茉莉酸甲酯、脫落酸等)、化合物、理化因素(紫外光、溫度、超聲、水分、pH、鹽強(qiáng)等)、氣體(臭氧、一氧化氮、過氧化氫、二氧化碳、乙烯等)。
利用誘導(dǎo)子來(lái)提高次級(jí)代謝產(chǎn)物含量是目前在藥用植物組織培養(yǎng)上常用的方法。其中最常用的是生物誘導(dǎo)子和非生物誘導(dǎo)子[70]。
4.2.2 生物誘導(dǎo)子在植物組織培養(yǎng)中的應(yīng)用 生物誘導(dǎo)子中研究最多與最廣泛的為真菌誘導(dǎo)子。1968年,Crutckshand等發(fā)現(xiàn)首個(gè)真菌誘導(dǎo)子Monilinia fructicola(褐腐病菌)菌絲體中的一種小分子多肽Monilicolin A能促進(jìn)菜豆內(nèi)表皮的形成與菜豆素的積累[71]。從此真菌誘導(dǎo)子受到越來(lái)越多的關(guān)注。
真菌誘導(dǎo)子主要包括真菌滅活菌體、真菌活菌、真菌菌體成分、真菌分泌物(培養(yǎng)液)等。在化學(xué)成分上主要包括多糖、低聚糖、多肽、蛋白、不飽和脂肪酸等。
真菌滅活菌體誘導(dǎo)子是指將真菌的菌絲體或孢子收獲后,用蒸餾水清洗干凈,放入烘箱烘干后,用研缽研成粉末,加入適量蒸餾水后放入滅菌鍋中121 ℃滅菌25 min。菌絲體或孢子發(fā)生降解或部分降解。一般將滅活菌體溶液在一定時(shí)間加入植物培養(yǎng)物培養(yǎng)基,處理一定時(shí)間來(lái)誘導(dǎo)植物培養(yǎng)物的生長(zhǎng)以及次級(jí)代謝產(chǎn)物的積累。真菌滅活菌體作為誘導(dǎo)子在植物組織培養(yǎng)中的應(yīng)用,見表2。
真菌活菌作為誘導(dǎo)子是指將一定數(shù)目的真菌孢子加入植物組織培養(yǎng)物中。Awad等[86]認(rèn)為,體外培養(yǎng)植物與栽培植物相比,體外培養(yǎng)通常是無(wú)菌環(huán)境,缺少與植物共生和非共生的土壤微生物,這可能造成體外培養(yǎng)植物細(xì)胞中次級(jí)代謝產(chǎn)物含量低的原因。因此,在Taverniera cuneifolia的培養(yǎng)過程中,考察了用5種真菌(黑曲霉、曲霉、青霉、串珠鐮刀霉和凍土毛霉)和5種細(xì)菌(噬胺芽孢桿菌、發(fā)根農(nóng)桿菌、致瘤農(nóng)桿菌、蠟樣芽孢桿菌和豆科根瘤菌)活菌為誘導(dǎo)子,對(duì)不定根中的甘草酸含量的積累,結(jié)果表明所有誘導(dǎo)子都可以提高不定根中甘草酸的含量,其中加入凍土毛霉后,甘草酸質(zhì)量分?jǐn)?shù)為4.90 mg·g-1,加入致瘤農(nóng)桿菌后,甘草酸達(dá)到了6.37 mg·g-1,均高于空白組(1.46 mg·g-1)和茉莉酸甲酯(2.57 mg·g-1)處理組。
真菌菌體成分作為誘導(dǎo)子是指菌體中的某一成分作為誘導(dǎo)子加入植物組織培養(yǎng)物中。周立剛等考查了Fusarium oxysporium Dzf17菌低聚糖對(duì)盾葉薯蕷懸浮細(xì)胞的影響。首先考察了胞外多糖(EPS),水提菌絲體多糖(WPS)、氫氧化鈉提取的菌絲體多糖(SPS)的添加時(shí)間以及多糖濃度對(duì)盾葉薯蕷懸浮細(xì)胞生長(zhǎng)以及細(xì)胞中薯蕷皂苷元含量的影響。結(jié)果顯示,WPS的效果最好,在細(xì)胞培養(yǎng)第25天時(shí)加入20 mg·L-1的WPS可以使細(xì)胞生物量、薯蕷皂苷元的含量和產(chǎn)量分別達(dá)到空白組的1.34,2.85,3.83倍[87]。接著周立剛等又考察了WPS中低聚糖DP4,DP7,DP10的的添加時(shí)間、多糖濃度以及添加次數(shù)對(duì)盾葉薯蕷懸浮細(xì)胞中薯蕷皂苷元含量的影響。結(jié)果顯示,在細(xì)胞培養(yǎng)分別在第24,26天時(shí)連續(xù)加入6 mg·L-1 DP7,在第30天時(shí)收獲,薯蕷皂苷元的含量和產(chǎn)量分別為空白組的9.19,12.38倍比單次加入刺激的效果好[88]。此外周立剛等還考察了分別來(lái)自于EPS,WPS,SPS的低聚糖EOS,WOS,SOS作用不同時(shí)間段對(duì)盾葉薯蕷懸浮細(xì)胞中防御相關(guān)酶(PAL,POD,PPO)活性的影響,結(jié)果顯示EOS,WOS都能顯著增加防御相關(guān)酶的活性,說明內(nèi)生菌F. oxysporium Dzf17中的低聚糖可能激活和增強(qiáng)盾葉薯蕷懸浮細(xì)胞的防御機(jī)制[89]。真菌菌體成分作為誘導(dǎo)子在植物組織培養(yǎng)中的應(yīng)用見表3。
真菌分泌物誘導(dǎo)子是指將真菌的發(fā)酵液收集后,用4層紗布進(jìn)行過濾,1萬(wàn)×g 離心20 min后,用0.4 μm的濾膜進(jìn)行過濾,用旋轉(zhuǎn)蒸發(fā)儀把過濾后的發(fā)酵液濃縮到一定體積,放入滅菌鍋中121 ℃滅菌25 min。一般將滅活菌體發(fā)酵液在一定時(shí)間加入植物培養(yǎng)物培養(yǎng)基,處理一定時(shí)間來(lái)誘導(dǎo)植物培養(yǎng)物的生長(zhǎng)以及次級(jí)代謝產(chǎn)物的積累。真菌分泌物體作為誘導(dǎo)子在植物組織培養(yǎng)中的應(yīng)用,見表4。
4.2.3 非生物誘導(dǎo)子在植物組織培養(yǎng)中的應(yīng)用 水楊酸(SA)和茉莉酸類化合物 [茉莉酸(JA),茉莉酸甲酯(MJ)]由于可以通過誘導(dǎo)多種植物次級(jí)代謝產(chǎn)物合成途徑中基因的表達(dá)來(lái)促進(jìn)次級(jí)代謝產(chǎn)物含量的增加而廣為人知。除此之外,由于他們可以在低濃度誘導(dǎo)遠(yuǎn)離他們合成部分的細(xì)胞反應(yīng),又被成為植物激素。其中,茉莉酸甲酯類應(yīng)用最廣泛,目前已經(jīng)成功應(yīng)用于人參、柴胡、百部、甘草、西洋參、匙羹藤、柴胡、紫錐菊、雷公藤、睡茄、刺五加、苦艾和積雪草等植物組織培養(yǎng)中來(lái)提高細(xì)胞中次級(jí)代謝物的含量。
在苦艾懸浮細(xì)胞培養(yǎng)中,添加1.0 mg·L-1的茉莉酸以及茉莉酸甲酯可以使其總酚,總黃酮的含量增加,另外,可以提高自由基清除能力[97]。加入10 mg·L-1的茉莉酸甲酯到人參不定根的培養(yǎng)液中,人參皂苷約32 mg·g-1是空白組的4.76倍[98]。
化學(xué)合成誘導(dǎo)子一般指的是對(duì)已知的誘導(dǎo)子進(jìn)行改造,通過化學(xué)合成,在誘導(dǎo)子分子結(jié)構(gòu)上加入一些官能團(tuán)等,來(lái)提高誘導(dǎo)子的誘導(dǎo)能力,增加藥用植物細(xì)胞中次級(jí)代謝物的積累。其中,最常見的是對(duì)茉莉酸甲酯的改造。例如,在三七懸浮細(xì)胞的培養(yǎng)過程中加入五氟丙基茉莉酸甲酯、2-羥乙基茉莉酸甲酯以及2-羥基乙氧基乙基,結(jié)果發(fā)現(xiàn)他們都能顯著增加人參皂苷的含量[99]。Qian等[100]考察了2-羥乙基茉莉酸甲酯和三氟乙基茉莉酸甲酯對(duì)紅豆杉細(xì)胞中次級(jí)代謝產(chǎn)物的誘導(dǎo)作用,結(jié)果發(fā)現(xiàn),2-羥乙基茉莉酸甲酯和三氟乙基茉莉酸甲酯能顯著提高紅豆杉細(xì)胞中紫杉烷C的含量,質(zhì)量分?jǐn)?shù)分別達(dá)到44.3,39.7 mg·g-1,均高于對(duì)照組(茉莉酸甲酯處理組)的含量(質(zhì)量分?jǐn)?shù)分別為14.0,32.4 mg·g-1)。
除了常用的上述這些化合物外,還有一些物理因子如紫外光、溫度、超聲,金屬離子,水分,pH,鹽強(qiáng),氣體如臭氧、一氧化氮、過氧化氫、二氧化碳、乙烯等都能提高次級(jí)代謝產(chǎn)物的含量。
5 生物合成生產(chǎn)藥用植物活性成分
由于生長(zhǎng)受到自然環(huán)境的影響,許多藥用植物生長(zhǎng)緩慢或栽培機(jī)制復(fù)雜。中藥材中的活性成分存在含量低、結(jié)構(gòu)復(fù)雜、不穩(wěn)定、很難化學(xué)合成或產(chǎn)率地下等缺點(diǎn)。利用生物技術(shù)生產(chǎn)活性成分有許多優(yōu)點(diǎn):包括生長(zhǎng)周期短、生產(chǎn)標(biāo)準(zhǔn)化、質(zhì)量穩(wěn)定等,為中藥資源保護(hù)提供了新的途徑。隨著生物合成技術(shù)在青蒿素、紫杉醇,丹參酮和人參皂苷生物合成研究中的應(yīng)用,預(yù)測(cè)生物合成技術(shù)將成為中藥可持續(xù)利用的重要途徑之一。近年來(lái)利用生物合成來(lái)生產(chǎn)活性成分的例子見表5。
藥用植物有效成分的生物合成是在基因組學(xué)的研究基礎(chǔ)上,通過在細(xì)胞中構(gòu)建有效成分的生物合成途徑和代謝網(wǎng)絡(luò),從而實(shí)現(xiàn)藥用有效成分的定向、高效的合成,以解決藥用有效成分的生產(chǎn)及藥物研發(fā)等一系列問題[52]。植物組織培養(yǎng)在生物合成中的應(yīng)用包括功能基因的挖掘和基因功能體內(nèi)驗(yàn)證。
基因功能基因的挖掘主要是通過轉(zhuǎn)錄組測(cè)序來(lái)實(shí)現(xiàn)的。Subramaniyam等[101]對(duì)MJ處理不同時(shí)間的人參不定根進(jìn)行了轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)30個(gè)轉(zhuǎn)錄因子,11個(gè)GT與人參皂苷合成有關(guān)。Nuruzzaman等[102]對(duì)MJ處理過的人參不定根以及未處理過的不定根進(jìn)行測(cè)序,發(fā)現(xiàn)48個(gè)轉(zhuǎn)錄因子與人參皂苷的合成相關(guān)。Jayakodi等[103]對(duì)2種人參材料誘導(dǎo)出的不定根以及栽培人參進(jìn)行了轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)不定根中90%的基因與數(shù)據(jù)庫(kù)得到一致,17%的基因是栽培品中所沒有的,此外還發(fā)現(xiàn)了一些與人參皂苷合成相關(guān)的候選功能基因。
基因功能的體內(nèi)驗(yàn)證主要是通過在植物組織培養(yǎng)器官體內(nèi)進(jìn)行基因沉默以及過表達(dá)來(lái)實(shí)現(xiàn)的。Park等[104]通過把CYP716A53v2基因在PCR 8.0中進(jìn)行克隆,然后與pH2WG連接構(gòu)建過表達(dá)載體,然后導(dǎo)入農(nóng)桿菌中,侵染人參胚狀體,經(jīng)過篩選得到CYP716A53v2過表達(dá)根系;另一方面,把CYP716A53v2基因進(jìn)行沉默,構(gòu)建相應(yīng)的沉默載體導(dǎo)入農(nóng)桿菌中繼而侵染人參胚狀體,經(jīng)過篩選得到CYP716A53v2沉默根系。研究發(fā)現(xiàn),過表達(dá)根系中CYP716A53v2基因的表達(dá)以及原人參三醇類皂苷含量高于正常根系,沉默根系中CYP716A53v2基因的表達(dá)以及原人參三醇類皂苷含量低于正常根系,說明CYP716A53v2基因的功能是轉(zhuǎn)化原人參二醇為原人參三醇。
[參考文獻(xiàn)]
[1] Milen I, Georgiev A I, Pavlov T B. Hairy root type plant in vitro systems as sources of bioactive substances[J]. Appl Microbiol Biot,2007,74(6): 1175.
[2] Paek K Y, Murthy H N, Zhong J J. Production of biomass and bioactive compounds using bioreactor technology[M]. Netherlands:Springer, 2014.
[3] Gao M B,Zhang W,Li X T,et al.Expression profiling of genes involved in taxuyunnanine C biosynthesis in cell suspension cultures of Taxus chinensis by repeated elicitation with a newly synthesize jasmonate, in situ absorption and sucrose feeding[J].Chin J Biotechnol,2011,27(1):101.
[4] 趙壽經(jīng),侯春喜,徐立新,等. 抑制齊墩果烷型人參皂苷合成支路對(duì)達(dá)瑪烷型人參皂苷生產(chǎn)能力的影響[J]. 吉林大學(xué)學(xué)報(bào):工學(xué)版,2011,41(3):865.
[5] Balusamy S R D,Kim Y J,Rahimi S,et al.Transcript pattern of cytochrome P450,antioxidant and ginsenoside biosynthetic pathway genes under heavy metal stress in Panax ginseng Meyer[J].B Environ Contam Tox,2013,90(2):194.
[6] Moses T,Pollier J,Almagro L,et al.Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum[J].Proc Natl Acad Sci USA,2014,111(4):1634.
[7] Zhang H C,Liu J M,Chen H M,et al.Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch[J].Mol Biotechnol,2011,47(1):50.
[8] Kim J A,Kim Y S,Choi Y E.Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them[J].Plant Biotechnol Rep,2011,5(3):255.
[9] Torkamani M R D,Jafari M,Abbaspour N,et al.Enhanced production of valerenic acid in hairy root culture of Valeriana officinalis by elicitation[J].Open Life Sci,2014,9(9):853.
[10] Sun J,Xu J S,Zhao L Z,et al.Induction of hairy roots and plantlet regeneration of Bupleurum chinense DC[J].Acta Pharmaceutica Sinica,2013,48(9):1491.
[11] Zhu C S,Miao G P,Guo J,et al.Establishment of Tripterygium wilfordii Hook. f. hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine[J].J Microbiol Biotechnol,2014,24:823.
[12] Zhao J L,Zhou L G,Wu J Y.Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures[J].Appl Microbiol Biot,2010,87(1):137.
[13] Guo J,Zhou Y J,Hillwig M L,et al.CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J].Proc Natl Acad Sci USA,2013,110(29):12108.
[14] Darvishi E,Kahrizi D,Bahraminejad S,et al.In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium)[J].Cell Mol Biol,2015,62(3):7.
[15] Hao G P,Du X H,Zhao F X,et al.Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba[J].Biotechnol Lett,2010,32(2):305.
[16] Qiao X L,Jiang S G,Lv X G,et al. Effects of phytohormones on plant regeneration and production of flavonoids in transgenic Saussurea involucrata hairy roots[J]. Biotechnology,2011,27(1):69.
[17] Li J,Wang J,Li J X,et al. Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch[J]. Appl Biochem Biotech,2016,178(3):576.
[18] Simic S G,Tusevski O,Maury S,et al. Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures[J]. Plant Cell Tiss Org,2015,122(1):213.
[19] Chen J R,Chen Y B,Ziemiańska M,et al. Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose (Rosa chinensis Jacq.)[J]. J Plant Growth Regul,2016,35(2):586.
[20] Park Y J,Thwe A A,Li X,et al. Triterpene and flavonoid biosynthesis and metabolic profiling of hairy roots, adventitious roots, and seedling roots of Astragalus membranaceus[J]. J Agr Food Chem,2015,63(40):8862.
[21] Wang Y H,He Z S,Sun Y X,et al. Study on the production of alkaloid by cell mass suspension culture of Fritillaria cirrhosa[J]. Chin Med Mat,2011,34(2):183.
[22] Van Moerkercke A,Steensma P,Schweizer F,et al. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus[J]. Proc Natl Acad Sci USA,2015,112(26):8130.
[23] Qi X J,Chen R Y,Wang W. Cell suspension culture of Gentiana macrophylla (I)[J].Chin Tradit Herbal Drugs,2010,41(3):472.
[24] Zhao J L,Zhou L G,Wu J Y. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures[J].Appl Microbiol Biot,2010,87(1):137.
[25] Gandi S,Rao K,Chodisetti B,et al.Elicitation of andrographolide in the suspension cultures of Andrographis paniculata[J].Appl Biochem Biotech,2012,168(7):1729.
[26] 曹然,張明生,劉詩(shī)雅,等. 不同理化因子對(duì)三分三毛狀根生長(zhǎng)及其莨菪堿含量的影響[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2014,22(2):195.
[27] Sun J,Xu J S,Zhao L Z,et al.Induction of hairy roots and plantlet regeneration of Bupleurum chinense DC[J].Acta pharmaceutica Sinica,2013,48(9):1491.
[28] Verma P,Khan S A,Mathur A K,et al.Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor[J]. Plant Cell Tiss Org,2014,118(2):257.
[29] Zhu C,Miao G,Guo J,et al. Establishment of Tripterygium wilfordii Hook. f. hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine[J]. J Microbiol Biotechnol,2014,24:823.
[30] Lee Y S,Ju H K,Kim Y J,et al. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation[J]. PLoS ONE,2013,8(12):e82479.
[31] Kikowska M,Budzianowski J,Krawczyk A,et al. Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L[J]. Acta Physiol Plant,2012,34(6):2425.
[32] Sheng D F,Chen L. Effects of PEG-6000 stress on tanshinones accumulation in hairy roots of Salvia miltiorrhiza[J]. Chin Tradit Herbal Drugs,2013,44(9):1181.
[33] Wu HY,Baque M A,Lee E J,et al. Scale-up of adventitious root cultures of Echinacea angustifolia in a pilot-scale bioreactor for the production of biomass and caffeic acid derivatives[J].Plant Biotechnol Rep,2013,7(3):297.
[34] Sykowska-Baranek K,Pietrosiuk A,Naliwajski M R,et al.Effect of L-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst[J].In Vitro Cell Dev-Pl,2012,48(5):555.
[35] Zheng C J,Wu X Y,Wang Z J. Optimization of inducement conditions for hairy roots of Morinda officinalis[J]. Agr Sci Technol,2014,10(1):77.
[36] Lee Y S,Ju H K,Kim Y J,et al.Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation[J].PLoS ONE,2013,8(12):e82479.
[37] Silja P K,Satheeshkumar K. Establishment of adventitious root cultures from leaf explants of Plumbago rosea and enhanced plumbagin production through elicitation[J].Ind Crop Prod,2015,76(1):479.
[38] Wang Q J,Zheng L P,Sima Y H,et al. Methyl jasmonate stimulates 20-hydroxyecdysone production in cell suspension cultures of Achyranthes bidentata[J].Plant Omics,2013,6(2):116.
[39] Suthar S,Ramawat K G. Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii[J].Plant Biotechnol Rep,2010,4(1):9.
[40] Chavan J J, Gaikwad N B, Umdale S D, et al. Efficiency of direct and indirect shoot organogenesis, molecular profiling, secondary metabolite production and antioxidant activity of micropropagated Ceropegia santapaui[J]. Plant Growth Regul,2014,72(1): 1.
[41] Liu W, Li P J, Qi X M, et al. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis[J]. Chemosphere, 2005,61(1): 158.
[42] Rong Z, Yin H. A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio[J].Ecotox Environ Safe,2004, 58(1): 96.
[43] Punja Z K,F(xiàn)eeney M, Schluter C,et al.Multiplication and germination of somatic embryos of American ginseng derived fromsuspension cultures and biochemical and molecular analyses of plantlets[J]. In Vitro Cell Dev-Pl, 2004,40: 329
[44] Sedov K A, Fomenkov A A, Solov′yova, et al. The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana[J]. Biol Bull, 2014,41:493.
[45] 黃璐琦, 郭蘭萍, 胡娟, 等. 道地藥材形成的分子機(jī)制及其遺傳基礎(chǔ)[J]. 中國(guó)中藥雜志,2008,33(20):2303.
[46] 黃璐琦,劉昌孝. 分子生藥學(xué)[M].北京:科學(xué)出版社,2015.
[47] 黃新,邱德有,黃璐琦.茉莉酸甲酯對(duì)中國(guó)紅豆杉細(xì)胞基因表達(dá)的mRNA差異顯示研究[J].分子植物育種,2006,4(5):627.
[48] 李娟,盛維瑾,劉大為,等.鋅離子影響丹參金屬硫蛋白MT2基因表達(dá)[J].分子植物育種,2007,5(3):389.
[49] 劉峻,丁家宜,周倩耘,等.真菌誘導(dǎo)子對(duì)人參毛狀根皂苷生物合成和生長(zhǎng)的影響[J].中國(guó)中藥雜志,2004,29(4):302.
[50] Zhao J, Davis L C, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005, 23: 283.
[51] 許道琦. 真菌誘導(dǎo)白樺三萜積累的營(yíng)養(yǎng)生理和分子機(jī)制的初步研究[D]. 長(zhǎng)春:東北林業(yè)大學(xué),2013.
[52] Zhao Q, Hu Y Q, Guo W H, et al. Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+-influx and the oxidative burst[J]. Plant Sci, 2001, 161: 423.
[53] 崔晉龍,付少彬,高芬,等. 真菌誘導(dǎo)植物次生代謝產(chǎn)物積累的信號(hào)機(jī)制及在藥用植物中的應(yīng)用[J].中草藥,2012,43(8): 1647.
[54] 周敏. 內(nèi)生真菌及其誘導(dǎo)子與長(zhǎng)春花懸浮細(xì)胞生物堿合成代謝相關(guān)性研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué), 2005.
[55] Li T T, Hu Y Y, Du X H, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems[J]. PLoS ONE, 2014, 9 (10):e109492.
[56] 張蓮蓮,談鋒.真菌誘導(dǎo)子在藥用植物細(xì)胞培養(yǎng)中的作用機(jī)制和應(yīng)用進(jìn)展[J].中草藥,2006,37(9):1426.
[57] Xu M J, Dong J F, Zhu M Y, et al. Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway[J]. Plant Physiol, 2005, 139: 991.
[58] Dong J, Wan G W, Liang Z S. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell cultures[J]. J Biotechnol, 2010, 148: 99.
[59] 黃超.小分子化合物的添加提高人參皂苷產(chǎn)量及其作用機(jī)制探索[D].上海:華東理工大學(xué),2013.
[60] Bulgakov V P, Tchernoded G K, Mischenko N P, et al. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes[J]. J Biotechnol, 2002, 97: 213.
[61] Aziz A, Poinssot B, Daire X, et al. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola[J].Mol Plant Microbe In, 2003, 16: 1118.
[62] Hu X, Neill S J, Cai W, et al. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng[J].Funct Plant Biol, 2003, 30: 901.
[63] Linden J C, Phisalaphong M. Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis[J].Plant Sci, 2000, 158: 41.
[64] Zhang C H, Yan Q, Cheuk W K, et al. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding[J]. Planta Med, 2004, 70: 147.
[65] 邢丙聰. 丹參毛狀根中酚酸類和酮類成分合成途徑中bHLH和WD40轉(zhuǎn)錄因子的調(diào)控[D]. 杭州:浙江理工大學(xué),2015.
[66] Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks[J]. Curr Opin Plant Biol, 2006, 9: 436.
[67] Vander F L, Zhang H, Menke F L H, et al. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway[J].Plant Mol Biol, 2000, 44:675.
[68] 王勁波. 中生菌素對(duì)水稻懸浮細(xì)胞主要防衛(wèi)反應(yīng)基因轉(zhuǎn)錄表達(dá)的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2002.
[69] Landi L, Feliziani E, Romanazzi G. Expression of defense genes in strawberry fruits treated with different resistance inducers[J]. J Agr Food Chem, 2014, 62: 3047.
[70] 王和勇,羅恒,孫敏. 誘導(dǎo)子在藥用植物細(xì)胞培養(yǎng)中的應(yīng)用[J].中草藥,2004,35(8):1.
[71] Cruickshank I A M, Perrin D R. The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola[J]. Life Sci, 1968, 7(1):449.
[72] Bahabadi S E, Sharifi M, Chashmi N A, et al. Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors[J]. Acta Physiol Plant, 2014, 36 (1):3325.
[73] Saikat D, Moumita G, Urmi D, et al. Signal transducer and oxidative stress mediated modulation of phenylpropanoid pathway to enhance rosmarinic acid biosynthesisin fungi elicited whole plant culture of Solenostemon scutellarioides[J]. Enzyme Microb Tech, 2014, 66(1): 1.
[74] Zhang S C, Yan Y, Wang B Q, et al. Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures[J]. J Biosci Bioeng,2014, 117 (5): 645.
[75] Sudhamoy M, Adinpunya M. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.)[J]. Biotechnol Lett, 2008, 30 (1):1253.
[76] Wang Y, Dai C C, Cao J L, et al. Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets[J]. World J Microb Biot, 2012, 28 (1):575.
[77] Hao G P, Du X H, Zhao F, et al. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba[J]. Biotechnol Lett, 2010, 32 (1):305.
[78] Wang J W, Zhang Z, Tan R X, Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp.[J].Biotechnol Lett, 2001, 23 (1): 857.
[79] Fan G Z, Zhai Q L, Li X C, et al. Compounds of Betula platyphylla cell suspension cultures in response to fungal elicitor[J]. Biotechnol Biotec Eq, 2013, 27 (1):3569.
[80] Ravi P G, Arvind C, Tukaram D N. Influence of biotic and abiotic elicitors on four major isomers of boswellic acid in callus culture of Boswellia serrata Roxb[J].Plant Omics, 2011, 4(4):169.
[81] Gao F K, Yong Y H, Dai C C. Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells[J].J Med Plants Res, 2011, 5 (18): 4418.
[82] Zhao J, Zhong L, Zou L, et al. Efficient promotion of the sprout growth and rutin production of tartary buckwheat by associated fungal endophytes[J].Cereal Res Commun, 2014, 42(3): 401.
[83] Ming Q L, Su C Y, Zheng C J, et al. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis[J].J Exp Bot, 2013, 64 (18): 5687.
[84] Zhao J L, Zheng B B, Li Y, et al. Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzf12 from Dioscorea zingiberensis[J]. Molecules, 2011, 16(1): 847.
[85] Pereira P S, Fábio K T, Suzelei D C F, et al. Enhanced triterpene production in Tabernaemontana catharinensis cell suspension cultures in response to biotic elicitors[J].Quim Nova,2007, 30 (8):1849.
[86] Awad V, Kuvalekar A, Harsulkar A. Microbial elicitation in root cultures of Taverniera cuneifolia (Roth) Arn, for elevated glycyrrhizic acid production[J]. Ind Crop Prod, 2014, 54: 13.
[87] Li P Q, Mou Y, Shan T J, et al. Effects of polysaccharide elicitors from Endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis[J].Molecules,2011, 16(1): 9003.
[88] Li P Q, Mao Z L, Lou J F, et al. Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17[J]. Molecules, 2011, 16(1), 10631.
[89] Li P Q, Luo H Y, Meng J J, et al. Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures[J]. Electronic J Biotechnol, 2014, 17 (1): 156.
[90] Mou Y, Zhou K Y, Xu D, et al. Enhancement of diosgenin production in plantlet and cell cultures of Dioscorea zingiberensis by palmarumycin C13 from the endophytic fungus, Berkleasmium sp. Dzf12[J]. Trop J Pharm Res, 2015, 14 (2): 241.
[91] Li Y C,Tao W Y. Effects of paclitaxel-producing fungal endophytes on growth and paclitaxel formation of Taxus cuspidata cells[J]. Plant Growth Regul, 2009, 58 (1): 97.
[92] MaY N, Han C, Chen J Y, et al. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity[J]. Mol Plant Pathol, 2015, 16(1): 14.
[93] Verma P, Khan S A, Mathur A K, et al. Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor[J].Plant Cell Tiss Org, 2014, 118 (1): 257.
[94] Li Y C, Tao W Y. Paclitaxel-producing fungal endophyte stimulates the accumulation of taxoids in suspension cultures of Taxus cuspidate[J].Sci Hortic-amsterdam, 2009, 121 (1): 97.
[95] Chodisetti B, Rao K, Gandi S, et al. Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation[J]. Plant Biotechnol Rep, 2013, 7(1):519.
[96] Verma P, Khan S A, Mathur A K, et al. Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor[J]. Protoplasma, 2014, 251 (3):1359.
[97] Ali M, Abbasi B H, AliG S. Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium L.[J].Plant Cell Tiss Org, 2015, 120 (4):1099.
[98] Wang J,Gao W Y, Zuo B M, et al. Effect of methyl jasmonate on the ginsenoside contentof Panax ginseng adventitious root cultures and on the genes involved in triterpene biosynthesis[J]. Res Chem Intermediat, 2013, 39 (8):1973.
[99] Wang W, Zhao Z J, Xu Y F, et al. Efficient elicitation of ginsenoside biosynthesis in cell cultures of Panax notoginseng by using self-chemically-synthesized jasmonates[J].Biotechnol Bioproc E, 2005, 10 (5):162.
[100] Chen S L, Zhu X X, Li C F, et al. Genomics and synthetic biology of traditional Chinese medicine[J]. Acta Pharm Sin, 2012, 47: 1070.
[101] Subramaniyam S, Mathiyalagan R, Natarajan S, et al.Transcript expression profiling for adventitious roots of Panax ginseng Meyer[J]. Gene, 2014, 546:89.
[102] Nuruzzaman M, Cao H Z, Xiu H, et al. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng[J].Acta Biochim Biophys Sin, 2015, 22:1.
[103] Jayakodi M, LeeS C, Park H S, et al. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots[J].J Ginseng Res, 2014, 38: 278.
[104] Park S B, Chun J H, Ban Y W, et al. Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)[J].J Ginseng Res, 2016,40:47.
[105] Moses T, Pollier J, Almagro L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum[J].Proc Natl Acad Sci USA, 2014, 111 (4):1634.
[106] Huang Z W, Lin J C, Cheng Z X, et al. Production of oleanane-type sapogenin in transgenic rice via expression of β-amyrin synthase gene from Panax japonicus C. A. Mey[J].BMC Biotechnol, 2015, 15 (17):45.
[107] Zhao S C, Park C H, Li X H, et al. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.)[J].J Agric Food Chem, 2015, 63 (23): 8622.
[108] Biazzi E, Carelli M, Tava A, et al. CYP72A67 catalyzes a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis[J]. Mol Plant, 2015, 8 (3): 1493.
[109] Dai L H, Liu C, Zhu Y M, et al. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii[J].Plant Cell Physiol, 2015, 56(6):1172.
[110] Huang Z W, Lin J C, Cheng Z X, et al. Production of dammarane-type sapogenins in rice by expressing thedammarenediol-Ⅱ synthase gene from Panax ginseng C.A. Mey[J]. Plant Sci, 2015, 239 (3):106.
[111] Zhao F L, Bai P, Liu T, et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae[J].Biotechnol Bioeng, 2016, 9999: 1.
[112] Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J].Nat Biotechnol,2003, 21 (7): 796.
[113] Ignea C, Athanasakoglou A, Ioannou E et al. Carnosic acid biosynthesis elucidated by a synthetic biology platform[J]. Proc Natl Acad Sci USA, 2015, doi/10.1073/pnas.1523787113.
[責(zé)任編輯 呂冬梅]