馬 軒, 莫蓓莘, 曹曉風(fēng)
(1. 深圳大學(xué)生命與海洋科學(xué)學(xué)院, 廣東省植物表觀遺傳學(xué)重點(diǎn)實(shí)驗(yàn)室, 深圳 518060; 2. 中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所, 北京 100101)
水稻microRNA及其靶基因的系統(tǒng)鑒定
馬 軒1,2, 莫蓓莘1, 曹曉風(fēng)2*
(1. 深圳大學(xué)生命與海洋科學(xué)學(xué)院, 廣東省植物表觀遺傳學(xué)重點(diǎn)實(shí)驗(yàn)室, 深圳 518060; 2. 中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所, 北京 100101)
microRNA (miRNA)在植物生長發(fā)育和環(huán)境脅迫中發(fā)揮著重要的作用.本研究基于49個(gè)水稻小RNA 測序數(shù)據(jù),系統(tǒng)分析了已知miRNA的表達(dá),并鑒定到了新的水稻miRNA. 研究發(fā)現(xiàn),miRBase上注釋的水稻miRNA中,只有39%具有可檢測的表達(dá). 此外,對水稻降解組數(shù)據(jù)的分析鑒定到一些新的miRNA靶基因,包括2個(gè)新的miR444靶基因,它們分別編碼WD40蛋白和熱休克因子型DNA結(jié)合蛋白.
水稻; 小RNA測序; 降解組; miRNA; 靶基因
microRNA(miRNA)是一類內(nèi)源性非編碼小RNA,長度約為20~24個(gè)核苷酸[1]. 在植物中,miRNA通過剪切靶mRNA或抑制靶mRNA的翻譯,在RNA或蛋白水平調(diào)控靶基因的表達(dá),進(jìn)而影響植物的生長發(fā)育和環(huán)境適應(yīng)[2-4]. miRNA基因表達(dá)的初級轉(zhuǎn)錄本經(jīng)過DCL-HYL1-SE復(fù)合體的加工形成miRNA前體,前體折疊形成莖環(huán)結(jié)構(gòu),經(jīng)過DCL的進(jìn)一步剪切形成miRNA-miRNA*雙鏈小分子RNA[2-4]. 成熟miRNA鏈被裝載到AGO1上,引導(dǎo)AGO1對靶mRNA進(jìn)行剪切或抑制靶mRNA的翻譯[2-4]. 目前,小RNA測序技術(shù)結(jié)合生物信息學(xué)分析已經(jīng)被廣泛應(yīng)用于miRNA的大規(guī)模鑒定中[5-6]. 降解組測序技術(shù)用來大規(guī)模鑒定植物miRNA的靶基因[7-14].
水稻(Oryzasativa)是最重要的糧食作物之一.水稻miRNA的調(diào)控作用對農(nóng)藝性狀的影響非常重要. 例如,osa-miR156靶向SPL14基因,進(jìn)而調(diào)控營養(yǎng)階段的分枝發(fā)育;osa-miR156突變體分蘗數(shù)減少,花穗和谷粒數(shù)增加[15]. 過表達(dá)osa-miR397可以增大谷粒的大小,促進(jìn)圓錐花序分枝,使得田間試驗(yàn)中谷??偖a(chǎn)量增高25%[16]. JEONG等[5]進(jìn)行了大規(guī)模小RNA測序,鑒定出了約200個(gè)水稻miRNA. LIY F[17]等進(jìn)行了降解組測序,對水稻miRNA的靶基因進(jìn)行了系統(tǒng)鑒定.
鑒于miRNA在水稻發(fā)育中的重要作用,以及NCBI上迅速增長的水稻小RNA測序數(shù)據(jù),本研究運(yùn)用新方法結(jié)合新數(shù)據(jù)系統(tǒng)鑒定水稻miRNA,鑒定到44個(gè)新的水稻miRNA,并發(fā)現(xiàn)miRBase上注釋的水稻miRNA中只有39%具有可檢測的表達(dá)水平. 同時(shí),對水稻降解組數(shù)據(jù)的分析鑒定到了新的miRNA靶基因.
1.1 數(shù)據(jù)來源
水稻小RNA測序數(shù)據(jù)來源于NCBI GEO數(shù)據(jù)庫,數(shù)據(jù)號為GSM1081563,GSM1081564,GSM1081565,GSM1409671,GSM1409672,GSM1409673,GSM1409674,GSM1547539,GSM520637,GSM520640,GSM647192,GSM647193,GSM647194,GSM647195,GSM816687,GSM816688,GSM816689,GSM816690,GSM816691,GSM816692,GSM816693,GSM816694,GSM816695,GSM816696,GSM816697,GSM816698,GSM816699,GSM816700,GSM816701,GSM816702,GSM816703,GSM816730,GSM816731,GSM816732,GSM816733,GSM816735,GSM816736,GSM816737,GSM816738,GSM816739,GSM816740,GSM816741,GSM816742,GSM816743,GSM816744,GSM816745,GSM816746,GSM816747和GSM816748. 降解組數(shù)據(jù)來源于NCBI GEO數(shù)據(jù)庫,數(shù)據(jù)號為GSM455938,GSM455939和GSM434596.
水稻結(jié)構(gòu)RNA序列來源于Rfam(http://rfam.xfam.org/)和TIGR重復(fù)序列數(shù)據(jù)庫. 水稻基因組數(shù)據(jù)來源于TIGR7(http://rice.plantbiology.msu.edu/).
1.2 生物信息學(xué)分析
首先,去除測序數(shù)據(jù)中的結(jié)構(gòu)RNA(rRNA、tRNA、snRNA和snoRNA等),然后采用miRDeep-P(http://faculty.virginia.edu/lilab/miRDP/)對miRBase上已經(jīng)注釋的水稻miRNA進(jìn)行分析,miRNA的表達(dá)豐度以RPM(小RNA讀段數(shù)占每百萬總測序讀段數(shù)的比例)表示. 數(shù)據(jù)過濾用perl腳本完成.降解組數(shù)據(jù)分析運(yùn)用CleaveLand4工具(https://github.com/MikeAxtell/CleaveLand4).
2.1 水稻miRNA的表達(dá)的分析
為了系統(tǒng)鑒定水稻miRNA,共分析了49個(gè)已經(jīng)發(fā)表的水稻小RNA測序數(shù)據(jù),這些數(shù)據(jù)來源于幼苗、花絮等組織以及干旱、鹽脅迫、高溫和低溫處理等材料. 在miRBase中收集的576個(gè)水稻miRNA中,224個(gè)(39%)在至少一個(gè)文庫中具有可檢測的表達(dá)(RPM≥10). 在這224個(gè)miRNA中,109個(gè)屬于植物界高度保守的20個(gè)miRNA家族,15個(gè)屬于單子葉植物保守的miRNA家族,其余100個(gè)是水稻特異的miRNA. 圖1顯示,保守miRNA相對于非保守miRNA具有更高的表達(dá). 同時(shí),352個(gè)miRBase上注釋的水稻miRNA并沒有在分析中檢測到,這說明miRBase上收錄的很多miRNA豐度很低或者不完全可信. 應(yīng)用Randfold(v2.0)對miRBase上的水稻miRNA前體進(jìn)行了生物信息學(xué)折疊分析(P值<0.01). 結(jié)果顯示,96個(gè)miRNA(17%)不能通過Randfold的檢驗(yàn),因此,miRBase上收錄的水稻miRNA并不全是高度可信的. 本研究鑒定到了224個(gè)水稻miRNA,它們中的139個(gè)是JEONG等[5]報(bào)道的典型miRNA,12個(gè)和17個(gè)分別為JEONG等[5]報(bào)道的次要miRNA和類似siRNA的miRNA. 這說明本研究與以往研究具有很大一致性,同時(shí)又存在小的差別. 一些保守的miRNA(例如osa-miR156j, osa-miR166j, osa-miR169q和osa-miR396h等)在以往的研究中被遺漏了,然而在本研究中能夠被鑒定到,說明了本研究的可靠性.
圖1 鑒定的miRNA在不同小RNA測序文庫中的表達(dá)
Figure 1 Expressions of identified miRNAs in various small RNA-seq libraries
2.2 鑒定新的水稻miRNA
為了鑒定新的水稻miRNA,采用miRDeep-P與多種過濾相結(jié)合的方法,共鑒定到了44個(gè)新的miRNA,圖2列舉了3個(gè)新的miRNA(命名為miR_n1,miR_n11,miR_n37). 這3個(gè)miRNA前體能夠形成穩(wěn)定的莖環(huán)結(jié)構(gòu),小RNA測序數(shù)據(jù)顯示,miRNA的豐度是miRNA*豐度的70~90倍,說明這些前體能夠產(chǎn)生大量的miRNA.
圖2 3個(gè)新鑒定的miRNA的例子Figure 2 Three examples of newly identified miRNAs
這44個(gè)miRNA中的8個(gè)與miRBase上注釋的水稻miRNA是同源的. 這8個(gè)miRNA包括一個(gè)與玉米(Zeamays)miR2275和二穗短柄草(Brachypodiumdistachyon)miR2275直系同源的miR2275,命名為osa-miR2275e(圖3A). 不同植物的miR2275前體的序列比對(圖3B)表明,水稻miR2275e(紅圈標(biāo)記)、玉米miR2275和二穗短柄草miR2275的親緣關(guān)系更近,形成一個(gè)分支;miRBase上注釋的水稻miR2275ad屬于另一個(gè)分支,具有很多的旁系同源基因. 這8個(gè)miRNA包括一個(gè)新的miR5808(命名為osa-miR5808b),如圖3C紅圈所示. 對水稻miRNA前體序列分析表明,osa-miR5808a、osa-miR5808b和osa-miR5801是同源的miRNA(圖3C). 這8個(gè)miRNA還包括2個(gè)新的miR812(命名為osa-miR812w和osa-miR812x,圖3D紅色標(biāo)記). 在miRBase注釋的水稻miRNA中,miR812具有24個(gè)拷貝,是拷貝最多的miRNA之一. miR812成員分為2個(gè)分支,本研究鑒定的2個(gè)新的miR812親緣關(guān)系較近,屬于第一分支(圖3D).
圖3 新鑒定到的與已知miRNA同源的miRNA
Figure 3 Novel miRNAs that are homologous to known miRNAs
2.3 水稻miRNA靶基因的鑒定
為了系統(tǒng)鑒定水稻miRNA的靶基因,筆者對已經(jīng)發(fā)表的3組降解組測序數(shù)據(jù)進(jìn)行了分析. 這3組數(shù)據(jù)來源于水稻幼苗和花絮等材料,數(shù)據(jù)分析采用CleaveLand4工具,鑒定的標(biāo)準(zhǔn)是:(1)降解組峰值類型為0或1;(2)罰分≤4. 共鑒定到247對miRNA靶基因,其中的239對(97%)收錄于TarBase(v6),即是已經(jīng)報(bào)道的miRNA靶基因. 在8對新鑒定的miRNA靶基因中,miR444-LOC_Os02g49090和miR444-LOC_Os03g63750是高可信度的靶基因(圖4A).LOC_Os02g49090編碼一個(gè)WD40結(jié)構(gòu)域蛋白,LOC_Os03g63750編碼一個(gè)熱激因子(HSF)類型的DNA結(jié)合蛋白.
miRNA在植物的生長發(fā)育和環(huán)境適應(yīng)等方面起著重要的作用. 目前,小RNA測序和降解組測序已經(jīng)被應(yīng)用于水稻miRNA及其靶基因的鑒定中,以往的研究對水稻miRNA進(jìn)行了系統(tǒng)鑒定. 但是,鑒于NCBI上迅速增長的水稻小RNA測序數(shù)據(jù),有必要運(yùn)用新方法結(jié)合新數(shù)據(jù)對水稻miRNA進(jìn)行系統(tǒng)鑒定. 本研究運(yùn)用miRDeep-P方法結(jié)合各種過濾,鑒定到了44個(gè)新的水稻miRNA,對水稻miRNA的開發(fā)和功能研究是有意義的. 同時(shí),筆者對水稻降解組數(shù)據(jù)進(jìn)行了分析,鑒定到了新的miRNA靶基因,例如在單子葉植物中保守的miR444可以調(diào)控多個(gè)基因,這有助于對miRNA和靶基因調(diào)控網(wǎng)絡(luò)的解析. 目前,關(guān)于水稻miRNA調(diào)控靶基因的功能研究比較缺乏,需要應(yīng)用新技術(shù)(例如CRISPR敲除miRNA或其靶位點(diǎn))進(jìn)行深入研究.
圖A、B中,上圖顯示miRNAT和靶基因配對,下圖降解組數(shù)據(jù)顯示,miR444在基因轉(zhuǎn)錄本的剪切位點(diǎn)具有高剪切效率(如紅色線所示);TP10M. 剪切位點(diǎn)的讀段數(shù)占每千萬總讀段數(shù)的比例.
圖4 miR444的2個(gè)新的靶基因
Figure 4 Two new targets of miR444
[1] BARTEL D P. MicroRNAs: genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
[2] ROGERS K,CHEN X. Biogenesis,turnover,and mode of action of plant microRNAs[J]. Plant Cell,2013,25(7):2383-2399.
[3] VOINNET O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell,2009,136(4):669-687.
[4] WU G. Plant microRNAs and development[J]. Journal of Genetics and Genomics,2013,40(5):217-230.
[5] JEONG D H,PARK S,ZHAI J,et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage[J]. Plant Cell,2011,23(12):4185-4207.
[6] RAJAGOPALAN R,VAUCHERET H,TREJO J,et al. A diverse and evolutionarily fluid set of microRNAs inArabidopsisthaliana[J]. Genes & Development,2006,20(24):3407-3425.
[7] ADDOQUAYE C,ESHOO T W,BARTEL D P,et al. Endogenous siRNA and microRNA targets identified by sequencing of the Arabidopsis degradome[J]. Current Biology,2008,18(10):758-762.
[8] GERMAN M A,PILLAY M,JEONG D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.
[9] CAO D,XU H,ZHAO Y,et al. Transcriptome and degradome sequencing reveals dormancy mechanisms ofCunninghamialanceolataseeds[J]. Plant Physiology,2016,172(4):2347-2362.
[10]FANG Y N,ZHENG B B,WANG L,et al. High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrusgrandis)[J]. BMC Genomics,2016,17(1):591.
[11]HU J,JIN J,QIAN Q,et al. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicotNelumbonucifera[J]. BMC Genomics,2016,17(1):684.
[12]LIU S,XU Y,MA J,et al. Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress[J]. Physiologia Plantarum,2016,158(4):435-451.
[13]WU F Y,TANG C Y,GUO Y M,et al. Comparison of miRNAs and their targets in seed development between two maize inbred lines by high-throughput sequencing and degradome analysis[J]. Plos One,2016,11(7):Art e0159810,13pp.
[14]ZHOU R,WANG Q,JIANG F,et al. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis[J]. Scientific Reports,2016,6:33777.
[15]JIAO Y,WANG Y,XUE D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[16]ZHANG Y C,YU Y,WANG C Y,et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology,2013,31(9):848-852.
[17]LIY F,ZHENG Y,ADDOQUAYE C,et al. Transcriptome-wide identification of microRNA targets in rice[J]. Plant Journal,2010,62(5):742-759.
【中文責(zé)編:成文 編輯助理:冷佳奕 英文責(zé)編:李海航】
Systematic Identification of microRNAs and Their Targets inOryzasativa
MAXuan1,2,MOBeixin1,CAOXiaofeng2*
(1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China;2. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,Beijing100101, China)
microRNA (miRNA) play essential roles in plant development and environmental adaption. Here, based on 49Oryzasativa(rice) small RNA-seq datasets, It was systematically analyzed the expressions of known miRNAs and identified novel miRNAs in rice. It was showed that only 39% annotated miRNAs on miRBase had detectable expressions. Additionally, analysis of rice degradome datasets identified a few new miRNA targets including two miR444 targets that encode a WD40 protein and a HSF (heat shock factor)-type DNA-binding protein.
rice; small RNA-seq; degradome; miRNA; targets
2015-11-20 《華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n
國家自然科學(xué)基金項(xiàng)目(31571332,31210103901,91440105)
Q786
A
1000-5463(2017)03-0055-04
*通訊作者:曹曉風(fēng),研究員,中國科學(xué)院院士,Email:xfcao@genetics.ac.cn.