姜培海,張 政,唐 銜,段文哲,郭朝斌,林 潼.
(1.中化石油勘探開發(fā)有限公司,北京 100031;2.中國冶金地質(zhì)總局地球物理勘查院,河北保定 071051;3.中國石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007)
?
非常規(guī)油氣聚集主控因素及油氣富集綜合分析
姜培海1,張 政2,唐 銜1,段文哲1,郭朝斌1,林 潼3.
(1.中化石油勘探開發(fā)有限公司,北京 100031;2.中國冶金地質(zhì)總局地球物理勘查院,河北保定 071051;3.中國石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007)
在解剖北美13個(gè)不同盆地的15個(gè)非常規(guī)油氣層及國內(nèi)四川和鄂爾多斯兩個(gè)盆地的基礎(chǔ)上,通過對比分析及進(jìn)行非常規(guī)油氣層烴源巖、儲(chǔ)層評價(jià)和分類,詳細(xì)分析油藏類型、構(gòu)造特征、頂?shù)追馍w能力等控制因素,結(jié)合油氣藏評價(jià)、儲(chǔ)層改造、技術(shù)選型、產(chǎn)能評價(jià)等綜合分析,總結(jié)出油氣富集高產(chǎn)規(guī)律。認(rèn)為源內(nèi)、源外和二者混合的3種非常規(guī)油氣成藏模式對儲(chǔ)層產(chǎn)能高低起著控制作用,沉積環(huán)境決定干酪根類型、礦物成分、巖石組構(gòu),沉積構(gòu)造等在空間上的差異是非常規(guī)油氣產(chǎn)能的主控因素,裂縫發(fā)育是高產(chǎn)的主控因素之一。提出有機(jī)相、沉積相、成巖相和應(yīng)力相空間四相疊合帶作為地質(zhì)優(yōu)質(zhì)“甜點(diǎn)”區(qū)。以期指導(dǎo)國內(nèi)的非常規(guī)油氣田的經(jīng)濟(jì)性勘探開發(fā)和效益最大化。
非常規(guī)油氣;高產(chǎn)富集;控制因素;產(chǎn)能評價(jià);四相疊合
隨著美國頁巖油氣勘探開發(fā)技術(shù)的突破,北美“頁巖氣革命”掀起了全球非常規(guī)勘探開發(fā)熱潮。中國建成近100×108m3產(chǎn)能標(biāo)志著國內(nèi)頁巖氣的巨大成功。2011年11月,美國地質(zhì)調(diào)查局(USGS)定義的非常規(guī)油氣包括頁巖油、頁巖氣、致密油、致密氣、煤層氣和重油。
本文涉及的非常規(guī)油氣是指“凡是需要進(jìn)行儲(chǔ)層改造技術(shù)才能經(jīng)濟(jì)開發(fā)的油氣層”,包括頁巖油、頁巖氣、致密油、致密氣和煤層氣。但就頁巖油氣而言,在中國往往是指頁理發(fā)育的純泥巖,在北美則不但包括中國所稱的頁巖,也包括發(fā)育頁理的粉、細(xì)砂巖,細(xì)粒生物碎屑灰?guī)r,泥灰?guī)r。對產(chǎn)層巖性而言,北美富含有機(jī)質(zhì)的泥頁巖、泥灰?guī)r與粉砂巖、生物碎屑灰?guī)r/白云巖形成頻繁互層的“夾心餅干”狀結(jié)構(gòu),且粉、細(xì)砂巖或灰?guī)r、白云巖層是產(chǎn)能主要貢獻(xiàn)者,這種巖相組合具有最佳的含氣能力,含氣性最好,壓裂后產(chǎn)量高,是頁巖氣富集的有利相帶。
1.1 烴源巖的作用與特點(diǎn)
無論是常規(guī)還是非常規(guī)油氣,其有機(jī)質(zhì)豐度、有機(jī)質(zhì)類型、熱演化程度都是成藏主控因素,生烴過程沒有差異,但有獨(dú)特的成藏機(jī)理與模式[1-3]。機(jī)質(zhì)類型與含量決定了生烴強(qiáng)度,北美的非常規(guī)油氣之所以獲得成功,就是因?yàn)槠浒l(fā)育了世界頂級烴源巖。目前北美已發(fā)現(xiàn)的油氣田/“甜點(diǎn)”的TOC一般大于3.5%,集中在5%~10%分布,Woodford和Bakken最高分別可達(dá)35%和36%。成熟度在生油氣和熱裂解生凝析氣兩個(gè)窗口內(nèi)并且高產(chǎn)(表1)。成熟度、巖石類型、礦物組成和厚度決定了富集程度;含氣量、吸附量、硅質(zhì)含量、有機(jī)質(zhì)孔隙度、流體充填孔隙體積及產(chǎn)能均與TOC呈正相關(guān)[4-8];但烴源巖過成熟(Ro高于2%)時(shí),孔隙度呈現(xiàn)降低趨勢[9]。干酪根類型好,微孔發(fā)育吸附能力就會(huì)增強(qiáng)(含水大于4%,吸附能力又會(huì)降低);進(jìn)入生氣窗口后引起地層壓力增大將提高吸附性;黏土具有較高的微孔體積和較大的比表面積,吸附能力強(qiáng);深部地層溫度高,分子運(yùn)動(dòng)快,吸附力降低,具有高氣油比,產(chǎn)能就高。這些已由北美頁巖氣所證實(shí)[10]。高產(chǎn)頁巖氣層吸附氣含量一般低于30%,Eagle Ford最低,僅8%(表1、表2)。
表1 國、內(nèi)外古生界烴源巖特征Table 1 Characteristics of source rocks in the Paleozoic in China and abroad
續(xù)表
表2 國、內(nèi)外中生界油氣藏類型及儲(chǔ)層分類Table2 Hydrocarbon reservoir types and reservoir classification in the Paleozoic in China and abroad
1.2 沉積環(huán)境控制作用
有機(jī)質(zhì)豐度高低顯然受沉積環(huán)境與沉積相帶控制。北美眾多頁巖油氣層與四川盆地龍馬溪組表明封閉-半封閉低能環(huán)境,即發(fā)育潟湖環(huán)境或“盆中盆”古地貌有利于形成貧氧-缺氧條件,導(dǎo)致淺海陸棚海侵期發(fā)育高豐度烴源巖及脆性儲(chǔ)層。因?yàn)楹G质呛K饾u向時(shí)代較老的陸地風(fēng)化剝蝕面上推進(jìn)的過程,這就為水體補(bǔ)充了外源營養(yǎng)有機(jī)物質(zhì),被剝蝕地層就成為鈣質(zhì)來源。由于盆中古隆起導(dǎo)致發(fā)生上升流并帶來深水營養(yǎng)鹽,從而形成有機(jī)質(zhì)為內(nèi)源的大量生物,進(jìn)而引發(fā)歇性缺氧條件,有利于有機(jī)質(zhì)保存。水不用很深,幾十米即可,如早期認(rèn)為Marcellus下段黑色富含有機(jī)質(zhì)泥頁巖是深水沉積,但Olusanmi O. Emmanuel等[11]根據(jù)巖性組合、沉積構(gòu)造和生物化石及季節(jié)性缺氧富含有機(jī)質(zhì)泥頁巖無需深水條件的理論[12-13],認(rèn)為Marcellus下段因局部快速沉降和隆起、季節(jié)性營養(yǎng)源變化導(dǎo)致的藻類繁盛、鹽度變化、碎屑輸入速率變化,水深只有幾十米。沉積時(shí)期的火山活動(dòng)導(dǎo)致浮游生物繁盛,下段快速水進(jìn)期TOC高達(dá)10%~20%,屬于非常好的儲(chǔ)層。
Eagle Foord組沉積時(shí)期,盆中隆起San Marcos阻擋了東部Woodbine三角洲陸源粗碎屑的輸入并引發(fā)上升流帶來內(nèi)源營養(yǎng)物,同時(shí)與南部大陸架邊緣早期礁灘體形成潟湖狀半封閉-封閉環(huán)境,盆內(nèi)上升流和陸源河流這兩個(gè)內(nèi)、外營養(yǎng)物的匯集導(dǎo)致硅質(zhì)、鈣質(zhì)生物繁盛,引發(fā)間歇性貧氧-缺氧條件循環(huán),形成紋層狀生物碎屑和泥灰?guī)r/泥頁巖/粗粒粉砂巖 “夾心餅干”式薄互層沉積并富含有機(jī)質(zhì)。Woodford組發(fā)育類似環(huán)境,由紋層狀碎屑巖和碳酸鹽混積并富含有機(jī)質(zhì)(圖1)。
1.3 孔隙度的影響因素
孔隙度與干酪根類型、數(shù)量、巖性密切相關(guān),并隨成熟度增加而增大[14-15]。與常規(guī)儲(chǔ)層類似,烴源巖進(jìn)入生油窗口后,干酪根體積縮小并開始發(fā)育有機(jī)質(zhì)孔隙[16-18],有機(jī)質(zhì)孔比例隨著成熟度增加而增加并形成納米級孔隙網(wǎng)絡(luò),進(jìn)入過成熟后反而開始減少。在中成巖成巖A段發(fā)育溶蝕孔和有機(jī)質(zhì)孔隙,隨著埋深加大孔隙度降低[19]。北美頁巖油氣已發(fā)現(xiàn)油田孔隙度一般大于7%,屬于Ⅰ類儲(chǔ)層,非常規(guī)儲(chǔ)層物性要遠(yuǎn)遠(yuǎn)優(yōu)于國內(nèi);國內(nèi)已發(fā)現(xiàn)氣田儲(chǔ)層屬于Ⅱ類范疇,湖相泥巖屬于Ⅲ~Ⅳ類,為差儲(chǔ)層。
圖1 Woodford組沉積與地化特征(據(jù)Comer1991、1992修改)[24-25]Fig.1 Deposition and geochemical features of Woodford formation (Modified from Comer 1991, 1992)[24-25]A.黑色頁巖,Tasmanites藻(T)順層分布, TOC 35%;B.黑色頁巖與粉細(xì)砂巖互層,石英顆粒來自奧陶系砂巖, TOC 3.5%;C.11555ft①的紋層狀頁巖, TOC 4.2%;D.紋層狀頁巖夾粉砂巖紋層, TOC 8.1%;E.紋層狀/平行層理頁巖, TOC 10.1%注:①1ft=0.3048 m。
1.4 裂縫發(fā)育影響因素
天然裂縫既可以作為儲(chǔ)集空間,又可以作為油氣運(yùn)移通道,其發(fā)育與生烴過程產(chǎn)生高壓、地層快速埋藏后抬升、斷裂活動(dòng)、鹽巖塑性流動(dòng)或垮塌等密切相關(guān)。如Bakken組裂縫主要是由于生烴過程導(dǎo)致的高壓和下伏鹽巖活動(dòng)而產(chǎn)生的;Macellus 組裂縫發(fā)育與志留系鹽巖運(yùn)動(dòng)密切相關(guān)(表3);Eagle Ford組和涪陵氣田是由于深埋后抬升導(dǎo)致的上覆載荷減少有效應(yīng)力降低而發(fā)育裂縫[20];Niobrara組裂縫的產(chǎn)生不但有上述兩種原因,還有古近紀(jì)構(gòu)造運(yùn)動(dòng)的原因[10]。構(gòu)造縫距離斷層越近,裂縫越發(fā)育;而水平裂縫受沉積機(jī)理所控制,紋層或水平層理是由粒度變化、不透明礦物、炭質(zhì)碎片和生物碎屑等順層排列(圖1)而成,發(fā)育在有一定水體動(dòng)蕩的低能環(huán)境如閉塞海灣、潟湖、沼澤、牛軛湖以及風(fēng)暴浪基面以下較深水等環(huán)境中。由于層間黏合強(qiáng)度低,導(dǎo)致水平裂縫發(fā)育,并成為游離氣儲(chǔ)集最佳場所[11,21-22];平行層理面裂縫和垂直裂縫相交構(gòu)成空間網(wǎng)絡(luò)將不但增加孔隙間流動(dòng)性,而且提供了基質(zhì)與裂縫系統(tǒng)間的高滲透通道(圖2),使油氣在合適的圈閉富集,產(chǎn)能隨著裂縫發(fā)育而增大,是高產(chǎn)的主控因素之一[23-26]。如Eagle Ford組裂縫發(fā)育,
圖2 封閉-半封閉環(huán)境中巖相所發(fā)育的裂縫特征Fig.2 Fracture characteristics of lithofacies deposited in restrict basinsA. Woodford組紋層狀硅質(zhì)泥巖垂直裂縫被瀝青充填;B. 生物擾動(dòng)泥巖縫合線和裂縫被瀝青充填,據(jù)Comer 1991,1992修改[26-27];C. Bakken組平行層理面裂縫和垂直裂縫相交增加內(nèi)部孔隙流動(dòng)性和提供高滲透通道[23];D. Eagle Ford組粒泥灰?guī)r/粒泥灰?guī)r層理面裂縫和層間裂縫形成空間網(wǎng)絡(luò)[26]
裂縫成因頁巖油氣層位 EagleFordNiobraraBakkenMaecellusBarnettHaynesvilleNeal龍馬溪油氣生成產(chǎn)生高壓—★★————★快速埋藏后抬升★★————★★走滑斷層————★★——擠壓或拉漲斷層—★——————鹽巖塑性流動(dòng)或鹽丘垮塌——★★—★——
水平段為1828.8 m、裂縫半徑為91.44~121.92 m、平均高度為45.7 m的井的初產(chǎn)能達(dá)715.42 m3/d[27]。而平靜的水體懸浮物迅速堆積所形成的塊狀泥巖不易發(fā)育水平裂縫。
1.5 頂?shù)追馍w能力的影響
北美大多數(shù)頁巖油氣除了具有構(gòu)造圈閉外,地層結(jié)構(gòu)上類似“漢堡”狀,即頁巖油氣層頂?shù)装鍨楦又旅艿幕規(guī)r或泥巖且底板大多以致密灰?guī)r為主(表5),頂?shù)装逯旅軒r性不但是有效蓋層,阻擋油氣垂向運(yùn)移,起著封閉壓力的作用;也是壓裂的天然屏障,使得儲(chǔ)層體積改造容易。如Eagle Ford組上覆Austin灰?guī)r最致密、蓋層質(zhì)量最好的Hawkville地區(qū)是最大產(chǎn)氣區(qū),發(fā)育優(yōu)質(zhì)蓋層的Karnes 地塹區(qū)是最大產(chǎn)油區(qū)。高產(chǎn)區(qū)頂?shù)装逋黄茐毫εc儲(chǔ)層段突破壓力的比值,被稱為封蓋系數(shù),其一般大于2;而非儲(chǔ)層或極差儲(chǔ)層的封蓋系數(shù)小于1,意味著油氣很容易發(fā)生垂向運(yùn)移。
表4 非常規(guī)油氣藏頂?shù)装鍘r相特征與封蓋能力Table 4 Lithofacies characteristics and sealing abilities of the top and bottom plate of unconventional reservoirs
1.6 構(gòu)造圈閉與油氣成藏
根據(jù)油氣運(yùn)移距離,將非常規(guī)油氣劃分成源內(nèi)、源外和二者混合的3種非常規(guī)油氣藏類型[28]。Bakken組非常規(guī)油氣與常規(guī)油氣藏共存,地層本身向四周上傾尖滅[29-30]而發(fā)育地層和巖性圈閉,如Sanish Parshall油田為巖性圈閉,Elm Coulee油田屬于巖性-地層圈閉[31],Bakken、Eagle Ford、Barnett、Macellus、Montney、Woodford等眾多頁巖油氣層所發(fā)現(xiàn)的大型油氣田都發(fā)育背斜、斷背斜等構(gòu)造背景[10,32-44],甚至Eagle Ford組上傾方向淺層由于溫壓低導(dǎo)致孔隙極低而發(fā)育成巖性圈閉。背斜等構(gòu)造圈閉不但起到成藏作用,而且沿背斜軸向因?yàn)樽冃巫饔冒l(fā)育裂縫而導(dǎo)致高產(chǎn)。
2.1 有機(jī)相、沉積相、成巖相、應(yīng)力相有利疊合帶是富集“甜點(diǎn)”
眾所周知,儲(chǔ)層厚度、有機(jī)質(zhì)豐度和熱成熟度決定了儲(chǔ)層好壞,產(chǎn)量高低受孔隙拓?fù)浣Y(jié)構(gòu)所控制。空間上礦物成分和性質(zhì)的變化導(dǎo)致各向異性,礦物、TOC、孔隙與沉積環(huán)境與巖相密切相關(guān)[45-47]??焖俸G制?,封閉-半封閉陸棚盆地或海槽間歇缺氧、半深海-深海有利于富含有機(jī)質(zhì)的沉積物沉積與保存,形成有利沉積相帶,在生油和凝析油窗口形成有利有機(jī)相帶。海退期,在陸棚盆地或海槽中陸源碎屑間歇斷供條件下形成頁理發(fā)育并富含生物碎屑、硅質(zhì)及鈣質(zhì)的碳酸鹽或與碎屑巖混積的有利沉積相帶,并在生油和凝析油窗口發(fā)育溶蝕孔、干酪根等有機(jī)質(zhì)孔隙和裂縫而形成有利成巖相帶;區(qū)域構(gòu)造演化史決定了目的層系應(yīng)力場方向,構(gòu)造變形導(dǎo)致平行走向的裂縫發(fā)育帶,形成有利應(yīng)力相帶;四相疊合帶是最為有利的地質(zhì)和工程“甜點(diǎn)”區(qū)。因此,古地理環(huán)境、古地貌、古構(gòu)造恢復(fù)是非常規(guī)油氣勘探開發(fā)是否成功的決定因素,精細(xì)解釋沉積礦物成分、巖石組構(gòu)、孔隙度、脆性塑性就意味著精細(xì)劃分出沉積相帶及成巖相帶空間展布特征,才能找到地質(zhì)高產(chǎn)“甜點(diǎn)”。
2.2 中國與北美頁巖油氣富集差異
北美“甜點(diǎn)”的有機(jī)碳豐度為世界級,孔隙度一般大于7%,鈣質(zhì)含量大于55%;儲(chǔ)層/產(chǎn)層頂?shù)装逡灾旅芑規(guī)r為主,結(jié)構(gòu)上類似“漢堡”狀,底板不但在海侵期提供鈣質(zhì)來源,而且阻擋油氣垂向運(yùn)移,起著封閉壓力的作用,其封蓋性能有利于儲(chǔ)層橫向改造;巖性以碳酸鹽巖為主,其本身脆性優(yōu)于泥巖,從而形成高產(chǎn)“甜點(diǎn)”(表5)。上升流和陸源河流這兩個(gè)內(nèi)、外營養(yǎng)物的匯集導(dǎo)致硅質(zhì)、鈣質(zhì)生物繁盛,引發(fā)間歇性貧氧-缺氧條件,形成紋層狀生物碎屑和泥灰?guī)r、泥頁巖、粗粒粉砂巖等“夾心餅干”式薄互層沉積并富含有機(jī)質(zhì)儲(chǔ)層;平行層理面裂縫和垂直裂縫相交構(gòu)成空間網(wǎng)絡(luò)將不但增加孔隙間流動(dòng)性,而且提供了基質(zhì)與裂縫系統(tǒng)間的高滲透通道;高產(chǎn)頁巖氣層吸附氣含量一般低于30%,巖性以碳酸鹽巖為主,脆性明顯優(yōu)于泥巖。
中國海相或陸相泥頁巖氣具有“一老二雜三高”的特征,即時(shí)代老,構(gòu)造運(yùn)動(dòng)復(fù)雜、熱演化史復(fù)雜,高有機(jī)碳、高成熟度、高演化程度;湖相泥巖具有“一新一深二低”的特征,即時(shí)代新、埋藏深、成熟度低和脆性礦物含量低;巖性以硅質(zhì)或鈣質(zhì)泥巖為主;孔隙度一般小于7%,有機(jī)碳含量一般小于4%。
中國與北美所謂的“頁巖油氣”有著本質(zhì)的區(qū)別:北美的頁巖油氣屬于致密油氣范疇,其地面設(shè)施更加完善;中國的頁巖油氣勘探開發(fā)則需要探索適合地下地質(zhì)和地上地貌特征的、甚至是非連續(xù)分布的有效的經(jīng)濟(jì)之路。
焦石壩頁巖氣獲得成功并高產(chǎn)是多因素耦合而成,其本身是一個(gè)寬緩?fù)暾承睒?gòu)造,頂?shù)装宸馍w系數(shù)大于1.8,發(fā)育半封閉-封閉環(huán)境紋層狀泥頁巖,構(gòu)造抬升和生烴階段導(dǎo)致水平裂縫發(fā)育而成為儲(chǔ)集空間,超壓對頁巖儲(chǔ)層儲(chǔ)集空間保存起到至關(guān)重要的作用;游離氣含量大于60%,五峰與龍馬溪之間的不整合及斷層起到了油氣運(yùn)移通道作用,屬于源內(nèi)、源外混合成藏型。焦石壩氣田龍一段快速海侵沉積了一套炭質(zhì)頁巖夾生物成因硅質(zhì)泥巖(長寧和威遠(yuǎn)氣田硅質(zhì)來源與陸源碎屑),其沉積環(huán)境需要有植物碎屑供給;已鉆井表明侏羅山式構(gòu)造帶由寶塔/臨湘灰?guī)r組成,推測在該碳酸鹽巖沉積后經(jīng)過長期風(fēng)化剝蝕或潮道改造形成了“類環(huán)礁”古地貌-潟湖環(huán)境,因而發(fā)育含放射蟲和筆石生物碎屑的紋層狀硅質(zhì)泥頁巖;龍二段發(fā)育灰綠色泥巖和粉砂巖互層,含炭屑,由龍一段填平補(bǔ)齊后海底扇發(fā)育而成,為海退期沉積。這是值得重視的一個(gè)層系與領(lǐng)域,一旦富含有機(jī)質(zhì)的烴源巖與粉砂巖、泥質(zhì)粉砂巖儲(chǔ)層耦合,將有利于非常規(guī)油氣開發(fā)技術(shù)的應(yīng)用并獲得與長寧和威遠(yuǎn)型類似的高產(chǎn)油氣藏。
表5 Bakken組中深層已發(fā)現(xiàn)油田儲(chǔ)層物性特征與流體性質(zhì)Table5 The physical properties and fluid properties of oil reservoirs have been found in the middle-deep Bakken formation
鑒于國內(nèi)非常規(guī)油氣發(fā)育主要是碎屑巖沉積環(huán)境,如松遼盆地扶余組和鄂爾多斯延長7段沉積具有滿盆含砂特點(diǎn),主要發(fā)育大型三角洲-濁積巖沉積體系。而三角洲遠(yuǎn)端前緣薄砂層與富含有機(jī)碳的前三角洲泥頁巖指狀交錯(cuò)呈薄互層的相帶有利于發(fā)育“夾心餅干”型頁巖和砂巖頻繁薄互層,適合應(yīng)用非常規(guī)油氣勘探開發(fā)技術(shù)并獲得高產(chǎn)。僅松遼盆地概算頁巖油資源量約314×108t,頁巖氣約4.4×1012m3,特低滲透油藏未開發(fā)探明儲(chǔ)量約14×108t,特低滲透剩余資源量超過14×108t,是值得重視的非常重要的戰(zhàn)略領(lǐng)域。鄂爾多斯盆地長7段半深湖-深湖相環(huán)境本身陸相頁巖油資源潛力巨大[48],而發(fā)育的重力流沉積有利于發(fā)育“夾心餅干”型頁巖和砂巖頻繁薄互層,是重要的非常規(guī)油氣勘探開發(fā)技術(shù)應(yīng)用領(lǐng)域,其產(chǎn)能要遠(yuǎn)遠(yuǎn)高于純泥巖的壓裂而具有經(jīng)濟(jì)性。
(1)沉積環(huán)境和地理位置決定了干酪根類型、礦物成分、巖石組構(gòu)、沉積構(gòu)造等在空間上的差異,沉積環(huán)境與巖石組構(gòu)是非常規(guī)油氣產(chǎn)能的主控因素;儲(chǔ)層質(zhì)量受沉積環(huán)境和構(gòu)造演化所控制,古地理環(huán)境、古地貌、古構(gòu)造恢復(fù)是非常規(guī)油氣勘探開發(fā)是否成功的決定因素。烴源巖、沉積相帶、孔隙度、裂縫、構(gòu)造等是非常規(guī)油氣高產(chǎn)富集的主要控制因素。
(2)碳酸鹽和碳酸鹽與碎屑巖混積“盆中盆”古地貌是非常規(guī)油氣富集的有利沉積環(huán)境和沉積模式,有機(jī)相、沉積相、成巖相和應(yīng)力相相互耦合作用形成的四相疊合帶是地質(zhì)和工程的優(yōu)質(zhì)“甜點(diǎn)”區(qū),是經(jīng)濟(jì)開發(fā)的決定因素。
(3)儲(chǔ)層厚度、有機(jī)質(zhì)豐度和熱成熟度決定了儲(chǔ)層好壞,產(chǎn)量高低受孔隙拓?fù)浣Y(jié)構(gòu)所控制??臻g上礦物成分和性質(zhì)的變化導(dǎo)致各向異性,礦物、TOC、孔隙與沉積環(huán)境和巖相密切相關(guān),儲(chǔ)層脆性取決于鈣質(zhì)或硅質(zhì)含量,而鈣質(zhì)來源與海侵期剝蝕下伏老地層及周圍古高地碳酸鹽巖、硅質(zhì)、“夾心餅干”式生物碎屑層與上升流和間歇性缺氧密切相關(guān)?!皧A心餅干”式儲(chǔ)層和“漢堡”狀地層結(jié)構(gòu)是非常規(guī)油氣高產(chǎn)的主控因素。
(4)建議國內(nèi)在發(fā)育大型三角洲-濁積巖沉積體系的松遼盆地和鄂爾多斯盆地展開和建立非常規(guī)油氣勘探開發(fā)技術(shù)實(shí)驗(yàn)基地,指導(dǎo)國內(nèi)致密油氣的經(jīng)濟(jì)有效開發(fā),并成為國內(nèi)儲(chǔ)量和產(chǎn)量的重要來源之一。
[1] 張金川,金之鈞,袁明生.頁巖氣成藏機(jī)理和分布[J].天然氣工業(yè),2004,24(7):15-18.
[2] 劉成林,李景明,李劍,等.中國天然氣資源研究[J].西南石油學(xué)院學(xué)報(bào),2004,26(1):9-12.
[3] 劉樹根.四川疊合盆地深層海相碳酸鹽巖油氣的形成和分布理論[C].第六屆中國石油地質(zhì)年會(huì),2015.
[4] 郭旭升.涪陵頁巖氣田的發(fā)現(xiàn)及勘探技術(shù)[C].第六屆中國石油地質(zhì)年會(huì),2015.
[5] 易積正.頁巖氣產(chǎn)能影響因素分析[C].第六屆中國石油地質(zhì)年會(huì),2015.
[6] QUIREIN J, GALFORD J, WITKOWSKY J, et al. Review and Comparison of Three Different Gas Shale Interpretation Approaches[C]. Cartagena: the SPWLA 53rd Annual Logging Symposium, 2012.
[7] 聶海寬,何發(fā)岐,包書景.中國頁巖氣地質(zhì)特殊性及其勘探對策[J].新能源,2011,31(11):111-131.
[8] 李新景,呂宗剛,董大忠,等.北美頁巖氣資源形成的地質(zhì)條件[J].天然氣工業(yè),2009,29(5):27-32.
[9] 王飛宇,關(guān)晶,馮衛(wèi)平,等.過成熟海相頁巖孔隙度演化特征和游離氣量[J].石油勘探與開發(fā),2013,40(6):764-768.
[10] PATHAK M, DEO M, CRAIG J, et al. Geologic Controls on Production of Shale Play Resources: Case of the Eagle Ford, Bakken and Niobrara[C]. Denver: the Unconventional Resources Technology Conference, 2014.
[11] EMMANUEL O O, SONNENBERG. Geologic Characterization and the Depositional Environment of the Middle Devonian Marcellus Shale, Appalachian Basin, NE USA[C]. Denver: the Unconventional Resources Technology Confe-rence, 2013.
[12] TYSON R V, PEARSON T H. Modern and Ancient Continental Shelf Anoxia: An Overview[M]. London: Geological Society Special Publication, 1991: 1-24.
[13] SMITH L B, LEONE J. Integrated Characterization of Utica and Marcellus Black Shale Gas Plays[C]. American Association of Petroleum Geologists Annual Convention and Exhibition, 2010.
[14] MILLIKEN K L, RUDNICKI M, AWWILLER, et al. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[15] OZKAN A, MILLIKEN K L, MACAULAY C, et al, Influence of Primary Rock Texture, Diagenesis, and Thermal Maturity on Eagle Ford Pore Systems[C]. Pittsburgh: AAPG Annual Convention and Exhibition, 2013.
[16] LOUCKS R G, REED R M, RUPPEL, et al. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores[J]. AAPGBulletin, 2012, 96(6): 1071-1098.
[17] SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural Studies of Gas Shales[C]. Pittsburgh: SPE Unconventional Gas Conference, 2010
[18] AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS, et al. New Pore-Scale Considerations for Shale Gas in Place Calculations[C]. Pittsburgh: SPE Unconventional Gas Conference, 2010.
[19] FAN J W, THOMSON J R, ROBINSON. Understanding Gas Production Mechnism and Effctiveness of Well Stimulation in the Haynesville Shale Through Reservoir Simulation[C]. Calgary: Canadian Unconventional Resources and International Petroleum Conference, 2010.
[20] XIA X Y, WALLACE J, DU L G. Modeling of Abnormal Fluid Pressure in Unconventional Plays Due to Uplift[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[21] LOUCKS G R, ROWE H D. Upper Cretaceous Niobrara Chalk in Buck Peak Field, Sand Wash Basin, NW Colorado: Depositional Setting, Lithofacies, and Nanopore Network[C]. Denve: the Unconventional Resources Technology Conference, 2014.
[22] 于光春. 保存條件對四川盆地及周緣海相頁巖氣富集高產(chǎn)的影響機(jī)制[C].北京: 第六屆中國石油地質(zhì)年會(huì),2015.
[23] AL DUHAILAN M A, SONNENBERG S A. Impact of Petroleum-Expulsion Fractures on Productivity of the Bakken Shales: A Geological Interpretation for Pressure Transient Behaviors[C]. Denver: the Unconventional Resources Technology Conference, 2014.
[24] COMER J B. Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico: Austin, Texas, Bureau of Economic Geology[R]. Report of Investigations, 1991: 51-62.
[25] COMER J B. Organic Geochemistry and Paleogeography of Upper Devonian Formations in Oklahoma and Northwestern Arkansas, in K. S.[J]. Oklahoma Geological Survey, 1992, Circular 93: 70-93.
[26] STEGENT A, WAGNER L A, MULLEN J, et al. Engineering a Successful Fracture-Stimulation Treatment in the Eagle Fold Shale[C] San Antonio: the SPE Tight Gas Completions Conference, 2010.
[27] SPENCER J, BUCIOR D, CATLETT R, et al. Evaluation of Horizontal Wells in the Eagle Ford Using Oil-Based Chemical Tracer Technology to Optimize Stimulation Design[C]. Woodlands: the 2013 SPE Hydraulic Fracturing Technology Conference, 2013.
[28] BOHACS M K, PASSEY Q R, RUDNICKI M, et al. The Spectrum of Fine-Grained Resevoirs from “Shale Gas” to “Shale Oil”/ Tight Liquids: Essential Attributes, Key Controls, Practical Characterization[C]. Beijing: the International Petroleum Technology Conference, 2013.
[29] HUI J, SONNENBERG A S. Characterization for Source Rock Potential of the Bakken Shales in the Williston Basin, North Dakota and Montana[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[30] SONNENBERG A S. The Upper Bakken Shale Resource Play, Williston Basin[C]. Denve: the Unconventional Resources Technology Conference, 2014.
[31] 崔景偉,朱如凱,楊智,等.國外頁巖層系石油勘探開發(fā)進(jìn)展及啟示[J].非常規(guī)油氣,2015,2(4):68-82.
[32] HENNING T A, MARTIN R, PATON G. Data Conditioning and Seismic Attribute Analysis in the Eagle Ford Shale Play: Examples From Sinor Ranch, Live Oak County[C]. Denver: Texas SEG Annual Meeting, 2010.
[33] POLLASTRO M R, HILL R J, JARVIE M D, et al. Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch-Fort Worth Basin Province, Texas[C]. Fort Worth: AAPG Southwest Section Meeting, 2003.
[34] LI F, RON M, JOHAN T, et al. An Integrated Approach for Understanding Oil and Gas Reserves Potential in Eagle Ford Shale Formation[C]. Calgary: the Canadian Unconventional Resources Conference, 2013.
[35] MARTIN R, BAIHLY J D, MALPANI R, et al. Understanding Production from Eagle Ford-Austin Chalk System[R]. Paper SPE145117, the Annual Technical Conference and Exhibition, 2011
[36] VISWANATHAN A, ALTMAN R, OUSSOLTSEV D, et al. CompletionEvaluation of the Eagle Ford Formation with Heterogeneous Propant Placement[C]. Calgary: Canadian Unconventional Resources Conference, 2011.
[37] DONOVAN D A, STAERKER T S, PRAMUDITO A, et al. A 3-D Outcrop Perspective of an Unconventional Carbonate Mudstone Reservoir[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[38] BELLO D H, BARZOLA G, PORTIS D, et al. Multiuse of Seismic and Attribute Mapping for Field Appraisal and Development in the Eagle Ford Shale: Mapping TOC, Porosity and Seal Integrity[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[39] GUO S G, ZHANG B, LIN T F, et al. AVO Gradient Anisotropic Analysis on Prediction of Fractures on Barnett Shale[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[40] SLATT M R, BRIEN O N, BLANCO M C, et al. Pores, Spores, Pollen and Pellets: Small, but Significant Constituents of Resource Shales[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[41] METZNE D, SMITH L K. Case Study of 3D Seismic Inversion and Rock Property Attribute Evaluation of the Haynesville Shale[C]. Denver: the Unconventional Resources Technology Conference, 2013.
[42] OLSEN N T, GERMINARIO M P, REINMILLER R, et al. Horizontal Lateral Image Analysis Applied to Fracture Stage Optimization in Eastern Barnett Shale, Tarrant and Dallas Counties[C]. Denver: the Unconventional Resources Technology Conference, 2014.
[43] ENGELDER T, GOLOB B, HOCUM S J, et al.Comparison of Marcellus Fracturing Using Azimuthal Seismic Attributes Versus Published Data from Outcrop Studies[C]. Denver: the Unconventional Resources Technology Confe-rence, 2014.
[44] PEZA E, KVALE E, HAND R, et al. 3-D Integrated Workflow for Understanding the Fracture Interference and Its ImpactInto the Gas Production of the Woodford Shale Unconventional Resources Technology[C]. Denver: the Unconventional Resources Technology Conference, 2014.
[45] MULLEN J. Petrophysical Characterization of the Eagle Ford Shale in South Texas[C]. Calgary: SPE Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, 2010.
[46] POPIELSKI A C. Rock Classification From Conventional Well Logs in Hydrocarbon-Bearing Shale[D]. Austin: the University of Texas at Austin, 2011.
[47] HAMMES U, HAMLIN H S, EWING T E. Geologic Analysis of the Upper Jurassic Haynesville Shale in East Texas and West Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666.
[48] 王喆,陳清敏,楊文博,等.鄂爾多斯盆地銅川地區(qū)油頁巖特征及資源評價(jià)[J].非常規(guī)油氣,2016,3(4):32-39.
Comprehensive Analysis for Hydrocarbon Accumulation Main ControlFactors and Enrichment of Unconventional Oil and Gas
Jiang Peihai1, Zhang Zheng2, Tang Xian1, Duan Wenzhe1, Guo Chaobin1, Lin Tong3
(1.Sinochem Petroleum Exploration & Production Co., Ltd., Beijing 100031, China; 2.GeophysicalExploration Academy of China Metallurgical Geology Bureau, Baoding, Hebei 065007, China; 3.Langfang Branch of PetroChina Research Institute of Petroleum Exploration &Development, Langfang, Hebei 071051, China)
Based on the analysis of 15 unconventional oil and gas reservoirs in 13 different basins in North America and the two basins in Sichuan and Ordos in China, this paper analyzed the types of reservoirs structural characteristics, top and bottom cover capacity and other control factors, by means of comparative analysis and unconventional oil and gas source rocks, reservoir evaluation and classification, combined with oil and gas reservoir evaluation, reservoir transformation, technical selection, capacity evaluation and other comprehensive analysis, summed up the law of high oil and gas enrichment. It was considered that the three unconventional oil and gas reservoirs in the source, the source and the mixture were controlled by the reservoir capacity. The depositional environment determined the spatial differences of the kerogen type, mineral composition, rock structure and sedimentary structure was the main factor of unconventional oil and gas production capacity, fracture development was one of the main factors of high yield. The organic phase, the sedimentary facies, the diagenetic facies and the stress phase space four - phase overlapping zone were proposed as the geological quality “dessert” zone. With a view to guiding the domestic unconventional oil and gas field of economic exploration and development and maximize the benefits
unconventional oil and gas; enrichment and high yield; controlling factors; productivity evaluation; four facies superimposing
中化石油勘探開發(fā)有限公司自主創(chuàng)新項(xiàng)目“中國含油氣盆地新領(lǐng)域、新層系研究”資助。
姜培海(1965—),男,高級工程師,1987年畢業(yè)于西北大學(xué)地質(zhì)系石油與天然氣專業(yè),獲學(xué)士學(xué)位,現(xiàn)主要從事儲(chǔ)層沉積學(xué)和油氣田勘探開發(fā)綜合研究與管理工作。郵箱:1916849806@qq.com.
P624
A