康東升,徐良順,曹玉平
(1 中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074; 2 中南民族大學(xué) 圖書(shū)館,武漢 430074)
一類(lèi)帶有負(fù)指數(shù)的臨界橢圓方程組的解
康東升1,徐良順1,曹玉平2
(1 中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢 430074; 2 中南民族大學(xué) 圖書(shū)館,武漢 430074)
研究了一類(lèi)帶有強(qiáng)耦合臨界非線性項(xiàng)和負(fù)指數(shù)項(xiàng)的橢圓方程組.定義了幾個(gè)重要的約束集,運(yùn)用復(fù)雜的分析技巧研究了能量泛函在約束集的下確界,得到了一個(gè)臨界常數(shù)的精確表達(dá)式,最后證明了一定條件下方程組正解的存在性,首次把單個(gè)臨界橢圓方程的相關(guān)結(jié)果推廣到了帶有負(fù)指數(shù)項(xiàng)的臨界橢圓方程組.
橢圓方程組;臨界非線性項(xiàng);負(fù)指數(shù)項(xiàng);變分法
在本文中, 研究如下方程組:
(1)
(H1)η>0,α1,β1>0,i=1,2,α1+β1=2*,α2+β2<2,h(x)∈L∞(Ω).
存在一個(gè)常數(shù)α滿足α≥max{1-a2,1-β2},m>0,M>0, 使得:
由于min{α2,β2}∈(0,1),所以J∈C(H×H,).如果(u,v)∈H×H并且u,v>0 a.e.于Ω中,對(duì)所有(φ,ψ)∈H×H滿足:
0=∫Ω(uφ+vφφ,
(2)
則稱(u,v)是方程組(1)的一組解.
用D:=D1,2(N) 表示(N)在范數(shù)下的完備化空間.對(duì)所有的α,β∈(0,2*)滿足α+β=2*,基于Sobolev不等式和Young不等式,可以定義下面這兩個(gè)最佳常數(shù)[1,2]:
(3)
Talenti在文[2]中證明了Sobolev常數(shù)S有如下達(dá)到函數(shù):
(4)
方程組(1)主要是受到如下橢圓問(wèn)題的啟發(fā):
(5)
其中λ≥0,γ>0,1
設(shè)(u,v)∈H×H,定義H×H上的范數(shù)‖(u,v)‖2:=∫Ω(|u|2+|v|2)dx.
因?yàn)镴?C1(H×H,),定義如下的約束集:,
其中Γ(u,v)=‖(u,v)‖2-η∫Ω|u|α1|v|β1dx-∫Ωh(x)|u|α2|v|β2dx.
I(u,v):=(2-2*)‖(u,v)‖2+(2*-α2-β2)∫Ωh(x)|u|α2|v|β2dx.
Λ+:={(u,v)∈Λ|I(u,v)>0},Λ0:={(u,v)∈Λ|I(u,v)=0},Λ-:={(u,v)∈Λ|I(u,v)<0}.
本文的主要結(jié)論如下.
定理 1 假設(shè)條件(H1)成立,并且η<η1. 則方程組(1)至少有一個(gè)解.
在接下來(lái)的討論中,先給出兩個(gè)引理及其證明,之后再證明定理1.當(dāng)t>0, 用O(εt)來(lái)表示滿足|O(εt)|/εt≤C的變量,這里C是正常數(shù),用o(εt)表示滿足當(dāng)ε→0時(shí)|o(εt)|/εt→0的變量;為方便將省略積分式中的dx.
對(duì)所有(u,v)∈Λ,有:
這說(shuō)明泛函J在Λ中是強(qiáng)制的并且有下界,因此可以考慮下面兩個(gè)下確界問(wèn)題:
(6)
通過(guò)對(duì)Φ(t,u,v)的性質(zhì)的研究,發(fā)現(xiàn)J(tu,tv)在[t-(u,v),t+(u,v)]上是單調(diào)遞增的,對(duì)所有的(u,v)∈Λ-,有t+(u,v)=1,并且:
J(t+(u,v)u,t+(u,v)v)≤J(u,v),
(7)
為此選擇滿足下列兩個(gè)性質(zhì)的極小化序列{(un,vn)}?Λ+,
(8)
v-vn)‖,?(u,v)∈Λ+.
(9)
由于J(u,v)=J(|u|,|v|),所以u(píng)n,vn是徑向?qū)ΨQ的,假設(shè)u0,v0≥0.因?yàn)?un,vn)在H×H是有界的,所以(un,vn)在H×H中弱收斂于(u0,v0).因此可以通過(guò)研究序列{(un,vn)}來(lái)獲得有關(guān)(u0,v0)的性質(zhì),進(jìn)一步證明(u0,v0)是問(wèn)題(1)的一個(gè)解.
為了敘述的方便,定義下面幾個(gè)記號(hào):
Gi(u,v)=αi|u|αi-2|v|βiuφ+
βi|u|α1|v|βi-2vψ,i=1,2,
|u|α2|v|β2),
其中φ,ψ∈C∞(Ω).
引理1 如果(φ,ψ)∈H×H,則下面的不等式成立:
J(u0,v0),(φ,ψ)≥0.
(10)
將上式除以t>0,并對(duì)變量t取極限,得到:
又注意到:
假設(shè)e1是方程Δe1+λ1e1=0,x∈Ω,e1|?Ω=0的第一特征函數(shù);取φ=ψ=e1作為檢驗(yàn)函數(shù),又un(x),vn(x)>0,所以:
(11)
因此引理1成立.
令:
由文獻(xiàn)[1]可知函數(shù)對(duì):
引理2 如果η∈(0,η1),則(u0,v0)∈Λ.
證明 記a0=Γ(u0,v0) ,令u0=φ,v0=ψ,由(11)式可知,a0≥0,為了證明a0=0,不妨假設(shè)a0>0.在該假設(shè)下,可以找到一個(gè)正數(shù)c0>0,使得:
另一方面,有:
由文獻(xiàn)[8],得到下面兩個(gè)重要的結(jié)果,
(i)可以找到一個(gè)常數(shù)c0,ε=c0+δε,其中δε→0,當(dāng)ε→0時(shí),使得:
(12)
(ii)下面這個(gè)等式成立:
由此可以推得,(u0,v0)是下面泛函的局部極值函數(shù)對(duì):
(13)
這表明g′(0)存在且:
(14)
(15)
∫Ωu0Uε,a=O(ε(N-2)/2),
(16)
o(ε(N-2)/2),
(17)
o(ε(N-2)/2).
(18)
由于h(x)|u0|α2|v0|β2∈L∞(Ω),利用中值定理,有:
將上列估計(jì)式(16)~(18)應(yīng)用到(12)式中得:
推得:
又由(15)式推得:
(-δε)=
(19)
且知δε=O(ε(N-2)/2),由于a0>0,顯然有:
(20)
又注意到:
定理1的證明 令φ,ψ∈H, ε>0,定義:
Φ=(u0+εφ)+,
Ψ=(v0+εψ)+,(Φ,Ψ)∈H×H,
Ω1={x|u0+εφ>0},
Ω2={x|v0+εψ>0},Ω-=Ω-Ω1∩Ω,
所以Φ(x)=u0+εφ|Ω1,Ω2=v0+εψ|Ω2,由引理2及不等式(11)可得:
(21)
顯然,當(dāng)ε→0時(shí),Ω-={x|u0+εφ≤0,v0+εψ≤0,x∈Ω}的測(cè)度亦趨向于0,由此可知∫Ω(u0φ+v0ψ)→0.將(21)式除以ε并對(duì)ε取極限,可得:
[1] Alves C, Filho D, Souto M. On systems of elliptic equations involving subcritical or critical Sobolev exponents[J]. Nonlinear Analysis, 2000, 42: 771-787.
[2] Talenti G. Best constant in Sobolev inequality[J]. Annali di Matematica Pura ed Applicata, 1976, 110(1): 353-372.
[3] Chen Y, Chen J. Existence of multiple positive weak solutions and estimates forextremal values to a class of elliptic problems with Hardy terms and singular nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2015, 492: 873-900.
[4] Chen J, Rocha E. Positive solutions for elliptic problems with critical nonlinearity and combined singularity [J]. Mathematica Bohemica, 2010, 135: 413-422.
[5] Lazer A, Mckenna P. On a singular nonlinear elliptic boundary value problem[J]. Proceedings of the American Mathematical Society, 1991, 111: 720-730.
[6] Sun Y, Wu S, Long Y. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. Journal of Differential Equations, 2001, 176: 511-531.
[7] Tarantello G. On nonhomogenous elliptic equations involving critical Sobolev exponent[J]. Annales de l′Institut Henri Poincare Analyse Non Lineaire, 1992, 9(3): 281-304.
[8] Sun Y, Zhang D. The role of the power 3 for elliptic equations with negative exponents[J]. Calculus Variations Partial Differential Equations, 2014, 49: 909-922.
[9] 康東升,黃 燕,劉 殊. 一類(lèi)擬線性橢圓問(wèn)題極值函數(shù)的漸近估計(jì)[J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2008, 27(3): 91-95.
Solutions to a Critical Elliptic System Involving Negative Exponents
KangDongsheng1,XuLiangshun1,CaoYuping2
(1 College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China;2 Library, South-Central University for Nationalities, Wuhan 430074, China)
In this paper, a system of elliptic equations was investigated, which involves strongly-coupled critical nonlinearities and negative-exponent terms. Several constraint sets were defined, the infimums of the energy functional on the constraint sets were studied by complicated analytical techniques, and the explicit expression of a critical constant was obtained. Finally, the existence of positive solutions to the system was verified under certain conditions, and for the first time, the related conclusions for the single critical elliptic equation were extended to the system of critical elliptic equations involving negative-exponent terms.
elliptic system; critical nonlinearities; negative-exponent term; variational method
2017-01-11
康東升(1967-),男,教授,博士,研究方向:偏微分方程,E-mail:dongshengkang@scuec.edu.cn
國(guó)家自然科學(xué)基金資助項(xiàng)目(11601530);中南民族大學(xué)研究生科研創(chuàng)新項(xiàng)目(2017sycxjj083)
O175.25
A
1672-4321(2017)02-0143-05
中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版)2017年2期