韓雪綜述, 黃金華審校
(中山大學(xué)腫瘤防治中心微創(chuàng)介入科,華南腫瘤學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 廣州 510060)
?綜 述?
PD-1/PD-L1在肝細(xì)胞癌治療中的研究進(jìn)展*
韓雪綜述, 黃金華△審校
(中山大學(xué)腫瘤防治中心微創(chuàng)介入科,華南腫瘤學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 廣州 510060)
肝細(xì)胞癌(簡(jiǎn)稱肝癌)起病隱匿,進(jìn)展迅速,容易復(fù)發(fā)和轉(zhuǎn)移。較長(zhǎng)一段時(shí)間以來(lái),傳統(tǒng)的治療手段難以進(jìn)一步提高肝癌病人的預(yù)后,而免疫治療被認(rèn)為是最有希望解決這一難題的新型療法。免疫檢查點(diǎn)是腫瘤免疫逃逸的主要機(jī)制之一。其中,PD-1/PD-L1是抗腫瘤免疫治療的重要靶點(diǎn)。近年來(lái),基于PD-1/PD-L1信號(hào)通路的免疫療法在實(shí)體腫瘤或血液系統(tǒng)惡性腫瘤中顯示出令人振奮的抗腫瘤作用。本文對(duì)PD-1/PD-L1在肝癌治療中的相關(guān)研究進(jìn)行綜述,探討PD-1/PD-L1阻斷在肝癌治療中的應(yīng)用前景。
肝細(xì)胞癌;PD-1/PD-L1;免疫檢查點(diǎn);免疫治療
原發(fā)性肝癌是最常見(jiàn)的惡性腫瘤之一,其發(fā)病率居我國(guó)惡性腫瘤第5位、死亡率居第3位,其中肝細(xì)胞癌(簡(jiǎn)稱肝癌)占70%~90%[1-2]。目前肝癌的治療策略主要是包括手術(shù)、放療、全身化療、靶向治療和微創(chuàng)介入治療在內(nèi)的綜合治療,但仍難以突破肝癌治療后高轉(zhuǎn)移率和高復(fù)發(fā)率的瓶頸。近年來(lái),隨著對(duì)腫瘤微環(huán)境研究的深入,研究者們發(fā)現(xiàn)在肝癌的發(fā)生與發(fā)展過(guò)程中,大量基因突變的累積導(dǎo)致多種抗原產(chǎn)生,可被免疫系統(tǒng)識(shí)別并特異性地殺傷[3]。但同時(shí)肝癌細(xì)胞通過(guò)多種機(jī)制逃避機(jī)體的免疫監(jiān)控,并與肝臟內(nèi)的免疫細(xì)胞和炎癥因子相互作用,在腫瘤內(nèi)部形成獨(dú)特的免疫微環(huán)境。
肝臟本身是一個(gè)重要的免疫器官,是清除血液中腸道來(lái)源病原菌的第一道防線[4-6]。肝臟通過(guò)多種免疫細(xì)胞及時(shí)有效地識(shí)別、活化、清除病原體,同時(shí)又通過(guò)精確的平衡調(diào)節(jié),防止過(guò)度炎癥反應(yīng)對(duì)機(jī)體造成損害[4]。在維持肝臟內(nèi)環(huán)境穩(wěn)態(tài)的過(guò)程中,肝竇內(nèi)皮細(xì)胞(liver sinusoidal endothelial cell,LSEC)、肝巨噬細(xì)胞(kupffer cell,KC)、樹(shù)突狀細(xì)胞(dentritic cell,DC) 和肝臟固有淋巴細(xì)胞發(fā)揮重要的免疫調(diào)節(jié)功能[7]。然而在腫瘤負(fù)荷狀態(tài)下,這一平衡被打破(圖1)。研究證實(shí),持續(xù)的病毒感染和腫瘤新生抗原刺激使肝臟內(nèi)形成免疫抑制狀態(tài),對(duì)肝癌的形成和進(jìn)展起促進(jìn)作用[8-9]。在肝癌組織中具有免疫抑制功能的細(xì)胞群體如調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)、骨髓抑制細(xì)胞(myeloid-derived suppressor cell,MDSC)明顯增加[10-14]。腫瘤內(nèi)CD8+T細(xì)胞是監(jiān)控和殺傷腫瘤細(xì)胞的主要免疫細(xì)胞,肝癌微環(huán)境通過(guò)多種方式抑制CD8+T細(xì)胞的功能。肝癌患者體內(nèi)分離的Treg可以抑制CD8+T細(xì)胞的增殖分化以及產(chǎn)生穿孔素的功能[15]。MDSC通過(guò)分泌抑制性細(xì)胞因子白細(xì)胞介素10(interleukin-10, IL-10)和激活Treg間接抑制CD8+ T細(xì)胞[16]。同時(shí)MDSC還通過(guò)抑制DC細(xì)胞的功能削弱腫瘤的抗原呈遞[14]。DC是專職的抗原遞呈細(xì)胞,能將腫瘤抗原呈遞給初始T細(xì)胞并激活抗腫瘤免疫。而在肝癌患者體內(nèi)可檢測(cè)到一群分化抗原簇14 (cluster of differentiation 14,CD14) 陽(yáng)性、細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T-lymphocyte antigen-4, CTLA-4) 陽(yáng)性的DC,通過(guò)分泌免疫抑制性細(xì)胞因子IL-10和吲哚胺-2,3-雙加氧酶(indoleamine-2, 3-dioxygenase,IDO)抑制T細(xì)胞免疫應(yīng)答[17]。此外,抗原的持續(xù)暴露使腫瘤特異性淋巴細(xì)胞表面過(guò)度表達(dá)CTLA-4、程序性死亡蛋白1 (programmed cell death 1,PD-1)和淋巴細(xì)胞活化基因-3 (lymphocyte activation gene-3,LAG-3)共抑制信號(hào)分子,最終使T細(xì)胞處于無(wú)免疫應(yīng)答的失能狀態(tài)[18-19]。肝癌的腫瘤微環(huán)境中各種免疫細(xì)胞及其分泌因子、趨化因子和細(xì)胞外基質(zhì)(extracellular matrix,ECM)等非細(xì)胞成分均可能參與肝癌的形成[20]。因此針對(duì)肝癌內(nèi)免疫抑制機(jī)制、扭轉(zhuǎn)T細(xì)胞的失能狀態(tài),使T細(xì)胞重新激活并發(fā)揮抗腫瘤作用是肝癌免疫治療的一個(gè)重要方向。
圖1 肝癌的抑制性免疫微環(huán)境
正常肝臟內(nèi)環(huán)境穩(wěn)態(tài)由肝細(xì)胞、間質(zhì)細(xì)胞(LESC、KC、DC)和淋巴細(xì)胞(CD4+T、CD8+T)等共同維持。肝癌內(nèi)微環(huán)境失衡,抑制性免疫細(xì)胞(Treg、MDSC)明顯增加。T細(xì)胞通過(guò)T細(xì)胞受體(T-cell receptor,TCR)/主要組織相容性復(fù)合物(major histocompability complex,MHC)途徑識(shí)別腫瘤抗原,而腫瘤細(xì)胞(tumor cell)、Treg、MDSC、DC可通過(guò)PD-L1/PD-1、分泌細(xì)胞因子等方式抑制T細(xì)胞的功能。
PD-1屬于CD28超家族成員,與配體程序性死亡配體-1(programmed death-ligand 1,PD-L1)或者程序性死亡配體-2(programmed death-ligand 2,PD-L2)結(jié)合后向T細(xì)胞受體(T-cell receptor,TCR)傳遞共抑制信號(hào)[21-22]。PD-1主要表達(dá)于活化的T細(xì)胞表面,也可表達(dá)于B細(xì)胞、Treg細(xì)胞、自然殺傷細(xì)胞(natural killer cell ,NK)和MDSC。其配體 PD-L1 和 PD-L2主要表達(dá)于巨噬細(xì)胞、單核細(xì)胞等多種炎性細(xì)胞[22-23]。除了免疫細(xì)胞,腫瘤細(xì)胞表面亦可表達(dá)PD-1配體,如黑色素瘤、腎細(xì)胞癌、膀胱癌和非小細(xì)胞肺癌等[24-28]。
T細(xì)胞的活化需要兩個(gè)信號(hào),第一信號(hào)來(lái)自TCR和抗原的特異性結(jié)合,第二信號(hào)來(lái)自CD80/CD28等輔助分子的激活[29]。當(dāng)位于T細(xì)胞表面的PD-1和配體結(jié)合,PD-1胞質(zhì)區(qū)的免疫受體酪氨酸活化基序(immunoreceptor tyrosine switch motifs,ITSM)結(jié)構(gòu)域中的酪氨酸發(fā)生磷酸化,募集含兩個(gè)SH結(jié)構(gòu)的蛋白酪氨酸磷酸酶(SH2 domain-containing protein-tyrosine phosphatase-2,SHP-2),使TCR和CD28下游的ζ鏈相關(guān)蛋白激酶70和磷脂酰肌醇3激酶發(fā)生去磷酸化,從而阻斷T細(xì)胞的激活[30]。
PD-1可以在炎性介質(zhì),如干擾素γ(interferon-γ,IFN-γ)作用下誘導(dǎo)性表達(dá)。IFN-γ可以誘導(dǎo)干擾素調(diào)節(jié)因子9(interferon regulatory factor 9,IRF-9)結(jié)合于PD-1基因啟動(dòng)子,引起T細(xì)胞對(duì)PD-1進(jìn)行轉(zhuǎn)錄 。同時(shí),IFN-γ的刺激還可以上調(diào)細(xì)胞表面的PD-L1表達(dá)[31-32]。在腫瘤微環(huán)境中, T 細(xì)胞識(shí)別腫瘤抗原后活化擴(kuò)增為效應(yīng)T細(xì)胞,特異性地殺傷腫瘤細(xì)胞,并分泌大量炎性因子如IFN-γ;活化后的T 細(xì)胞開(kāi)始表達(dá) PD-1,長(zhǎng)時(shí)間抗原刺激引起T細(xì)胞過(guò)度表達(dá)PD-1,導(dǎo)致T細(xì)胞失能[33]。多數(shù)腫瘤細(xì)胞通過(guò)這種方式逃避免疫細(xì)胞的攻擊[23-34]。因此使用阻斷劑阻斷 PD-1 和 PD-L1 間的相互作用,可恢復(fù) T 細(xì)胞的活性和殺傷腫瘤細(xì)胞的能力,這是目前臨床治療中使用PD-1/PD-L1抗體進(jìn)行免疫治療的理論依據(jù)。
上調(diào)免疫檢查點(diǎn)分子表達(dá)(如PD-1、PD-L1、CTLA-4、LAG-3等)是肝癌逃避免疫監(jiān)視的重要機(jī)制之一[35]。這些免疫檢查點(diǎn)均可作為免疫治療的靶點(diǎn),其中以PD-1/PD-L1的研究最受關(guān)注。在肝癌微環(huán)境中,PD-L1在腫瘤細(xì)胞和其周?chē)拈g質(zhì)細(xì)胞(LESC、KC、腫瘤相關(guān)巨噬細(xì)胞)表面表達(dá)均明顯升高[36-38]。在針對(duì)肝癌組織中PD-1及其配體表達(dá)情況的研究中,Wang等[39]對(duì)26例中國(guó)肝癌患者腫瘤標(biāo)本進(jìn)行免疫組化染色,發(fā)現(xiàn)PD-1多集中于免疫細(xì)胞浸潤(rùn)區(qū)域。PD-L1和PD-L2分散或局部地表達(dá)于24/26(92.3%)和 23/26(88.5%)例標(biāo)本中。法國(guó)的Calderaro等[40]分析了217例肝癌患者PD-L1在肝癌組織中的表達(dá)與臨床病理學(xué)特征和免疫組化標(biāo)志物的關(guān)系。結(jié)果顯示,肝癌組織中PD-L1的高表達(dá)與腫瘤侵襲性呈正相關(guān)。同時(shí), 腫瘤局部浸潤(rùn)的炎癥細(xì)胞高表達(dá)的PD-L1與血清AFP水平、大血管侵犯、分化程度以及腫瘤組織學(xué)亞型也成正相關(guān)。來(lái)自韓國(guó)的一項(xiàng)研究[41]將85例肝癌手術(shù)切除腫瘤組織中PD-L1和PD-L2的表達(dá)分別進(jìn)行預(yù)后分析,二者的表達(dá)均與肝癌患者的預(yù)后成負(fù)相關(guān),且多因素分析顯示PD-L1是獨(dú)立的預(yù)后因素。因此,PD-L1的表達(dá)增高見(jiàn)于肝癌細(xì)胞和局部炎癥細(xì)胞,可提示更高度惡性的腫瘤生物學(xué)行為,往往與更差的預(yù)后相關(guān)。
在侵襲性轉(zhuǎn)基因肝癌小鼠的治療研究中,抗PD-L1抗體與共刺激分子激動(dòng)劑(抗CD137和抗CD252抗體)聯(lián)合,可以逆轉(zhuǎn)小鼠體內(nèi)的免疫抑制狀態(tài),延長(zhǎng)小鼠生存時(shí)間[42]。人工構(gòu)建僅表達(dá)PD-1胞外段的真核質(zhì)粒,可產(chǎn)生可溶性PD-1(soluble PD-1,sPD-1),能夠以高親和力與PD-L1結(jié)合,發(fā)揮PD-L1抗體作用。IL-12與sPD-1聯(lián)合治療H22肝癌小鼠,可通過(guò)增強(qiáng)CD8+T細(xì)胞的細(xì)胞毒性,上調(diào)促炎癥因子IFN-γ和IL-2,下調(diào)免疫抑制性細(xì)胞因子IL-10,增強(qiáng)小鼠的抗腫瘤免疫[43]。在另外一項(xiàng)聯(lián)合治療的研究中,CD184抑制劑、索拉非尼和PD-L1抗體聯(lián)合治療肝癌模型小鼠,亦可增強(qiáng)CD8+T細(xì)胞的特異性抗腫瘤免疫應(yīng)答[44]。射頻消融(radiofrequency ablation,RFA)是常用的肝癌局部治療手段,主要通過(guò)高頻射頻波使組織中離子震蕩產(chǎn)熱,達(dá)到滅活腫瘤的目的。在腫瘤組織發(fā)生凝固性壞死的同時(shí),大量腫瘤細(xì)胞碎片可被免疫細(xì)胞識(shí)別并激活特異性抗腫瘤免疫[45]。Shi等[46]對(duì)雙側(cè)荷瘤的CT26小鼠進(jìn)行單側(cè)消融治療,觀察到對(duì)側(cè)腫瘤生長(zhǎng)受到短暫抑制。當(dāng)聯(lián)合PD-1抗體治療后,小鼠對(duì)側(cè)腫瘤生長(zhǎng)得到持續(xù)控制,生存期顯著延長(zhǎng)。經(jīng)研究發(fā)現(xiàn),射頻消融可激活全身性免疫反應(yīng),未消融側(cè)腫瘤內(nèi)CD8+T細(xì)胞增加,且消融后期T細(xì)胞表面PD-1上調(diào)。因此,PD-1/PD-L1阻斷治療可以進(jìn)一步增強(qiáng)RFA引起的抗腫瘤免疫應(yīng)答,二者聯(lián)合具有協(xié)同作用。這將會(huì)是較有前景的肝癌治療策略,為治療肝癌遠(yuǎn)處轉(zhuǎn)移提供新思路。
抗PD-1/PD-L1抗體治療肝癌的個(gè)案報(bào)道目前較少。有1例來(lái)自德國(guó)[47],患者為有丙型肝炎病史的73歲女性,腫瘤分期為巴塞羅那肝癌分期D期?;颊咝袃芍?次的PD-1阻斷劑Nivolumab靜脈注射治療,治療4個(gè)周期后獲得腫瘤完全應(yīng)答(complete response,CR)(改良的實(shí)體瘤療效評(píng)價(jià)標(biāo)準(zhǔn))。治療過(guò)程中病毒載量下降(655 000 IE/ml降至107 000 IE/ml),AFP恢復(fù)正常。但由于四肢嚴(yán)重的皮疹反應(yīng),患者在治療6個(gè)周期后停止治療,并于第6個(gè)月死于肝衰竭。另1例來(lái)自美國(guó)[48],患者為患有劍突下轉(zhuǎn)移性肝癌的75歲男性,原發(fā)腫瘤切除術(shù)后。該患者在5個(gè)月的索拉非尼治療無(wú)效后進(jìn)行PD-1阻斷劑Pembrolizumab治療,治療6個(gè)周期后劍突下腫塊明顯縮小(8cm ×6cm縮小至4cm×1.6cm),同時(shí)伴有AFP顯著下降(8 877ng/mL降至1.7ng/mL)。該患者對(duì)Pembrolizumab完全耐受,無(wú)治療相關(guān)不良反應(yīng)。盡管成功案例尚少,抗PD-1/PD-L1治療仍為傳統(tǒng)治療方法無(wú)效的患者帶來(lái)了新的希望。
目前多個(gè)抗PD-1/PD-L1治療肝癌的臨床研究正在進(jìn)行中,參與研究的PD-1/ PD-L1阻斷劑主要有Nivolumab(BMS-936558)、CT-011(Pidilizumab) 和MEDI4736等,其中Nivolumab在晚期肝癌的臨床研究中最為常見(jiàn)(表1)。
PD-1阻斷劑Nivolumab是人源化IgG4單克隆抗體,通過(guò)阻斷PD-1/PD-L通路來(lái)恢復(fù)T細(xì)胞的抗腫瘤能力[49]。2016年9月11日,Sangro等[50]在國(guó)際肝癌協(xié)會(huì)會(huì)議公布了Nivolumab治療晚期肝癌安全性和抗腫瘤效力的Ⅰ/Ⅱ期非隨機(jī)臨床研究(NCT01658878)的近期結(jié)果:該研究目前共納入了214例無(wú)手術(shù)及局部治療指征或治療后進(jìn)展的晚期肝癌患者。患者接受Nivolumab靜脈注射的劑量為3mg/kg,兩周一次。有35例患者出現(xiàn)應(yīng)答,其中33例達(dá)到部分應(yīng)答(94%),2例達(dá)到完全應(yīng)答(6%); 另外111例患者出現(xiàn)疾病穩(wěn)定(52%)。根據(jù)實(shí)體瘤診斷標(biāo)準(zhǔn)RECISTv1.1,患者客觀反應(yīng)率為16%;疾病控制率達(dá)68%;6個(gè)月生存率82.5%,9個(gè)月生存率70.8%。常見(jiàn)的治療相關(guān)副作用主要包括:乏力(21%)、瘙癢(15%)和皮疹(12%)。治療過(guò)程中有7%的患者因無(wú)法耐受藥物毒性而終止治療。該項(xiàng)早期臨床研究給我們帶來(lái)了振奮人心的初步結(jié)果,Nivolumab單藥治療在晚期肝癌患者中安全可控,部分患者可出現(xiàn)早期、持續(xù)的應(yīng)答,且與是否患有肝炎、PD-L1的表達(dá)量無(wú)關(guān)。
表1 肝癌中抗PD-1/PD-L1治療臨床研究
PD-1/PD-L1阻斷是否能夠成為肝癌治療的一線方案,針對(duì)這一問(wèn)題,Nivolumab對(duì)比索拉非尼一線治療晚期肝癌的III期臨床試驗(yàn)(NCT02576509)目前正在進(jìn)行當(dāng)中。然而,另外一項(xiàng)抗PD-1單克隆抗體Pidilizumab(CT-011)的Ⅰ期臨床試驗(yàn)(NCT00966251)由于進(jìn)行過(guò)程中未觀察到明顯的臨床獲益而提前終止。近年來(lái),多個(gè)臨床研究開(kāi)展探索Nivolumab與其他藥物如轉(zhuǎn)化生長(zhǎng)因子β (transforming growth factor β,TGF-β),受體激酶阻斷劑Galunisertib(LY2157299)、殺傷細(xì)胞免疫球樣受體KIR 阻斷劑Lirilumab等聯(lián)合治療肝癌的策略。PD-L1阻斷劑MEDI4736是人源化IgG1單克隆抗體[51],MEDI4736單獨(dú)(NCT01938612)或聯(lián)合抗CTLA-4單抗Tremelimumab治療肝癌的早期臨床試驗(yàn)(NCT02519348)均在招募中。
隨著對(duì)肝癌免疫治療研究的逐步深入,越來(lái)越多的結(jié)果提示我們,肝癌的免疫抑制機(jī)制具有多樣性和復(fù)雜性,單一的治療手段往往難以解決問(wèn)題。近年來(lái)PD-1/PD-L1抗體在晚期黑色素瘤和非小細(xì)胞肺癌等多種腫瘤治療中顯示出了較好的療效,但抗PD-1/PD-L1治療能否成為肝癌有效的免疫治療手段,還需通過(guò)進(jìn)一步臨床研究加以證明。未來(lái),抗PD-1/PD-L1治療應(yīng)當(dāng)與化療、靶向治療、局部治療等傳統(tǒng)的治療策略以及其他免疫治療方法相結(jié)合,在利用綜合治療協(xié)同作用的同時(shí)減少傳統(tǒng)治療手段帶來(lái)的肝臟損害,為肝癌治療帶來(lái)新的突破。
作者聲明:本文第一作者對(duì)于研究和撰寫(xiě)的論文出現(xiàn)的不端行為承擔(dān)相應(yīng)責(zé)任;
利益沖突:本文全部作者均認(rèn)同文章無(wú)相關(guān)利益沖突;
學(xué)術(shù)不端:本文在初審、返修及出版前均通過(guò)中國(guó)知網(wǎng)(CNKI)科技期刊學(xué)術(shù)不端文獻(xiàn)檢測(cè)系統(tǒng)學(xué)術(shù)不端檢測(cè);
同行評(píng)議:經(jīng)同行專家雙盲外審,達(dá)到刊發(fā)要求。
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin,2016,66(2):115-132.
[2] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin,2015,65(2):87-108.
[3] Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet,2015,47(5):505-511.
[4] Jenne CN, Kubes P. Immune surveillance by the liver[J]. Nat Immunol, 2013, 14(10): 996-1006.
[5] Berg RD. Bacterial translocation from the gastrointestinal tract[J]. Trends Microbiol, 1995, 3(4): 149-154.
[6] Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology[J]. Gastroenterol Res Pract,2010,2010(1687-6121):70-80.
[7] Schildberg FA, Sharpe AH, Turley SJ. Hepatic immune regulation by stromal cells[J]. Curr Opin Immunol,2015,32(32):1-6.
[8] Lin CL, Kao JH. Risk stratification for hepatitis B virus related hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2013, 28(1): 10-17.
[9] Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response[J]. Expert Opin Biol Ther, 2010, 10(11): 1563-1572.
[10]Wu H, Chen P, Liao R, et al. Intratumoral regulatory T cells with higher prevalence and more suppressive activity in hepatocellular carcinoma patients[J]. J Gastroenterol Hepatol, 2013, 28(9): 1555-1564.
[11]Kobayashi N, Hiraoka N, Yamagami W, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis[J]. Clin Cancer Res, 2007, 13(3): 902-911.
[12]Shen P, Wang A, He M, et al. Increased circulating Lin(-/low) CD33(+) HLA-DR(-) myeloid-derived suppressor cells in hepatocellular carcinoma patients[J]. Hepatol Res, 2014, 44(6): 639-650.
[13]Schrader J. The role of MDSCs in hepatocellular carcinoma-in vivo veritas[J]. J Hepatol, 2013, 59(5): 921-923.
[14]Hu CE, Gan J, Zhang RD, et al. Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function[J]. Scand J Gastroenterol, 2011, 46(2): 156-164.
[15]Kalathil S, Lugade AA, Miller A, et al. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality[J]. Cancer Res, 2013, 73(8): 2435-2444.
[16]Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology, 2008, 135(1): 234-243.
[17]Han Y, Chen Z, Yang Y, et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma[J]. Hepatology, 2014, 59(2): 567-579.
[18]Desbois M, Champiat S, Chaput N. Breaking immune tolerance in cancer[J]. Bull Cancer, 2015, 102(1): 34-52.
[19]Murakami N, Riella LV. Co-inhibitory pathways and their importance in immune regulation[J]. Transplantation, 2014, 98(1): 3-14.
[20]Hernandez-Gea V, Toffanin S, Friedman SL, et al. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[J]. Gastroenterology, 2013, 144(3): 512-527.
[21]Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J]. J Exp Med, 2000, 192(7): 1027-1034.
[22]Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nat Immunol, 2001, 2(3): 261-268.
[23]Boussiotis VA, Chatterjee P, Li L. Biochemical signaling of PD-1 on T cells and its functional implications[J]. Cancer J, 2014, 20(4): 265-271.
[24]Baral A, Ye HX, Jiang PC, et al. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients[J]. Oncol Lett, 2014, 8(3): 1195-1201.
[25]Lu B, Chen L, Liu L, et al. T-cell-mediated tumor immune surveillance and expression of B7 co-inhibitory molecules in cancers of the upper gastrointestinal tract[J]. Immunol Res, 2011, 50(2-3): 269-275.
[26]Chen L, Deng H, Lu M, et al. B7-H1 expression associates with tumor invasion and predicts patient's survival in human esophageal cancer[J]. Int J Clin Exp Pathol, 2014, 7(9): 6015-6023.
[27]Zhang Y, Huang S, Gong D, et al. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer[J]. Cell Mol Immunol, 2010, 7(5): 389-395.
[28]Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun,2016,7(7):10501.
[29]Lee KH, Dinner AR, Tu C, et al. The immunological synapse balances T cell receptor signaling and degradation[J]. Science,2003,302(5648):1218-1222.
[30]Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity[J]. Curr Top Microbiol Immunol,2011,350:17-37.
[31]Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
[32]Kryczek I, Wei S, Gong W, et al. Cutting edge: IFN-gamma enables APC to promote memory Th17 and abate Th1 cell development[J]. J Immunol, 2008, 181(9): 5842-5846.
[33]Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection[J]. Nature, 2006, 439(7077): 682-687.
[34]Rozali EN, Hato SV, Robinson BW, et al. Programmed death ligand 2 in cancer-induced immune suppression[J]. Clin Dev Immunol, 2012, 2012: 656340.
[35]Harding JJ, El DI, Abou-Alfa GK. Immunotherapy in hepatocellular carcinoma: Primed to make a difference[J]. Cancer, 2016, 122(3): 367-377.
[36]Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1[J]. J Exp Med, 2009, 206(6): 1327-1337.
[37]Zeng Z, Shi F, Zhou L, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma[J]. PLoS One, 2011, 6(9): e23621.
[38]Wu K, Kryczek I, Chen L, et al. Kupffer cell suppression of CD8+T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions[J]. Cancer Res, 2009, 69(20): 8067-8075.
[39]Wang BJ, Bao JJ, Wang JZ, et al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma[J]. World J Gastroenterol, 2011, 17(28): 3322-3329.
[40]Calderaro J, Rousseau B, Amaddeo G, et al. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship with clinical and pathological features[J]. Hepatology, 2016, 64(6): 2038-2046.
[41]Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma[J]. Clin Cancer Res, 2009, 15(3): 971-979.
[42]Morales-Kastresana A, Sanmamed MF, Rodriguez I, et al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model[J]. Clin Cancer Res, 2013, 19(22): 6151-6162.
[43]Pan XC, Li L, Mao JJ, et al. Synergistic effects of soluble PD-1 and IL-21 on antitumor immunity against H22 murine hepatocellular carcinoma[J]. Oncol Lett, 2013, 5(1): 90-96.
[44]Chen Y, Ramjiawan RR, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice[J]. Hepatology, 2015, 61(5): 1591-1602.
[45]Mehta A, Oklu R, Sheth RA. Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response?[J]. Gastroenterol Res Pract,2016,2016(4):1-11.
[46]Shi L, Chen L, Wu C, et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor[J]. Clin Cancer Res,2016,22(5):1173-1184.
[47]Trojan J, Sarrazin C. Complete response of hepatocellular carcinoma in a patient with end-stage liver disease treated with Nivolumab: whishful thinking or possible?[J]. Am J Gastroenterol,2016,111(8):1208-1209.
[48]Truong P, Rahal A, Kallail KJ. Metastatic hepatocellular carcinoma responsive to Pembrolizumab[J]. Cureus,2016,8(6):e631.
[49]Brahmer JR, Hammers H, Lipson EJ. Nivolumab: targeting PD-1 to bolster antitumor immunity[J]. Future Oncol, 2015, 11(9): 1307-1326.
[50]Sangro B, Melero I, Yau T, et al. Safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma: interim analysis of dose-escalation cohorts from the phase 1/2 CheckMate 040 study[R]. 10th Annual International Liver Cancer Association Conference, Vancouver:2016.
[51]Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736[J]. Semin Oncol, 2015, 42(3): 474-483.
The Research Progress of PD-1/PD-L1 in the Treatment of Hepatocellular Carcinoma*
Han Xue, Huang Jinhua△
(DepartmentofMinimallyInvasiveInterventionalRadiology,SunYat-senUniversityCancerCenter,StateKeyLaboratoryofOncologyinSouthChina,Guangzhou510060,Guangdong,China)
Hepatocellular carcinoma(HCC)is a malignancy with insidious onset, rapid progress, high recurrence and metastasis rate. Traditional treatment is difficult to further improve the prognosis of patients with HCC for a long time, and immunotherapy is considered to be the most promising therapeutic approach to solve this problem. Immune checkpoint is one of the main mechanisms of tumor immune evasion. PD-1/PD-L1 is an important target for anti-tumor immunotherapy among these checkpoints. Recently, agents targeting the PD-1/PD-L1 pathway were shown to display impressive antitumor activity in various solid or hematological malignancies. In this review we summarize the relative studies on HCC and discuss the potential of PD-1/PD-L1 blockade in HCC therapy.
HCC; PD-1/PD-L1; Immune Checkpoints; Immunotherapy
2017- 02- 07
2017- 03- 15
*國(guó)家自然科學(xué)基金(編號(hào):81371652);中山大學(xué)臨床醫(yī)學(xué)研究5010計(jì)劃項(xiàng)目(編號(hào):2016002)
韓雪(1990-),女,碩士研究生,主要從事腫瘤介入與免疫治療研究。
△黃金華,主任醫(yī)師,博士生導(dǎo)師,E-mail:huangjh@sysucc.org.cn
R735.7;R730.51
A
10.3969/j.issn.1674- 0904.2017.02.011