国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于核酸分子學方法的肉類成分鑒別技術研究進展

2017-06-29 08:40:35王金斌王榮談唐雪明
食品科學 2017年11期
關鍵詞:條形碼肉類線粒體

王金斌,李 文*,白 藍,劉 華,蔣 瑋,吳 瀟,王榮談,唐雪明,*

(1.上海市農(nóng)業(yè)科學院,上海 201106;2.上海海洋大學食品學院,上海 200090;3.上海市農(nóng)業(yè)遺傳育種重點實驗室,上海 201106;4.上海瑞豐農(nóng)業(yè)科技有限公司,上海 201106)

基于核酸分子學方法的肉類成分鑒別技術研究進展

王金斌1,2,3,李 文1,3,*,白 藍1,3,劉 華1,3,蔣 瑋1,3,吳 瀟1,3,王榮談4,唐雪明1,2,3,*

(1.上海市農(nóng)業(yè)科學院,上海 201106;2.上海海洋大學食品學院,上海 200090;3.上海市農(nóng)業(yè)遺傳育種重點實驗室,上海 201106;4.上海瑞豐農(nóng)業(yè)科技有限公司,上海 201106)

近年來,肉類摻假問題頻繁發(fā)生?;诤怂岬姆肿由飳W肉類成分鑒別技術已成為研究熱點,其具有靈敏度高、特異性強、檢測時間短以及成本低的優(yōu)點。本文綜述了基于核酸分子學的肉類成分種屬鑒別技術在肉類摻假檢驗中的應用,著重于量化各種方法的檢測限,并重點對實時熒光定量聚合酶鏈式反應(polymerase chain reaction,PCR)和數(shù)字PCR技術在動物成分鑒別定量分析的研究現(xiàn)狀與前景做介紹。探討不同來源的靶基因(核DNA和線粒體DNA)在動物成分鑒別中,定性和定量檢測靈敏度與特異性的區(qū)別。

摻假;肉類制品;數(shù)字PCR;物種測定

王金斌, 李文, 白藍, 等. 基于核酸分子學方法的肉類成分鑒別技術研究進展[J]. 食品科學, 2017, 38(11): 318-327. DOI:10.7506/spkx1002-6630-201711049. http://www.spkx.net.cn

WANG Jinbin, LI Wen, BAI Lan, et al. A review of current DNA-based methodologies for meat authentication[J]. Food Science, 2017, 38(11): 318-327. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201711049. http://www.spkx.net.cn

民以食為天,食以安為先,吃放心健康綠色的肉類制品是食品質(zhì)量安全的一個重要方面。食品摻假是一個老生常談的話題,我國古代就有“掛羊頭賣狗肉”的說法。為確保食品成分的真實性,質(zhì)檢“十二五”規(guī)劃綱要明確指出,需重點加強開展食品摻假鑒別技術研究。國內(nèi)市場近期曝光的多起肉類摻假事件引發(fā)了公眾對食品安全的擔憂。即使是在擁有世界上最嚴格食品安全制度的歐洲,2013年亦出現(xiàn)“掛牛頭賣馬肉”的造假現(xiàn)象,值得人們深思。

在肉類摻假形式層出不窮的情勢下,對動物源性成分鑒別技術的研究逐步成為食品安全領域的研究熱點。目前,使用的動物物種鑒別分析方法主要基于蛋白質(zhì)和DNA分析。其中,蛋白質(zhì)技術包括免疫[1]、色譜[2]和光譜[3]。但基于蛋白質(zhì)的檢測技術有一定的局限性,當材料進行熱處理時,多數(shù)蛋白質(zhì)會發(fā)生變性,不能滿足檢測的需要。而以核酸為基礎的分析方法可以克服這些困難,因為DNA存在于所有生物的所有組織,且DNA比蛋白質(zhì)的耐熱性強,高溫處理過的食品中仍能提取出片段化的DNA。另外,DNA比蛋白質(zhì)具有更豐富的種間多態(tài)性,有利于品種鑒定[4]。目前,以檢測DNA為基礎的方法主要有:常規(guī)聚合酶鏈式反應(polymerase chain reaction,PCR)-凝膠電泳法、多重PCR-凝膠電泳法、PCR-隨機擴增多態(tài)性DNA(random amplified polymorphic DNA,RAPD)分析、PCR-限制性內(nèi)切酶片段長度多態(tài)性(restriction fragment length polymorphism,RFLP)分析、DNA條形碼(DNA barcoding)、熒光定量PCR、微滴數(shù)字(droplet digital,dd)PCR方法等。本文將分別綜述基于核酸檢測的食品中肉類成分鑒別定性和定量技術的現(xiàn)狀與問題。

1 基于核酸分子學方法的動物成分鑒別

1.1 常規(guī)PCR-凝膠電泳法

DNA片段經(jīng)擴增后,通過瓊脂糖凝膠電泳進行片段大小的檢測,這是基于核酸分子學肉類成分鑒別方法中應用廣泛且操作最簡單的技術。其基本的實驗思路為:根據(jù)不同物種細胞核或線粒體基因組序列中的特征位點設計物種特異性引物,利用PCR反應實現(xiàn)食品中目標基因片段的指數(shù)級擴增,繼而通過電泳鑒別食品中可能的物種來源。目前利用常規(guī)PCR-凝膠電泳法對肉類成分檢測的方法研究匯總見表1。

自1998年Tartaglia等[5]首次報道基于普通PCR方法檢測飼料中的牛、羊源性成分至今,大量相關研究報道了應用PCR-凝膠電泳對食品中多種肉類成分的鑒別方法,檢測限大部分在0.1%以下。其中,對未加工(生鮮肉)和加工過的(腌制或者熱加工)肉類產(chǎn)品進行對比測試,雖然DNA高度受損,但兩者PCR特異性引物的檢測靈敏度差別不大。這是因為物種特異性引物的PCR技術的靶基因是短的DNA片段,具有簡單性、特異性和高靈敏度的優(yōu)點;主要的缺點是只有依賴針對靶序列的準確數(shù)據(jù)才能設計出相應的特異性引物。

表1 常規(guī)PCR-凝膠電泳法的匯總Table 1 Reported PCR-gel electrophoresis methods

1.2 多重PCR-凝膠電泳法

多重PCR是設計多種普通PCR的引物,加入同一PCR反應體系里,同時擴增出多個核酸片段,以同時檢測多種不同動物源成分的一項具有發(fā)展前景的技術[34]。相比于單一物種的PCR系統(tǒng),多重PCR技術具有節(jié)省成本,提高分析速率、效率和可靠性的優(yōu)點。表2匯總了運用多重PCR方法檢測動物成分的相關研究。

表2 多重PCR-凝膠電泳法的匯總表Table 2 Reported multiplex PCR-gel electrophoresis methods

Matsunaga等[42]首次進行了多重PCR的研究,通過分析Cty b研究了牛、豬、山羊、雞、綿羊、馬肉的六重PCR,并得出了檢測限是25 ng DNA。近幾年,大量研究實現(xiàn)了在同一PCR體系里加入多對引物同時檢測牛、豬、驢、山羊、綿羊、禽類等多種肉類成分的多重PCR鑒定。例如,Kitpipit等[47]用豬、雞、馬、牛、鴕鳥和山羊肉進行了六重PCR的研究,其分析目標是Cyt b、COI和12S rRNA基因,檢測靈敏度可達到到12 500線粒體拷貝(相當于7 fg)。

1.3 PCR-RAPD法和PCR-RFLP法

食品中DNA成分復雜,加之PCR技術的高靈敏度,使得應用PCR擴增方法來鑒定近緣物種時具有因非特異性擴增而產(chǎn)生假陽性結(jié)果的缺點。因此,以PCR為基礎,應用改良的引物設計策略或其他驗證手段的鑒定方法為肉類定性鑒別提供了新方向。其中,PCR-RPLF與PCR-RAPD是兩種主要策略。表3總結(jié)了部分至今為止有關RFLP法和RAPD法在肉類檢測中的研究。

表3 PCR-RFLP和PCR-RAPD方法的匯總Table 3 Reported PCR-RFLP and PCR-RAPD methods

PCR-RPLF法是將通用引物擴增后的PCR產(chǎn)物進行限制性內(nèi)切酶酶切,然后通過凝膠電泳進行觀察,作為單一物種的特有模式進行定性分析,可進行親緣性較近的物種間的鑒別。RFLP分析技術用于區(qū)分動物成分,依賴于其特定的限制性酶切位點識別的差異。然而,PCR-RPLF的缺點是容易受到目標基因序列中酶切位點隨機突變的影響,易產(chǎn)生不確定的檢測結(jié)果,且RFLP方法絕大多數(shù)都是定性檢測純動物組織,因為混合物可能產(chǎn)生復雜的結(jié)果導致無法解釋。

PCR-RAPD利用任意PCR短的引物擴增產(chǎn)生一系列的產(chǎn)物,得到PCR產(chǎn)物的指紋圖譜,根據(jù)指紋圖間的差別區(qū)分不同的種屬。當參考材料可用的很少或DNA序列信息未知時,RAPD技術是非常強大的。但PCR-RAPD的重復性較差且受到食品中其他DNA成分的嚴重干擾,存在不易標準化與廣泛應用的缺點。

1.4 DNA條形碼

在生物物種鑒定領域,DNA條形碼技術是發(fā)展最為迅速的一種新技術,最早由Hebert等[57]于2003年提出并用于物種鑒別和分類。目前DNA條形碼技術的研究主要集中在魚類[58-59]、動物[60]、植物[61]的成分鑒定。

表4 DNA條形碼技術的匯總Table 4 Reported DNA Barcoding methods

DNA條形碼技術最初用于生物分類和物種鑒別,后發(fā)展到應用于動物肉類鑒定中并得到廣泛研究,是一種簡單、快速、可靠、有效的分子鑒定技術。大多數(shù)動物物種的DNA條形碼是線粒體上一段約650 bp編碼基因COI,研究者將其作為動物鑒定的條形碼標準片段[57]。表4總結(jié)了部分至今為止有關DNA條形碼法在肉類檢測中的研究。COI基因作為公認的DNA條形碼被認為能夠很好地對動物進行分類鑒定[74]。COI基因在雙鏈環(huán)狀閉合的核外線粒體基因組上,保證了其相對完整性和熱穩(wěn)定性,在深加工的肉類食品中有相對足夠量的DNA被用于PCR擴增,確保足夠高的PCR產(chǎn)物含量。COI序列還具有足夠變異性、易擴增、片段自身在物種種內(nèi)具有特異性和種間多樣性等特點。然而,DNA條形碼技術也存在局限性,首先,數(shù)據(jù)庫中關于家禽家畜的DNA條形碼序列很少,缺乏大量數(shù)據(jù)作為支撐[74]。其次,只適用于含有單一成分的鑒別,不能鑒別同一產(chǎn)品中的幾種成分[75]。

雖然DNA條形碼技術在動物成分鑒別中存在局限性,但DNA條形碼技術能避免形態(tài)學分類的缺陷,對鑒定者的經(jīng)驗和專業(yè)知識背景要求較低,使科研和檢疫檢驗工作更加高效,加速了物種鑒別進程。隨著動物物種DNA條形碼數(shù)據(jù)庫的建立和不斷完善,該技術將在肉類食品鑒別中發(fā)揮更完善的作用,為我國肉類食品安全檢測和可追溯體系的建立提供參考。

1.5 實時熒光定量PCR技術

實時熒光定量PCR技術是利用熒光分子提供的熒光強度與PCR產(chǎn)物的豐度之間的相關性來實現(xiàn)實時數(shù)據(jù)采集[76]。相比于在末期進行分析的凝膠瓊脂糖或聚丙烯酰胺電泳技術,實時熒光定量PCR方法自然更加精確靈敏。在復雜的混合而成的產(chǎn)品中,即使只有微量的不同物種成分,也能分析出來,因此被認為是在肉類鑒定中最有前途的分子工具之一[77]。研究人員利用實時熒光定量PCR技術對肉類成分定性定量檢測進行了大量的研究,如表5匯總。

表5 實時熒光定量PCR法的匯總Table 5 Reported real-time PCR methods

續(xù)表5

Lahiff等[78]在2002年首次利用熒光定量PCR(TaqMan探針法),通過分析線粒體tRNA ATP6和ATP8對熱加工后牛肉成分檢測進行了研究,檢測限為0.001%。近年來肉類成分實時熒光PCR檢測技術有了長足發(fā)展,但相關方法的完善與推廣仍面臨著挑戰(zhàn)。肉類成分的定量分析通過已知樣品中相同的目標基因(參照)繪制的濃度校準曲線與已知成分含量(m/m)進行對比分析建立。然而,在量化動物摻假時,動物組織組成、樣品處理和肉類加工程度是不被研究者知道的,因此很難確定市場樣品肉類含量(m/m)與測量方法的相關性。首先,實時定量PCR技術的準確度及定量性潛能受DNA產(chǎn)量的影響,比如由于加工處理的原因及同一樣品不同組織中的DNA種類和生產(chǎn)細胞的數(shù)量存在有差異會影響DNA降解的程度。如經(jīng)過粗加工和高度加工的肉類產(chǎn)品的定量結(jié)果相差約為10 倍[77]。其次,大多數(shù)動物細胞含有許多拷貝的線粒體DNA,并且在不同組織中的線粒體DNA拷貝數(shù)是不同的,導致未知樣品中基于線粒體DNA序列測量結(jié)果和肉類含量(m/m)的相關性不準確。雖然該技術具有值得肯定的定量潛力,但很難實現(xiàn)肉類成分組織組成和加工過程盡可能與建立方法的條件保持一致,對商業(yè)肉制品中的目標物種進行定量測定僅僅只是可用,大部分研究主要還是利用實時熒光定量PCR的靈敏性對動物成分進行定性及半定量的判斷。而且,由于使用了特殊的熒光探針,通常成本也相對較高。

可靠的熒光定量PCR檢測方法必須考慮到DNA降解程度,才能推算出食品中原料肉的用量[137]。MY基因和GH基因被開發(fā)作為定量動物成分的校正參照標準。由于這些校正參照基因在不同哺乳動物及禽類組織中的表達水平相當,因此將對校正參照基因的定量結(jié)果與生肉組織中的定量結(jié)果相比,即可計算出基因組DNA的降解程度,從而進一步通過降解程度校正物種特異性擴增的定量結(jié)果。

1.6 ddPCR技術

ddPCR技術作為一種全新的準確定量核酸檢測方法,通過把反應體系均分到大量反應單元中獨立地進行PCR,并根據(jù)泊松分布和陽性比例來計算核酸數(shù)量。與傳統(tǒng)PCR、定量PCR相比,其結(jié)果的精確度、準確性和靈敏度更佳。定量結(jié)果不再依賴于Ct值,直接給出靶序列的起始濃度,實現(xiàn)真正意義上的絕對定量。2014年Cai Yicun等[138]首次采用數(shù)字PCR技術,以DNA含量為中間值計算出DNA拷貝數(shù)與生鮮肉質(zhì)量之間的線性關系,對肉制品中豬肉和雞肉進行成分鑒定及含量的分析。王珊等[139]建立一種定量檢測羊肉制品中羊源和豬源性成分的ddPCR方法,并將該方法與SN/T 2051—2008《食品、化妝品和飼料中牛羊豬源性成分檢測方法 實時PCR法》中實時熒光定量PCR方法做對比,來檢測3 份羊肉制品中的羊源和豬源性成分,得出結(jié)論:在肉種成分真?zhèn)舞b定上,ddPCR方法較實時熒光PCR方法更科學、準確。苗麗等[140]基于數(shù)字PCR技術,建立了定量檢測肉及肉制品中牛肉和豬肉質(zhì)量的方法。方法利用在一定范圍內(nèi)生鮮肉質(zhì)量與DNA含量、DNA含量與DNA拷貝數(shù)之間均呈現(xiàn)明顯的線性關系,以DNA含量為中間值計算出DNA拷貝數(shù)(C)與生鮮肉質(zhì)量(M)之間的換算公式M牛= 0.062C-0.943、M豬=0.045C-1.72。對已知目標肉種含量的混合肉樣進行檢測,結(jié)果表明測量值和真實值基本一致,且不受外源物種的干擾。2015年Floren等[141]研究了基于ddPCR技術利用線粒體Cyt b基因151(馬)、146(牛)、147 bp(豬)和染色體凝血因子Ⅱ基因(F2)95(馬)、96 bp(牛)和97 bp(豬)作為標記基因鑒定和定量肉和肉制品。研究得出線粒體Cyt b基因作為標記基因進行物種量化是不合適的,利用染色體凝血因子Ⅱ基因(F2)作為標記基因,通過兩步ddPCR,能實現(xiàn)牛、馬、豬的精確量化,定量限(limit of quantity,LOQ)和檢測限(limit of detection,LOD)分別在0.01%和0.001%。

ddPCR是一個擁有巨大潛力的新興技術,具有高靈敏度、高精確度、高耐受性和絕對定量的優(yōu)點,可以對諸如肉制品這種復雜樣品中物種特異性靶基因?qū)崿F(xiàn)更靈敏、更準確的檢測,并且很容易將現(xiàn)成的實時熒光定量PCR檢測體系進行直接轉(zhuǎn)化,甚至無需優(yōu)化。ddPCR技術將會在動物成分特別是精加工肉類產(chǎn)品的定量檢測上進一步發(fā)展與完善,應用范圍也會大大擴展。

2 基于核酸分子學方法的動物成分定量方法的優(yōu)缺點

表6 動物成分物種鑒別定性、定量方法存在的優(yōu)缺點Table 6 Advantages and disadvantages of qualitative and quantitative PCR-based methods for species determination

基于核酸分子學水平的動物成分定性檢測技術中一個重要的步驟是選擇合適的靶基因。用于動物成分鑒別不同靶基因所存在的優(yōu)缺點見表6。線粒體基因、染色體DNA和重復序列作為靶基因被廣泛地用于識別野生和馴養(yǎng)肉類物種。如來源于線粒體的靶基因位點主要為線粒體Cty b、12S和16S核糖體RNA亞基、和D-loop等,這些都是動物源性成分檢測最常用的標記基因。此外,核基因組特異性標記基因(生長激素基因、肌動蛋白基因、和黑毛發(fā)受體1基因)和重復序列(SINE、LINE)也可以有效鑒別肉類物種。在產(chǎn)品中檢測到未標識的動物成分是相對簡單的(摻假或不摻假),主要面臨的挑戰(zhàn)是定量的問題。在目標基因選擇方面,線粒體基因組編碼序列雖然是肉類定性鑒別的首選,但不同動物組織中線粒體數(shù)量區(qū)別較大,在動物組織種類未知的情況下以之作為定量檢測的目標基因,則可能導致定量結(jié)果的偏差,而現(xiàn)有的部分研究卻未考慮這一因素;細胞基因組中的重復序列不存在組織差異,但重復序列間的高同源性加大了特異性引物與探針設計的難度;細胞基因組中單拷貝的編碼序列在食品加工過程中降解嚴重,導致檢測靈敏度過低。

3 結(jié) 語

基于核酸DNA肉類成分定性分析的靶序列可來源于線粒體或基因組,包括單拷貝和重復序列,標記基因DNA序列的選擇對檢測方法的檢測限有很大的影響。定量的分析應根據(jù)實時PCR或ddPCR分析,PCR擴增產(chǎn)物的序列必須來源于基因組,其中單拷貝和重復序列都可以使用。用線粒體DNA進行定量分析是不可能的,因為在未知樣品中每個組織細胞的線粒體拷貝數(shù)是不確定的。

食品中肉類成分的種屬鑒定技術是打擊肉制品摻假、維護市場秩序的有效保障。如今,隨著實時熒光定量PCR和ddPCR技術的飛速發(fā)展為肉類成分檢測開辟了新的途徑,使得食品中肉類成分的定量分析與溯源成為可能。在定量檢測中,通過對反應體系的精巧設計而提升方法的準確性與實用價值將成為相關技術的發(fā)展方向與趨勢。

[1] MONTOWSKA M, POSPIECH E. Species identification of meat by electrophoretic methods[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2007, 6(1): 5-16.

[2] CHOU C C, LIN S P, LEE K M, et al. Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2007, 846(1/2): 230-239. DOI:10.1016/ j.jchromb.2006.09.006.

[3] ELLIS D I, BROADHURST D, CLARKE S J, et al. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning[J]. Analyst, 2005, 130(12): 1648-1654. DOI:10.1039/b511484e.

[4] BALLIN N Z, VOGENSEN F K, KARLSSON A H. Species determination-can we detect and quantify meat adulteration?[J]. Meat Science, 2009, 83(2): 165-174. DOI:10.1016/j.meatsci.2009.06.003.

[5] TARTAGLIA M, SAULLE E, PESTALOZZA S, et al. Detection of bovine mitochondrial DNA in ruminant feeds: a molecular approach to test for the presence of bovine-derived materials[J]. Journal of Food Protection, 1998, 61(5): 513-518. DOI:10.1128/JB.00923-09.

[6] WANG R F, MYERS M J, CAMPBELL W, et al. A rapid method for PCR detection of bovine materials in animal feedstuffs[J]. Molecular and Cellular Probes, 2000, 14(1): 1-5. DOI:10.1006/mcpr.1999.0273.

[7] COLGAN S, O’BRIEN L, MAHER M, et al. Development of a DNA-based assay for species identification in meat and bone meal[J]. Food Research International, 2001, 34(5): 409-414. DOI:0.1016/S0963-9969(00)00185-X.

[8] MYERS M J, FRIEDMAN S L, FARRELL D E, et al. Validation of a polymerase chain reaction method for the detection of rendered bovine-derived materials in feedstuffs[J]. Journal of Food Protection, 2001, 64(4): 564-566.

[9] LAHIFF S, GLENNON M, BRIEN L, et al. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM)[J]. Molecular and Cellular Probes, 2001, 15(1): 27-35. DOI:10.1006/mcpr.2000.0336.

[10] KRCMAR P, RENCOVA E. Identification of species-specific DNA in feedstuffs[J]. Journal of Agricultural and Food Chemistry, 2004, 51(26): 7655-7658. DOI:10.1021/jf034167y.

[11] KUSAMA T, NOMURA T, KADOWAKI K. Development of primers for detection of meat and bone meal in ruminant feed and identification of the animal of origin[J]. Journal of Food Protection, 2004, 67(6): 1289-1292.

[12] BELLAGAMBA F, VALFRE F, PANSERI S, et al. Polymerase chain reaction-based analysis to detect terrestrial animal protein in fish meal[J]. Journal of Food Protection, 2003, 66(4): 682-685.

[13] HA J C, JUNG W T, NAM Y S, et al. PCR identification of ruminant tissue in raw and heat-treated meat meals[J]. Journal of Food Protection, 2006, 69(9): 2241-2247.

[14] MARTIN I, GARCIA T, FAJARDO V, et al. Species-specific PCR for the identification of ruminant species in feedstuffs[J]. Meat Science, 2007, 75(1): 120-127. DOI:10.1016/j.meatsci.2006.06.019.

[15] RODR?GUEZ M A, GARC?A T, GONZ?LEZ I, et al. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by speciesspecific polymerase chain reaction[J]. Journal of Agricultural and Food Chemistry, 2003, 51(6): 1524-1529. DOI:10.1021/jf025784+.

[16] YIN R H, BAI W L, WANG J M, et al. Development of an assay for rapid identification of meat from yak and cattle using polymerase chain reaction technique[J]. Meat Science, 2009, 83(1): 38-44.

[17] SAKARIDIS I, GANOPOULOS I, ARGIRIOU A, et al. A fast and accurate method for controlling the correct labeling of products containing buffalo meat using high resolution melting (HRM) analysis[J]. Meat Science, 2013, 94(1): 84-88. DOI:10.1016/ j.meatsci.2012.12.017.

[18] CHAUMPLUK P, CHIKAE M, TAKAMURA Y, et al. Novel electrochemical identification and semi quantification of bovine constituents in feedstuffs[J]. Science and Technology of Advanced Materials, 2006, 7(3): 263-269. DOI:10.1016/j.stam.2006.03.001.

[19] 蔣立, 胡茂. 種屬特異性P C R技術在檢測鵝肥肝摻假中的應用研究[J]. 畜禽業(yè), 2010(8): 54-55. DOI:10.3969/ j.issn.1008-0414.2010.08.031.

[20] KORTBAOUI R, LOCAS A, IMBEAU M, et al. Universal mitochondrial PCR combined with species-specific dot-blot assay as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water[J]. Water Research, 2009, 43(7): 2002-2010. DOI:10.1016/j.watres.2009.01.030.

[21] MANE B G, MENDIRATTA S K, TIWARI A K. Beef specific polymerase chain reaction assay for authentication of meat and meat products[J]. Food Control, 2012, 28(2): 246-249. DOI:10.1016/ j.foodcont.2012.05.031.

[22] PASCOAL A, PRADO M, CALO P, et al. Detection of bovine DNA in raw and heat-processed foodstuffs, commercial foods and specific risk materials by a novel specific polymerase chain reaction method[J]. European Food Research and Technology, 2005, 220(3/4): 444-450. DOI:10.1007/s00217-004-1088-x.

[23] 王思偉, 劉靜靜, 李蕓, 等. 山羊線粒體cytB基因片段特異性PCR反應條件優(yōu)化[J]. 中國草食動物科學, 2014(增刊 1): 92-94. DOI:10.3969/j.issn.2095-3887.2014.z1.035.

[24] 李通, 尹艷, 王海, 等. 聚合酶鏈式反應快速鑒別5 種常見肉類別[J].食品科學, 2013, 34(8): 249-252. DOI:10.7506/spkx1002-6630-201308054.

[25] MANE B G, MENDIRATTA S K, TIWARI A K. Polymerase chain reaction assay for identification of chicken in meat and meat products[J]. Food Chemistry, 2009, 116(3): 806-810. DOI:10.1016/ j.foodchem.2009.03.030.

[26] KARABASANAVARA N S, SINGHA S P, UMAPATHI V, et al. A highly specific PCR assay for identification of raw and heat treated mutton (Ovis aries)[J]. Small Ruminant Research, 2011, 100(2/3): 153-158. DOI:10.1016/j.smallrumres.2011.07.009.

[27] 李通, 尹艷, 袁其朋, 等. 運用PCR方法鑒別四種犬科動物的研究[J]. 食品工業(yè)科技, 2013, 34(17): 146-149. DOI:10.13386/ j.issn1002-0306.2013.17.075.

[28] ZHANG G L, ZHENG M G, ZHOU Z J, et al. Establishment and application of a polymerase chain reaction for the identification of beef[J]. Meat Science, 1999, 51(3): 233-236.

[29] CALVO J H, RODELLAR C, ZARAGOZA P, et al. Beef- and bovinederived material identification in processed and unprocessed food and feed by PCR amplification[J]. Journal of Agricultural and Food Chemistry, 2002, 50(19): 5262-5264. DOI:10.1021/jf020051a.

[30] CALVO J H, ZARAGOZA P, OSTA R. Technical note: a quick and more sensitive method to identify pork in processed and unprocessed food by PCR amplification of a new specific DNA fragment[J]. Journal of Animal Science, 2001, 79(8): 2108-2112.

[31] TAJIMA K, ENISHI O, AMARI M, et al. PCR detection of DNAs of animal origin in feed by primers based on sequences of short and long interspersed repetitive elements[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(10): 2247-2250. DOI:10.1271/bbb.66.2247.

[32] AMARAL J S, SANTOS C G, MELO V S, et al. Authentication of a traditional game meat sausage (Alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats[J]. Food Research International, 2014, 60(6): 140-145. DOI:10.1016/j.foodres.2013.11.003.

[33] HOPWOOD A J, FAIRBROTHER K S, LOCKLEY A K, et al. An actin gene-related polymerase chain reaction (PCR) test for identification of chicken in meat mixtures[J]. Meat Science, 1999, 53(4): 227-231. DOI:10.1016/S0309-1740(99)00060-1.

[34] TOBE S S, LINACRE A M T. A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene[J]. Electrophoresis, 2008, 29(2): 340-347.

[35] SOARES S, AMARAL J S, MAFRA I, et al. Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay[J]. Meat Science, 2010, 85(3): 531-536. DOI:10.1016/j.meatsci.2010.03.001.

[36] GHOVVATI S, NASSIRI M R, MIRHOSEINI S Z. Fraud identification in industrial meat products by multiplex PCR assay[J]. Food Control, 2009, 20(8): 696-699. DOI:10.1016/j.foodcont.2008.09.002.

[37] 張全芳, 馬德源, 劉艷艷, 等. 利用多重PCR技術檢測羊肉中摻雜狐貍?cè)獾姆椒ㄑ芯縖J]. 山東農(nóng)業(yè)科學, 2014(12): 4-6. DOI:10.3969/ j.issn.1001-4942.2014.12.002.

[38] DALMASSO A, FONTANELLA E, PIATTI P, et al. A multiplex PCR assay for the identification of animal species in feedstuffs[J]. Molecular and Cellular Probes, 2004, 18(2): 81-87. DOI:10.1016/ j.mcp.2003.09.006.

[39] ZHA D M, XING X M, YANG F H. A multiplex PCR assay for fraud identification of deer products[J]. Food Control, 2010, 21(10): 1402-1407.

[40] ZHA D M, XING X M, YANG F H. Rapid identification of deer products by multiplex PCR assay[J]. Food Chemistry, 2011, 129(4): 1904-1908.

[41] 何瑋玲, 張馳, 楊靜, 等. 食品中4 種肉類成分多重PCR的快速鑒別方法[J]. 中國農(nóng)業(yè)科學, 2012, 45(9): 1873-1880. DOI:10.3864/ j.issn.0578-1752.2012.09.024.

[42] MATSUNAGA T, CHIKUNI K, TANABE R, et al. A quick and simple method for the identification of meat species and meat products by PCR assay[J]. Meat Science, 1999, 51(2): 143-148. DOI:10.1016/ S0309-1740(98)00112-0.

[43] 馮海永, 韓建林. 羊肉產(chǎn)品中若干動物源性成分的七重PCR檢測技術應用研究[J]. 中國畜牧獸醫(yī), 2010, 37(9): 85-90.

[44] 蘇葳藝, 李欣南, 于雷, 等. 利用多重PCR方法檢測牛肉中的摻假肉[J].食品工業(yè), 2015(2): 277-280.

[45] ZHANG C. Semi-nested multiplex PCR enhanced method sensitivity of species detection in further-processed meats[J]. Food Control, 2013, 31(2): 326-330. DOI:10.1016/j.foodcont.2012.11.002.

[46] RASTOGI G, DHARNE M, BHARDE A, et al. Species determination and authentication of meat samples by mitochondrial 12S rRNA gene sequence analysis and conformation-sensitive gel electrophoresis[J]. Current Science, 2004, 87(9): 1278-1281.

[47] KITPIPIT T, SITTICHAN K, THANAKIATKRAI P. Direct-multiplex PCR assay for meat species identification in food products[J]. Food Chemistry, 2014, 163(3): 77-82. DOI:10.1016/j.foodchem.2014.04.062.

[48] MONTIEL-SOSA J F, RUIZ-PESINI E, MONTOYA J, et al. Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA[J]. Journal of Agricultural and Food Chemistry, 2000, 48(7): 2829-2832. DOI:10.1021/jf9907438.

[49] BELLAGAMBA F, MORETTI V M, COMINCINI S, et al. Identification of species in animal feedstuffs by polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial DNA[J]. Journal of Agricultural and Food Chemistry, 2001, 49(8): 3775-3781. DOI:10.1021/jf0010329.

[50] MAEDE D. A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences[J]. European Food Research and Technology, 2006, 224(2): 209-217. DOI:10.1007/ s00217-006-0320-2.

[51] 馮海永, 劉丑生, 何建文, 等. 利用線粒體DNA Cyt b基因PCR-RFLP分析方法鑒別羊肉和鴨肉[J]. 食品工業(yè)科技, 2012, 33(13): 319-321. DOI:10.13386/j.issn1002-0306.2012.13.093.

[52] SUN Y L, LIN C S. Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats[J]. Journal of Agricultural and Food Chemistry, 2003, 51(7): 1771-1776. DOI:10.1021/jf020860u.

[53] 高琳, 徐幸蓮, 周光宏. 肉制品中牛源性成分的PCR-RFLP檢測[J]. 食品科技, 2007, 32(4): 191-193. DOI:10.3969/j.issn.1005-9989.2007.04.057.

[54] 田金輝, 李寶明, 尉婷媛, 等. T-RFLP快速鑒定生鮮肉中牛羊成分的研究[J]. 中國畜牧獸醫(yī), 2011, 38(3): 84-86.

[55] CALVO J H, ZARAGOZA P, OSTA R. Random amplified polymorphic DNA fingerprints for identification of species in poultry pate[J]. Poultry Science, 2001, 80(4): 522-524. DOI:10.1093/ ps/80.4.522.

[56] HAUNSHI S, BASUMATARY R, GIRISH P S, et al. Identification of chicken, duck, pigeon and pig meat by species-specific markers of mitochondrial origin[J]. Meat Science, 2009, 83(3): 454-459. DOI:10.1016/j.meatsci.2009.06.026.

[57] HEBERT P D N, RATNASINGHAM S, de WAARD J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B: Biological Science, 2003, 270(Suppl 1): 96-99. DOI:10.1098/rsbl.2003.0025.

[58] 李新光, 王璐, 趙峰, 等. DNA條形碼技術在魚肉及其制品鑒別中的應用[J]. 食品科學, 2013, 34(18): 337-342. DOI:10.7506/spkx1002-6630-201318069.

[59] 王敏, 劉葒, 黃海, 等. DNA條形碼技術在深圳魚肉制品鑒定中的應用[J]. 食品科學, 2015, 36(20): 247-251. DOI:10.7506/spkx1002-6630-201520048.

[60] KANE D E, HELLBERG R S R. Identification of species in ground meat products sold on the U.S. commercial market using DNA-based methods[J]. Food Control, 2016, 59: 158-163. DOI:10.1016/ j.foodcont.2015.05.020.

[61] CBOL Plant Working Group. A DNA barcode for land plants[J]. Proceedings of the National Academy of Sciences of the USA, 2009, 106(31): 12794-12797. DOI:10.1073/pnas.0905845106.

[62] LUO A R, ZHANG A B, HO S Y W, et al. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals[J]. BMC Genomics, 2011, 12(1): 1-13.

[63] 馬英, 李海龍, 魯亮, 等. DNA條形碼技術在青海海東地區(qū)小型獸類鑒定中的應用[J]. 生物多樣性, 2012, 20(2): 193-198.

[64] M?LLER L, GONCALVES G L, CORDEIRO-ESTRELA P, et al. DNA barcoding of sigmodontine rodents: identifying wildlife reservoirs of zoonoses[J]. PLoS ONE, 2013, 8(11): e80282.

[65] QUINTO C A, TINOCO R, HELLBERG R S R. DNA barcoding reveals mislabeling of game meat species on the US commercial market[J]. Food Control, 2016, 59: 386-392. DOI:10.1016/ j.foodcont.2015.05.043.

[66] CAI Y S, ZHANG L, SHEN F J, et al. DNA barcoding of 18 species of Bovidae[J]. Chinese Science Bulletin, 2011, 56(2): 164-168.

[67] 歐陽解秀, 王立賢. DNA條形碼技術在地方豬種質(zhì)資源保護中的應用[J]. 農(nóng)業(yè)生物技術學報, 2013, 21(3): 348-354. DOI:10.3969/ j.issn.1674-7968.2013.03.012.

[68] 徐向明. 我國3 個地方品種鴨線粒體DNACOⅠ基因的DNA條形碼初步分析[J]. 畜牧與獸醫(yī), 2008, 40(11): 51-53.

[69] 高玉時, 屠云潔, 童海兵, 等. 6 個地方雞種線粒體COⅠ基因的DNA條形碼[J]. 農(nóng)業(yè)生物技術學報, 2007, 15(6): 924-930. DOI:10.3969/ j.issn.1674-7968.2007.06.003.

[70] 王爽, 李永波, 馬超峰, 等. DNA條形碼COⅠ序列在常見肉類鑒別中的應用研究[J]. 現(xiàn)代食品科技, 2016, 32(1): 188-193. DOI:10.13982/j.mfst.1673-9078.2016.1.030.

[71] 高玉時, 唐修君, 屠云潔, 等. 基于線粒體COⅠ基因15 個雞種的DNA編碼研究[J]. 中國農(nóng)業(yè)科學, 2011, 44(3): 587-594. DOI:10.3864/j.ssn.0578-1752.2011.03.020.

[72] 唐修君, 高玉時, 屠云潔, 等. 基于線粒體COⅠ基因的2 個新發(fā)現(xiàn)雞種資源DNA編碼研究[J]. 中國畜牧, 2011, 38(1): 133-136.

[73] 屠云潔, 陳國宏, 高玉時, 等. 3 個地方雞種線粒體DNA COⅠ基因條形碼遺傳多樣性研究[J]. 家畜生態(tài)學報, 2009, 30(1): 16-19. DOI:10.3969/j.issn.1673-1182.2009.01.004.

[74] 呂冬梅, 黃原, 文慧, 等. DNA條形碼技術在食品鑒定中的應用[J].食品科學, 2015, 36(9): 248-253. DOI:10.7506/spkx1002-6630-201509046.

[75] HELLBERG R S R, MORRISSEY M T. Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market[J]. Journal of Laboratory Automation, 2011, 16(4): 308-321. DOI:0.1016/j.jala.2010.07.004.

[76] LOPEZ-ANDREO M, LUGO L, GARRIDO-PERTIERRA A, et al. Identification and quantitation of species in complex DNA mixtures by real-time polymerase chain reaction[J]. Analytical Biochemistry, 2005, 339(1): 73-82. DOI:10.1016/j.ab.2004.11.045.

[77] KOPPEL R, ZIMMERLI F, BREITENMOSER A. Heptaplex real-time PCR for the identification and quantification of DNA from beef, pork, chicken, turkey, horse meat, sheep (mutton) and goat[J]. European Food Research and Technology, 2009, 230(1): 125-133.

[78] LAHIFF S, GLENNON M, LYNG J, et al. Real-time polymerase chain reaction detection of bovine DNA in meat and bone meal samples[J]. Journal of Food Protection, 2002, 65(7): 1158-1165.

[79] LPEZ-ANDREO M, ALDEGUER M, GUILL?N I, et al. Detection and quantification of meat species by qPCR in heat-processed food containing highly fragmented DNA[J]. Food Chemistry, 2012, 134(1): 518-523. DOI:10.1016/j.foodchem.2012.02.111.

[80] LAUBE I, SPIEGELBERG A, BUTSCHKE A, et al. Methods for the detection of beef and pork in foods using real-time polymerase chain reaction[J]. International Journal of Food Science and Technology, 2003, 38(2): 111-118. DOI:10.1046/j.1365-2621.2003.00651.x.

[81] DOOLEY J J, PAINE K E, GARRET S D, et al. Detection of meat species using TaqMan real-time PCR assays[J]. Meat Science, 2004, 68(3): 431-438. DOI:10.1016/j.meatsci.2004.04.010.

[82] FUMIERE O, DUBOIS M, BAETEN V, et al. Effective PCR detection of animal species in highly processed animal byproducts and compound feeds[J]. Analytical and Bioanalytical Chemistry, 2006, 385(6): 1045-1054. DOI:10.1007/s00216-006-0533-z.

[83] INES L, JUTTA Z, ALMUTH S, et al. Development and design of a‘ready-to-use’ reaction plate for a PCR-based simultaneous detection of animal species used in foods[J]. International Journal of Food Science and Technology, 2006, 42(1): 9-17.

[84] BRODMANN P D, MOOR D. Sensitive and semi-quantitative TaqManTMreal-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed[J]. Meat Science, 2003, 65(1): 599-607. DOI:10.1016/S0309-1740(02)00253-X.

[85] MENDOZA-ROMERO L, VERKAAR E L, SAVELKOUL P H, et al. Real-time PCR detection of ruminant DNA[J]. Journal of Food Protection, 2004, 67(3): 550-554.

[86] PEGELS N, GONZ?LEZ I, MART?N I, et al. Applicability assessment of a real-time PCR assay for the specific detection of bovine, ovine and caprine material in feedstuffs[J]. Food Control, 2011, 22(8): 1189-1196. DOI:10.1016/j.foodcont.2011.01.015.

[87] KANTHASWAMY S, PREMASUTHAN A. Quantitative realtime PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification[J]. Forensic Science International Genetics, 2012, 6(2): 290-295. DOI:10.1016/j.fsigen.2011.06.005.

[88] KESMEN Z, GULLUCE A, SAHIN F, et al. Identification of meat species by TaqMan-based real-time PCR assay[J]. Meat Science, 2009, 82(4): 444-449. DOI:10.1016/j.meatsci.2009.02.019.

[89] ALI M E, HASHIM U, MUSTAFA S, et al. Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction[J]. Meat Science, 2012, 91(4): 454-459. DOI:10.1016/j.meatsci.2012.02.031.

[90] KESMEN Z, CELEBI Y, G?LL?CE A, et al. Detection of seagull meat in meat mixtures using real-time PCR analysis[J]. Food Control, 2013, 34(1): 47-49. DOI:10.1016/j.foodcont.2013.04.006.

[91] CREMONESI P, PISANI L F, LECCHI C, et al. Development of 23 individual TaqMan?real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions[J]. Food Microbiology, 2014, 43: 35-40.

[92] DRUML B, MAYER W, CICHNA-MARKL M, et al. Development and validation of a TaqMan real-time PCR assay for the identification and quantification of roe deer (Capreolus capreolus) in food to detect food adulteration[J]. Food Chemistry, 2015, 178: 319-326. DOI:10.1016/j.foodchem.2015.01.003.

[93] RODR?GUEZ M A, GARC?A T, GONZ?LEZ I, et al. Quantitation of mule duck in goose foie gras using TaqMan real-time polymerase chain reaction[J]. Journal of Agricultural and Food Chemistry, 2004, 52(6): 1478-1483. DOI:10.1021/jf035240n.

[94] RODR?GUEZ M A, GARC?A T, GONZ?LEZ I, et al. TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures[J]. Meat Science, 2005, 70(1): 113-120. DOI:10.1016/ j.meatsci.2004.12.005.

[95] CHRISHOLM J, CONYERS C, BOOTH C, et al. The detection of horse and donkey using real-time PCR[J]. Meat Science, 2005, 70(4): 727-732. DOI:10.1016/j.meatsci.2005.03.009.

[96] LPEZ-CALLEJA I, GONZ?LEZ I, FAJARDO V, et al. Quantitative detection of goats’ milk in sheep’s milk by real-time PCR[J]. Food Control, 2007, 18(11): 1466-1473.

[97] ZHANG C L, FOWLER M R, SCOTT N W, et al. A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses[J]. Food Control, 2007, 18(9): 1149-1158. DOI:10.1016/j.foodcont.2006.07.018.

[98] HIRD H J, HOLD G L, CHISHOLM J, et al. Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR[J]. European Food Research and Technology, 2005, 220(5): 633-637. DOI:10.1007/ s00217-004-1050-y.

[99] WALKER J A, HUGHES D A, ANDERS B A, et al. Quantitative intra-short interspersed element PCR for species-specific DNA identification[J]. Analytical Biochemistry, 2003, 316(2): 259-269. DOI:10.1016/S0003-2697(03)00095-2.

[100] MART?N I, GARC?A T, FAJARDO V, et al. SYBR-Green realtime PCR approach for the detection and quantification of pig DNA in feedstuffs[J]. Meat Science, 2009, 82(2): 252-259. DOI:10.1016/ j.meatsci.2009.01.023.

[101] SAKALAR E, ABASIYANIK M F. The devolopment of duplex realtime PCR based on SYBR Green florescence for rapid identification of ruminant and poultry origins in foodstuff[J]. Food Chemistry, 2012, 130(4): 1050-1054.

[102] SOARES S, AMARAL J S, OLIVEIRA M B P P. A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products[J]. Meat Science, 2013, 94(1): 115-120. DOI:10.1016/j.meatsci.2012.12.012.

[103] LPEZ-CALLEJA I, GONZ?LEZ I, FAJARDO V, et al. Real-time TaqMan PCR for quantitative detection of cows’ milk in ewes’ milk mixtures[J]. International Dairy Journal, 2007, 17(7): 729-736.

[104] SAFDAR M, JUNEJO Y. Development and validation of fast duplex real-time PCR assays based on SYBER Green florescence for detection of bovine and poultry origins in feedstuffs[J]. Food Chemistry, 2015, 173: 660-664. DOI:10.1016/j.foodchem.2014.10.088.

[105] WALKER J A, HUGHES D A, HEDGES D J, et al. Quantitative PCR for DNA identification based on genome-specific interspersed repetitive elements[J]. Genomics, 2004, 83(3): 518-527. DOI:10.1016/ j.ygeno.2003.09.003.

[106] LPEZANDREO M, GARRIDOPERTIERRA A A, PUYET A. Evaluation of postpolymerase chain reaction melting temperature analysis for meat species identification in mixed DNA samples[J]. Journal of Agricultural and Food Chemistry, 2006, 54(21): 7973-7978.

[107] FAJARDO V, GONZ?LEZ I, MART?N I, et al. Real-time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures[J]. Meat Science, 2008, 79(2): 289-298. DOI:10.1016/ j.meatsci.2007.09.013.

[108] HIRD H, CHISHOLM J, BROWN J. The detection of commercial duck species in food using a single probe-multiple species-specific primer real-time PCR assay[J]. European Food Research and Technology, 2005, 221(3): 559-563. DOI:10.1007/s00217-005-1197-1.

[109] ROJAS M, GONZ?LEZ I, PAV?N M ?, et al. Application of a real-time PCR assay for the detection of ostrich (Struthio camelus) mislabelling in meat products from the retail market[J]. Food Control, 2011, 22(3/4): 523-531. DOI:10.1016/j.foodcont.2010.09.039.

[110] ROJAS M, GONZ?LEZ I, PAV?N M ?, et al. Development of a real-time PCR assay to control the illegal trade of meat from protected capercaillie species (Tetrao urogallus)[J]. Forensic Science International, 2011, 210(1/2/3): 133-138. DOI:10.1016/ j.forsciint.2011.02.021.

[111] BENEDETTO A, ABETE M C, SQUADRONE S. Towards a quantitative application of real-time PCR technique for fish DNA detection in feedstuffs[J]. Food Chemistry, 2011, 126(3): 1436-1442. DOI:10.1016/j.foodchem.2010.11.131.

[112] DRUMMOND M G, BRASIL B S A F, DALSECCO L S, et al. A versatile real-time PCR method to quantify bovine contamination in buffalo products[J]. Food Control, 2013, 29(1): 131-137. DOI:10.1016/ j.foodcont.2012.05.051.

[113] SAWYER J, WOOD C, SHANAHAN D, et al. Real-time PCR for quantitative meat species testing[J]. Food Control, 2003, 14(8): 579-583. DOI:10.1016/S0956-7135(02)00148-2.

[114] DEMIRHAN Y, ULCA P, SENYUVA H Z. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication[J]. Meat Science, 2012, 90(3): 686-689. DOI:10.1016/j.meatsci.2011.10.014.

[115] ABDULMAWJOOD A, KRISCHEK C, WICKE M, et al. Determination of pig sex in meat and meat products using multiplex real time-PCR[J]. Meat Science, 2012, 91(3): 272-276. DOI:10.1016/ j.meatsci.2012.02.001.

[116] CAMM?C, DOMENICO M D, MONACO F. Development and validation of fast Real-Time PCR assays for species identification in raw and cooked meat mixtures[J]. Food Control, 2012, 23(2): 400-404.

[117] SANTOS C G, MELO V S, AMARAL J S, et al. Identification of hare meat by a species-specific marker of mitochondrial origin[J]. Meat Science, 2012, 90(3): 836-841. DOI:10.1016/j.meatsci.2011.10.018.

[118] KO Y H, KIM M S, BANG J, et al. Real-time PCR detection and quantification of elephantid DNA: species identification for highly processed samples associated with the ivory trade[J]. Forensic Science International, 2012, 219(1/2/3): 106-112.

[119] CHANG J T, CHEN Y C, CHOU Y C, et al. Quantitative detection of residual porcine host cell DNA by real-time PCR[J]. Biologicals Journal of the International Association of Biological Standardization, 2014, 42(2): 74-78. DOI:10.1016/j.biologicals.2013.10.005.

[120] 張馳, 邱皓璞, 張筠. 熒光定量PCR檢測肉制品中鴨源性成分[J].食品科學, 2013, 34(18): 154-157. DOI:10.7506/spkx1002-6630-201318031.

[121] 王穎, 史艷宇, 劉金華, 等. 熒光定量PCR方法檢測畜肉食品中豬源性成分[J]. 食品安全質(zhì)量檢測學報, 2013(5): 1529-1534.

[122] 周彤, 李家鵬, 田寒友, 等. 一種基于實時熒光聚合酶鏈式反應的肉及肉制品中豬源性成分含量測定[J]. 肉類研究, 2013, 27(12): 11-15.

[123] 范麗麗, 李培, 傅春玲, 等. 實時熒光聚合酶鏈式反應法檢測食品中豬源性成分[J]. 食品科學, 2013, 34(8): 224-227. DOI:10.7506/ spkx1002-6630-201308048.

[124] 張舒亞, 諶鴻超, 宋青, 等. 食品和飼料中火雞源性成分的實時熒光PCR檢測方法[J]. 食品與生物技術學報, 2013, 32(2): 207-211. DOI:10.3969/j.issn.1673-1689.2013.02.016.

[125] 范麗麗, 李培, 傅春玲, 等. 食品中雞源性成分實時熒光PCR檢測方法的建立[J]. 食品科學, 2014, 35(2): 248-251. DOI:10.7506/ spkx1002-6630-201402048.

[126] 高曉麗, 楊昕霆, 王丹, 等. 實時熒光聚合酶鏈式反應法檢測食品中貓源性成分[J]. 食品科學, 2014, 35(24): 235-238. DOI:10.7506/ spkx1002-6630-201424045.

[127] 程欣, 何瑋玲, 黃明. 實時熒光PCR法檢測食品中鴨肉成分[J]. 食品科學, 2013, 34(24): 92-96. DOI:10.7506/spkx1002-6630-201324019.

[128] 高曉麗, 楊昕霆, 薛晨玉, 等. 實時熒光聚合酶鏈式反應法檢測食品中狗源性成分[J]. 食品工業(yè)科技, 2015, 36(2): 61-64. DOI:10.13386/ j.issn1002-0306.2015.02.004.

[129] 苗麗, 李志娟, 王珊, 等. 肉制品中牛源性成分熒光定量聚合酶鏈式反應方法的建立與應用[J]. 肉類研究, 2015, 29(9): 30-33. DOI:10.15922/j.cnki.rlyj.2015.09.007.

[130] 何瑋玲, 胡序建, 程欣, 等. 含有擴增內(nèi)標的食品中豬肉和雞肉成分Taqman探針實時熒光PCR檢測方法的建立[J]. 中國農(nóng)業(yè)科學, 2013, 46(21): 4578-4585. DOI:10.3864/j.issn.0578-1752.2013.21.021.

[131] 曾少靈, 秦智鋒, 阮周曦, 等. 多重實時熒光PCR檢測牛、山羊和綿羊源性成分[J]. 生物工程學報, 2009, 25(1): 139-146. DOI:10.3321/ j.issn:1000-3061.2009.01.021.

[132] 吳亞君, 王斌, 劉鳴暢, 等. 阿膠中馬和驢成分的實時熒光PCR檢測[J]. 食品科學, 2014, 35(8): 85-88. DOI:10.7506/spkx1002-6630-201408016.

[133] BALLIN N Z, VOGENSEN F K, KARLSSON A H. PCR amplification of repetitive sequences as a possible approach in relative species quantification[J]. Meat Science, 2011, 90(2): 438-443. DOI:10.1016/j.meatsci.2011.09.002.

[134] IWOBI A, SEBAH D, KRAEMER I, et al. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat[J]. Food Chemistry, 2015, 169: 305-313. DOI:10.1016/ j.foodchem.2014.07.139.

[135] DRUML B, GRANDITS S, MAYER W, et al. Authenticity control of game meat products-A single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR[J]. Food Chemistry, 2015, 170: 508-517. DOI:10.1016/j.foodchem.2014.08.048.

[136] INES L, JUTTA Z, HERMANN B. Quantitative determination of commercially relevant species in foods by real-time PCR[J]. International Journal of Food Science and Technology, 2007, 42(3): 336-341.

[137] BALLIN N Z, VOGENSEN F K, KARLSSON A H. Species determination - Can we detect and quantify meat adulteration?[J]. Meat Science, 2009, 83(2): 165-174. DOI:10.1016/j.meatsci.2009.06.003.

[138] CAI Yicun, LI Xiang, L? Rong, et al. Quantitative analysis of pork and chicken products by droplet digital PCR[J]. Biomed Research International, 2014: 1-6. DOI:10.1155/2014/810209.

[139] 王珊, 李志娟, 苗麗. 微滴式數(shù)字PCR與實時熒光PCR檢測羊肉制品中羊源和豬源性成分方法的比較[J]. 肉類工業(yè), 2015(7): 38-41. DOI:10.3969/j.issn.1008-5467.2015.07.012.

[140] 苗麗, 張秀平, 陳靜, 等. 數(shù)字PCR法對肉制品中牛源和豬源成分的定量分析[J]. 食品科學, 2016, 37(8): 187-191. DOI:10.7506/ spkx1002-6630-201608033.

[141] FLOREN C, WIEDEMANN I, BRENIG B, et al. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR)[J]. Food Chemistry, 2014, 173: 1054-1058. DOI:10.1016/j.foodchem.2014.10.138.

A Review of Current DNA-Based Methodologies for Meat Authentication

WANG Jinbin1,2,3, LI Wen1,3,*, BAI Lan1,3, LIU Hua1,3, JIANG Wei1,3, WU Xiao1,3, WANG Rongtan4, TANG Xueming1,2,3,*
(1. Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; 2. College of Food Science and Technology, Shanghai Ocean University, Shanghai 200090, China; 3. Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; 4. Shanghai Ruifeng Agricultural Sci-Tech Company Ltd., Shanghai 201106, China)

In recent years, the problem of meat adulteration has occurred frequently. Full attention has been paid to DNA-based methodologies for meat species identi?cation because of their high sensitivity and speci?city, as well as rapid processing time and low cost. This article presents an overview of the commonly used DNA-based methodologies to verify the authenticity of meat and meat products with focus on their detection limits. Moreover, this review highlights the current applications and future prospects of real-time fluorescence quantitative polymerase chain reaction (PCR) and digital PCR in the identification of animal origin ingredients. Finally, target genes from different sources (nuclear DNA and mitochondrial DNA) are compared in terms of their characteristics and their in?uence on the sensitivity and speci?city of species identi?cation and quanti?cation.

adulteration; meat products; digital PCR; species determination

10.7506/spkx1002-6630-201711049

TS207.3

A

1002-6630(2017)11-0318-10引文格式:

2016-05-12

上海市閔行區(qū)產(chǎn)學研合作計劃項目(2016MH256);上海市農(nóng)委青年人才成長計劃項目(滬農(nóng)青字(2014)第1-20號)作者簡介:王金斌(1982—),男,助理研究員,博士研究生,研究方向為食品安全與檢測技術。E-mail:wangjinbin2013@126.com

*通信作者:李文(1982—),女,助理研究員,碩士,研究方向為功能食品技術研發(fā)和利用。E-mail:liwen@saas.sh.cn唐雪明(1970—),男,研究員,博士,研究方向為生物技術。E-mail:xueming70@foxmail.com

猜你喜歡
條形碼肉類線粒體
創(chuàng)意條形碼
《肉類研究》雜志征訂啟事
《肉類研究》雜志征訂啟事
棘皮動物線粒體基因組研究進展
海洋通報(2021年1期)2021-07-23 01:55:14
線粒體自噬與帕金森病的研究進展
生物學通報(2021年4期)2021-03-16 05:41:26
從條形碼到二維碼
從條形碼到二維碼
肉類加工
條形碼大變身
歡迎訂閱2016年《肉類研究》雜志
中國釀造(2015年9期)2015-06-20 03:47:00
尉犁县| 合江县| 广昌县| 梁山县| 义马市| 太湖县| 屏东市| 望城县| 灵石县| 南木林县| 浦北县| 凌海市| 陕西省| 西藏| 缙云县| 永平县| 专栏| 绩溪县| 博爱县| 波密县| 双江| 西乡县| 屯门区| 石泉县| 曲水县| 来宾市| 潮州市| 南昌县| 宣武区| 阿克苏市| 香港 | 广元市| 府谷县| 南宁市| 航空| 禹城市| 海原县| 蒙城县| 醴陵市| 祁阳县| 滨州市|