黃志衛(wèi)+陸玲
【摘要】 目的 探究重癥肺炎患者血清過氧化物及抗氧化物水平的情況及其與患者病情嚴(yán)重程度的關(guān)系。
方法 臨床選取80例肺炎患者,其中40例符合重癥肺炎診斷標(biāo)準(zhǔn)為A組,40例非重癥肺炎患者為B組。檢測兩組患者血清過氧化脂質(zhì)(LPO)、超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GSH-Px),用t檢驗(yàn)比較兩組患者的差異。評價(jià)重癥肺炎患者組急性生理與慢性健康評分(APACHE-Ⅱscore)、臨床肺部感染評分(CPIS),同時(shí)對患者APACHE-Ⅱ評分、CPIS評分與LPO、SOD、GSH-Px進(jìn)行Spearman相關(guān)性分析,探究過氧化物及抗氧化物含量與病情嚴(yán)重程度的相關(guān)性。
結(jié)果 A組患者血清LPO顯著高于B組,血清SOD、GSH-Px活性顯著低于B組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)?;颊週PO水平與APACHE-Ⅱ評分呈正相關(guān)(rs=0.866,P<0.001),SOD水平與APACHE-Ⅱ評分呈負(fù)相關(guān)(rs=-0.620,P<0.001),GSH-Px與APACHE-Ⅱ評分呈負(fù)相關(guān)(rs=-0.734,P<0.001);患者LPO水平與CPIS評分呈正相關(guān)(rs=0.641,P<0.001),SOD水平與CPIS評分呈負(fù)相關(guān)(rs=-0.613,P<0.001),GSH-Px與CPIS評分呈負(fù)相關(guān)(rs=-0.727,P<0.001)。
結(jié)論 重癥肺炎患者血清過氧化水平顯著高于非重癥肺炎患者,且血清過氧化水平越高病情越嚴(yán)重。
【關(guān)鍵詞】 重癥肺炎;全身反應(yīng);氧化-抗氧化平衡;APACHE-Ⅱ評分;CPIS評分
中圖分類號(hào):R563.1 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.3969/j.issn.1003-1383.2017.03.014
【Abstract】 Objective To explore relationship between the level of serum peroxides and antioxidants and the severity of patients with severe pneumonia.
Methods 80 cases of pneumonia were selected,of which 40 cases of patients with severe pneumonia diagnosis criteria for group A,and 40 cases of non severe pneumonia for group B.Serum lipid peroxides (LPO),superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured in the two groups,and T test was used to compare the differences between the two groups.Acute physiology and chronic health score (APACHE-Ⅱ score) and clinical pulmonary infection score (CPIS) were evaluated.Meanwhile,Spearman correlation analysis was carried out on APACHE-Ⅱscore,CPIS and LPO,SOD and GSH-Px.In addition,relationship between serum peroxides and antioxidants and the severity was explored.
Results The serum LPO of the group A was significantly higher,but the activities of serum SOD and GSH-Px were significantly lower than those of the group B,difference was statistically significant(P<0.05).The serum LPO level was positively correlated with APACHE-Ⅱ score(rs=0.866,P<0.001),the SOD level was negatively correlated with APACHE-Ⅱ score (rs=-0.620,P<0.001),and GSH-Px was negatively correlated with APACHE-Ⅱ score (rs=-0.734,P<0.001).In addition,the serum LPO level was positively correlated with CPIS(rs=0.641,P<0.001),the SOD was negatively correlated with CPIS (-0.613,P<0.001),and GSH-Px was negatively correlated with CPIS(rs=-0.727, P<0.001).
Conclusion Serum peroxides levels of patients with severe pneumonia are significantly higher than that in patients without severe pneumonia,and the patients with higher serum level of peroxides are more serious.
【Key words】 severe pneumonia;systemic reaction;imbalance of oxidation and anti-oxidation;APACHE-Ⅱ score;CPIS
絕大多數(shù)重癥肺炎患者除存在嚴(yán)重的呼吸系統(tǒng)癥狀外,尚有明顯累及其他系統(tǒng)功能的表現(xiàn),可見重癥肺炎是一種系統(tǒng)性疾病。有關(guān)重癥肺炎全身反應(yīng)機(jī)制的報(bào)道有很多,如休克、全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)[1~3]等,但有關(guān)重癥肺炎與氧化應(yīng)激報(bào)道并不多見。重癥肺炎進(jìn)展過程中引起的缺氧及炎癥反應(yīng)都可能影響機(jī)體氧化-抗氧化平衡[4],導(dǎo)致患者機(jī)體氧化應(yīng)激的發(fā)生,從而推動(dòng)病情進(jìn)一步發(fā)展。本研究擬探討重癥肺炎患者血清中過氧化物(Reactive oxygen species,ROS)及抗氧化物水平及其與重癥肺炎患者病情嚴(yán)重程度的關(guān)系。
1 對象與方法
1.1 研究對象
為我院2016年2月至5月ICU收治的重癥肺炎患者40例,以及呼吸內(nèi)科肺炎住院患者40例。重癥肺炎患者為A組,男性23例,女性17例;年齡47~74歲,中位年齡62歲,四分位間距為53歲及67歲;社區(qū)獲得性肺炎22例,醫(yī)院獲得性肺炎18例。非重癥肺炎患者為B組,男性20例,女性20例;年齡44~70歲,中位年齡59歲,四分位間距為51歲及65歲;社區(qū)獲得性肺炎24例,醫(yī)院獲得性肺炎16例。兩組患者在性別、年齡、肺炎類型等方面比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
1.2 對象選取條件
依據(jù)美國胸科學(xué)會(huì)(ATS)2001年對重癥肺炎的診斷標(biāo)準(zhǔn)[5],重癥肺炎患者診斷符合1條主要標(biāo)準(zhǔn)或2條次要標(biāo)準(zhǔn)。主要診斷標(biāo)準(zhǔn):①需要機(jī)械通氣;②入院48 h內(nèi)肺部病變擴(kuò)大≥50%;③少尿(每日<400 ml)或非慢性腎衰患者血肌酐>177 μmol/L(2 mg/dl)。次要標(biāo)準(zhǔn):①呼吸頻率>30次/min;②PaO2/FiO2<250;③病變累及雙肺或多肺葉;④收縮壓<12 kPa(90 mmHg);⑤舒張壓<8 kPa(60 mmHg)。兩組均排除合并嚴(yán)重的免疫缺陷和免疫抑制,凝血功能障礙以及難以控制的呼吸衰竭,合并其他基礎(chǔ)疾病的患者。
1.3 檢測方法
取患者入院后2小時(shí)內(nèi)2 ml靜脈血,血清過氧化脂質(zhì)(lipoperoxides,LPO)檢測采用硫代巴比妥酸比色法檢測,使用碧云天公司的脂質(zhì)氧化檢測試劑盒(Lipid Peroxidation MDA Assay Kit),貨號(hào):S0131,單位以丙二醛含量表示(μmol/L)。超氧化物歧化酶(Superoxide Dismutase,SOD)測定采用氮藍(lán)四唑法檢測,使用碧云天公司的總SOD活性檢測試劑盒(Total Superoxide Dismutase Assay Kit with NBT),貨號(hào):S0107,單位以酶活性表示(U/L)。谷胱甘肽過氧化物酶(Glutathione peroxidase,GSH-Px)檢測采用改良Hafaman氏法,使用上海盈公酶聯(lián)檢測試劑有限公司人谷胱甘肽過氧化酶ELISA定量試劑盒(Human Glutathione peroxidase,GSH-Px ELISA Kit),貨號(hào):yg-elisa-2241,單位以酶活性表示(U/L)。
1.4 評分標(biāo)準(zhǔn)
(1)危重癥評分(Acute Physiology and Chronic Health Evaluation, APACHE-Ⅱ score)評價(jià)患者病情嚴(yán)重程度:APACHE-Ⅱ評分量表包含生理評分、年齡、慢性病評分3個(gè)部分。生理評分包括直腸溫度、平均動(dòng)脈壓、心率、呼吸、肺泡-動(dòng)脈氧分壓差(A-ADO2)或氧分壓(PaO2)(FiO2≥0.5時(shí)用A-ADO2,F(xiàn)iO2<0.5時(shí)用PaO2)、動(dòng)脈血pH值、血清鈉、血清鉀、血清肌酐、血細(xì)胞比容、白細(xì)胞計(jì)數(shù)以及血電解質(zhì)12個(gè)指標(biāo),根據(jù)各指標(biāo)不同的異常程度劃分等級并評分。年齡劃分為5個(gè)等級:≤45,0分;46~54,2分;55~64,3分;65~74,5分;≥75,6分。合并慢性病且非手術(shù)或急診手術(shù)患者5分,擇期手術(shù)者2分??偡?1分,評分越高,患者病情越危重,病死率越高。(2)患者感染程度采用臨床肺部感染評分(Clinical Pulmonary Infection score,CPIS)衡量,其評分標(biāo)準(zhǔn)為:①體溫(12 h平均值,℃):36.5~38.4為0分,38.5~38.9為1分,≥39.0或≤36.0為2分;②白細(xì)胞計(jì)數(shù)(×104):4~11為0分,<4或>11為1分;③分泌物(24小時(shí)吸出物性狀及量):無痰或少量為0分,中量非膿性為1分,大量為2分,大量伴膿性為3分;④氧合指數(shù)(PaO2/FiO2,mmHg):>240為0分;≤240為2分;⑤X線胸片浸潤影:無為0分,斑片狀為1分,融合片狀為2分;⑥兩次培養(yǎng)到同一種細(xì)菌或者革蘭染色與培養(yǎng)一致為2分。評分越高,患者感染癥狀越嚴(yán)重。
1.5 統(tǒng)計(jì)學(xué)方法
采用SPSS 19.0統(tǒng)計(jì)分析軟件,Kolmogorov-Smirnov檢驗(yàn)數(shù)據(jù)的正態(tài)性,偏度以s表示,峰度以K表示,正態(tài)分布計(jì)量資料采用平均數(shù)±標(biāo)準(zhǔn)差(±s)表示,使用t檢驗(yàn)比較兩組檢查結(jié)果,非正態(tài)分布資料用中位數(shù)±四分位間距表示,秩和檢驗(yàn)比較兩組差異,采用Spearman相關(guān)分析判斷患者血清中氧化物、抗氧化物水平與APACHE-Ⅱ評分、CPIS評分是否有相關(guān)性,檢驗(yàn)水準(zhǔn):α=0.05,雙側(cè)檢驗(yàn)。
2 結(jié) 果
2.1 兩組患者血清LPO、SOD、GSH-Px水平的比較 D檢驗(yàn)結(jié)果顯示兩組患者LPO、SOD、GSH-Px水平均符合正態(tài)分布(其中PLPO=0.17,PSOD=0.23,PGSH-Px=0.19,P均大于0.05,可以認(rèn)為LPO、SOD、GSH-Px水平均符合正態(tài)分布),兩組患者血清LPO、SOD、GSH-Px水平比較,A組患者血清LPO水平明顯高于B組,SOD、GSH-Px水平顯著低于B組,差異有統(tǒng)計(jì)學(xué)意義(P<0.001)。見表1。
2.2 重癥肺炎患者血清LPO、SOD、GSH-Px水平與患者APACHE-Ⅱ評分的相關(guān)性分析 APACHE-Ⅱ及CPIS評分均呈偏態(tài)分布,故使用Spearman相關(guān)性分析,重癥患者LPO水平與APACHE-Ⅱ評分呈正相關(guān)(rs=0.866,P<0.001),SOD水平與APACHE-Ⅱ評分呈負(fù)相關(guān)(rs=-0.620,P<0.001),GSH-Px水平與APACHE-Ⅱ評分呈負(fù)相關(guān)(rs=-0.734,P<0.001)。
2.3 重癥肺炎患者血清LPO、SOD、GSH-Px水平與患者CPIS評分的相關(guān)性分析 使用Spearman相關(guān)性分析,重癥患者LPO水平與CPIS評分呈正相關(guān)(rs=0.641,P<0.001),SOD水平與CPIS評分呈負(fù)相關(guān)(rs=-0.613,P<0.001),GSH-Px水平與CPIS評分呈負(fù)相關(guān)(rs=-0.727,P<0.001)。
3 討 論
重癥肺炎的本質(zhì)是多種致病因素引起的急性肺實(shí)質(zhì)炎癥的危重狀態(tài),且常伴有嚴(yán)重的呼吸窘迫、血流動(dòng)力學(xué)異常、感染性休克、甚至引起多臟器衰竭綜合征(multiple organ failure syndrome, MOFS)。肺葉大面積受累,中性粒細(xì)胞在肺內(nèi)大量聚集、各炎癥因子和纖維蛋白介導(dǎo)血管內(nèi)皮及肺上皮細(xì)胞通透性增加,肺泡內(nèi)滲出增加,肺毛細(xì)血管炎性腫脹并充血,導(dǎo)致肺水腫及肺毛細(xì)血管微血栓的形成,此過程中機(jī)體發(fā)生嚴(yán)重的缺氧及炎癥反應(yīng)。
一方面,缺氧能夠通過多種途徑升高體內(nèi)ROS的水平,影響機(jī)體氧化-過氧化平衡。①缺氧引起線粒體功能障礙,從而使ROS水平升高,Kuo及Circu[6~7]的研究顯示,缺氧將導(dǎo)致細(xì)胞線粒體中LON蛋白的表達(dá)上調(diào),該蛋白不僅能夠直接使ROS水平升高,還可以通過增強(qiáng)細(xì)胞對ROS的敏感性而促進(jìn)細(xì)胞的凋亡;同時(shí)缺氧引起的鈣離子平衡系統(tǒng)紊亂,使得線粒體通透性轉(zhuǎn)換孔(mitochondrial permeablity transition pore, mPTP)異常開放,加速線粒體中ROS的產(chǎn)生[8]。②缺氧導(dǎo)致缺氧誘導(dǎo)因子(hypoxia inducible factor-1, HIF1)的表達(dá)增加,其介導(dǎo)機(jī)體內(nèi)紅細(xì)胞的增殖,并聯(lián)合缺氧環(huán)境導(dǎo)致新生紅細(xì)胞破壞,引起抗氧化物及相關(guān)酶類的減少,如SOD,從而導(dǎo)致ROS的過度積累[9~10]。③缺氧還可以通過上調(diào)雄激素受體、血管內(nèi)皮生長因子、白介素-8等的表達(dá)促進(jìn)ROS水平增加[11]。
另一方面伴隨著持續(xù)的炎癥反應(yīng),大量炎性細(xì)胞浸潤、炎癥因子被釋放,多種信號(hào)途徑被激活,促進(jìn)ROS的產(chǎn)生。①炎性相關(guān)因子核因子Kappa B(Nuclear factor KappaB,NF-κB)能上調(diào)Toll樣受體(Toll-like receptors,TLR)的表達(dá),從而上調(diào)ROS的水平[12~14]。②腫瘤壞死因子(Tumor necrosis factor,TNF)也可以通過NF-κB和JNK(Jun N-terminal kinase)途徑上調(diào)ROS的水平[15]。③NLRP3炎性小體同樣可以使NF-κB轉(zhuǎn)位,促使線粒體產(chǎn)生ROS[16]。
本研究中,重癥肺炎組血清ROS水平顯著高于非重癥肺炎組,抗氧化物顯著低于非重癥肺炎組,且重癥肺炎組ROS水平越高、抗氧化物水平越低,患者病情越嚴(yán)重,感染癥狀越明顯,說明氧化-抗氧化平衡的紊亂在重癥肺炎中起到了關(guān)鍵的作用。ROS不僅能夠直接損傷細(xì)胞,也可通過多種信號(hào)途徑誘導(dǎo)細(xì)胞凋亡的發(fā)生[17~19],同時(shí)能與炎癥細(xì)胞相互作用,在SIRS的發(fā)生發(fā)展過程中起到促進(jìn)作用。
綜上所述,體內(nèi)ROS水平不僅可以反映患者病情進(jìn)展程度,臨床上也可以通過調(diào)節(jié)患者體內(nèi)的氧化水平達(dá)到扭轉(zhuǎn)SIRS的瀑布效應(yīng),糾正氧化-抗氧化失調(diào)的目的,從而有利于患者病情的穩(wěn)定,可以減少患者病死率。
參 考 文 獻(xiàn)
[1] Liu W,Peng L,Hua S.Clinical significance of dynamic monitoring of blood lactic acid,oxygenation index and C-reactive protein levels in patients with severe pneumonia[J].Experimental and Therapeutic Medicine,2015,10(5):1824-1828.
[2] Paats MS,Bergen IM,Hanselaar WE,et al.Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia[J].European Respiratory Journal,2012,41(6):1378-1385.
[3] Frazier SB,Sepanski R,Mangum C,et al.Association of Systemic Inflammatory Response Syndrome with Clinical Outcomes of Pediatric Patients with Pneumonia[J].Southern Medical Journal,2015,108(11):665-669.
[41] KozhemIaka AI,Iea V,Sirenko AO,et al.Oxidation-reduction and blood coagulation process indices in severe forms of pneumonia in children[J].Pediatr Akus Ginekol,1980(2):14-15.
[5] 李懷云.血清前白蛋白、C反應(yīng)蛋白、載脂蛋白A1對重癥肺炎患者生存狀況的評估價(jià)值[J].安徽醫(yī)藥,2014,18(8):1517-1519.
[6] Kuo CY,Chiu YC,Lee YL,et al.Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia[J].Mitochondrion,2015,23:7-16.
[7] Circu ML,Aw TY.Reactive oxygen species,cellular redox systems,and apoptosis[J].Free Radical Biology & Medicine,2010,48(6):749-762.
[8] Seidlmayer LK,Juettner VV,Kettlewell S,et al.Distinct mPTP activation mechanisms in ischaemia-reperfusion:contributions of Ca2+,ROS,pH,and inorganic polyphosphate[J].Cardiovascular Research,2015,106(2):237-248.
[9] Song J,Yoon D,Christensen RD,et al.HIF-mediated increased ROS from reduced mitophagy and decreased catalase causes neocytolysis[J].Journal of Molecular Medicine,2015,93(8):857-866.
[10] Yalu R,Oyesiji A E,Eisenberg I,et al.HIF1A-dependent increase in endothelin 2 levels in granulosa cells:role of hypoxia,LH/cAMP,and reactive oxygen species[J].Reproduction,2014,149(1):11-20.
[11] Ren H,Li X,Cheng G,et al.The effects of ROS in prostatic stromal cells under hypoxic environment[J].Aging Male:the Official Journal of the International Society for the Study of the Aging Male,2015,18(2):84-88.
[12] Wei M,Li Z,Xiao L,et al.Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury[J].Molecular Immunology,2015,68 (2 Pt A):261-271.
[13] Jiangkun Yu,Yanyu Lu,Yapeng Li,et al.Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway[J].Journal of Pharmacy & pharmacology,2015,67(9):1240-1250.
[14] Morgan MJ,Liu Z.Crosstalk of reactive oxygen species and NF-kappaB signaling[J].Cell Research,2011,21(1):103-115.
[15] Blaser H,Dostert C,Mak TW,et al.TNF and ROS Crosstalk in Inflammation[J].Trends in Cell Biology,2016,26(4):249-261.
[16] Kim SR,Kim DI,Kim SH,et al.NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation[J].Cell Death & Disease,2014,5:e1498.
[17] Duan P,Hu C,Quan C,et al.4-Nonylphenol induces apoptosis,autophagy and necrosis in Sertoli cells:Involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways[J].Toxicology,2016,341-343:28-40.
[18] Lim EJ,Heo J,Kim YH.Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression[J].Apoptosis,2015,20(8):1087-1098.
[19] Qin G,Wu L,Liu H,et al.Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells[J].Experimental Cell Research,2015,336(2):308-317.
(收稿日期:2016-10-21 修回日期:2017-03-31)
(編輯:潘明志)