国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于特征熒光信號的去囊衣帶芯橘瓣分選

2017-06-27 01:31:07王葉群楊增玲任衛(wèi)東張紹英
農(nóng)業(yè)工程學(xué)報 2017年9期
關(guān)鍵詞:橘瓣紫外光熒光

王葉群,楊增玲,任衛(wèi)東,劉 婷,楊 杰,張紹英

?

基于特征熒光信號的去囊衣帶芯橘瓣分選

王葉群1,楊增玲1,任衛(wèi)東2,劉 婷1,楊 杰1,張紹英1※

(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083; 2. 匯川盛業(yè)技術(shù)(北京)有限公司,北京 100176)

為實現(xiàn)去囊衣帶芯橘瓣的機器視覺分選,給去囊衣帶芯橘瓣的機器識別提供直接、準(zhǔn)確的判別信號,釆用熒光分光光度計對50顆去囊衣帶芯橘瓣的橘芯和砂囊分別進(jìn)行三維熒光光譜掃描,通過對橘芯、砂囊平均三維熒光光譜分析,確定了橘芯相對砂囊的特征熒光信號,據(jù)此對帶芯橘瓣熒光圖像識別的可行性進(jìn)行了驗證。檢測發(fā)現(xiàn),在370~390 nm紫外光激發(fā)下,橘芯和砂囊在440 nm處的熒光強度差異較大;橘芯與砂囊在370 nm紫外光激發(fā)下,440 nm處熒光強度分布的箱線圖表明兩者熒光強度分布存在明顯差異,且以橘芯在440 nm處熒光強度的下四分位數(shù)(1)與砂囊在440 nm處熒光強度的上四分位數(shù)(3)的平均值作為分類標(biāo)準(zhǔn),去囊衣帶芯橘瓣檢出準(zhǔn)確率可達(dá)85%。對(370±2)nm激發(fā)下得到的單色(440±5)nm熒光圖像進(jìn)行二值化及形態(tài)學(xué)處理后,可在以砂囊為背景的橘瓣圖形中顯現(xiàn)橘芯亮斑。利用橘芯與砂囊的熒光特性差異進(jìn)行機器視覺成像分析,可作為識別去囊衣帶芯橘瓣的一種有效方法。

圖像處理;光譜;熒光;去囊衣橘瓣;橘芯;砂囊;分選

0 引 言

橘子罐頭是柑橘加工的主要產(chǎn)品[1]。橘子罐頭以去囊衣橘瓣為主要成分,填充糖液后封裝、殺菌制成。去囊衣一般采用化學(xué)或生化降解方法[2-3]。受發(fā)育差異、品種變異及加工條件的影響,去囊衣后的橘瓣中常包含帶籽、破碎、漿化以及殘留囊衣、橘絡(luò)或橘芯(中心柱部分組織)等缺陷的個體。為保證產(chǎn)品口感和外觀一致,裝罐前須將缺陷橘瓣剔除[4-6]。目前,橘瓣罐頭生產(chǎn)中缺陷橘瓣多采用人工分選,逐個甄別造成用工成本高,主觀判斷導(dǎo)致產(chǎn)品整齊度差,研究機器分選技術(shù)勢在必行。

目前,與去囊衣橘瓣機器視覺分選相關(guān)的技術(shù)已有少量研究與應(yīng)用[7-11]。任磊[12]利用白色環(huán)形光源與彩色相機采集橘瓣反射圖像,通過提取藍(lán)色分量與紅色分量分別用于檢測囊衣殘留橘瓣與破損橘瓣。Blasco等[13]利用白色光源背光成像采集橘瓣的透射圖像,通過分析橘瓣與背景、囊衣、橘籽的、、值,采用2次圖像分割來檢測缺陷橘瓣,提取分量圖像將背景與感興趣區(qū)域分割,提取分量圖像將橘瓣與橘籽和囊衣分割,達(dá)到檢測囊衣殘留橘瓣與橘籽殘留橘瓣的目的,利用形態(tài)學(xué)特征將破損橘瓣從完整橘瓣中識別出來。以上2項研究是針對囊衣殘留橘瓣、橘籽殘留橘瓣和破損橘瓣的機器視覺分選研究,但針對去囊衣后帶芯橘瓣的機器分選尚未研究。

根據(jù)生物結(jié)構(gòu)對特定光信號響應(yīng)規(guī)律不同的原理,通過配置成像條件,提取缺陷個體與正常個體的圖像信號差異,進(jìn)而轉(zhuǎn)化為分選執(zhí)行信號,是現(xiàn)今機器識別的經(jīng)典原理[14-19]。其中,發(fā)現(xiàn)缺陷的專屬信號并使之與對比信號差異最大化,是實現(xiàn)機器識別的技術(shù)關(guān)鍵[20-25]。Baek等[26]利用熒光激發(fā)-發(fā)射矩陣選擇最佳熒光波段,并結(jié)合熒光圖像來檢測表面開裂的圣女果,辨識準(zhǔn)確率大于98%。因此,本文將嘗試發(fā)現(xiàn)橘芯和砂囊信號差異顯著的光學(xué)條件,確定橘芯相對砂囊的特征光學(xué)信號采集條件,為機器視覺識別判斷提供準(zhǔn)確的前提和基礎(chǔ),并論證利用圖像識別去囊衣帶芯橘瓣的可行性。

1 材料與方法

1.1 試驗原料及樣品制備

試驗原料為溫州無核蜜橘(產(chǎn)自福建漳州、2015年秋采收)。橘瓣罐頭生產(chǎn)中,原料經(jīng)剝皮、分瓣、酸堿處理后即可轉(zhuǎn)化為去囊衣橘瓣。依據(jù)實際生產(chǎn)工藝條件,制訂樣品制備流程(圖1)。取50顆去囊衣帶芯橘瓣作為檢測樣本。

1.2 去囊衣帶芯橘瓣的砂囊與橘芯發(fā)光特性檢測

利用Cary Eclipse熒光分光光度計(VARIAN公司)對50顆去囊衣帶芯橘瓣的砂囊和橘芯進(jìn)行三維光譜掃描,確定橘芯和砂囊的特征峰[27-30]。

儀器參數(shù)設(shè)置:激發(fā)光源為150 W疝弧燈;電壓設(shè)為600 V;信噪比>110;狹縫帶寬激發(fā)狹縫與發(fā)射狹縫均設(shè)為5 nm;響應(yīng)時間設(shè)為自動;掃描范圍設(shè)為激發(fā)波長()為250~700 nm(間隔5nm),發(fā)射波長()為300~800 nm(間隔1 nm);掃描速度均為1 200 nm/min。

2 結(jié)果與分析

2.1 砂囊與橘芯三維熒光光譜分析

對50顆去囊衣帶芯橘瓣的砂囊、橘芯分別進(jìn)行三維熒光光譜掃描后,利用Matlab軟件繪制其平均3D熒光光譜圖見圖2。

圖2中a和b分別為砂囊和橘芯的三維熒光光譜圖。當(dāng)=及=2時,熒光光譜圖出現(xiàn)的瑞利散射峰和倍頻峰會影響圖譜的分析。在干擾峰以外的其他區(qū)域,砂囊和橘芯的熒光光譜圖均存在多處熒光峰,且這些熒光峰存在位置重疊。因此,不能單獨依據(jù)橘芯3D熒光光譜圖中的熒光峰作為殘留橘芯的判斷條件。

為提取去囊衣帶芯橘瓣的特征信號,繪制了橘芯、砂囊熒光強度的差值圖(圖3a)。為避免瑞利散射()和倍頻散射(2)對圖譜分析的影響,根據(jù)三維熒光光譜掃描圖中瑞利散射和倍頻峰的分布規(guī)律,以±10 nm為帶寬,屏蔽=及=2區(qū)域內(nèi)干擾峰信號后,繪制了橘芯、砂囊的熒光強度3D差值圖(圖3b)。

由圖3b可見,橘芯、砂囊對不同激發(fā)光的響應(yīng)在多處存在差值峰,屏蔽倍頻干擾峰后殘留的1、2、3、4號峰所在區(qū)域?qū)崬楸额l干擾峰的尾峰,受倍頻干擾峰影響程度高,不宜作為差異信號選取區(qū)域。屏蔽瑞利散射后殘留的6、7和8號峰具有1、2、3、4號峰相同的區(qū)域特性,同樣不宜作為差異信號選取區(qū)域。故初步判斷,遠(yuǎn)離瑞利散射峰和倍頻干擾峰的差值峰(5、9)所在區(qū)域,是確定去囊衣帶芯橘瓣專屬信號的基礎(chǔ)區(qū)域。

a. 砂囊

a. Gizzard

9號峰處于激發(fā)光波長在480~510 nm發(fā)射光波長在430 nm的區(qū)域,激發(fā)光和發(fā)射光均為可見光。在成像過程中,可見光污染將影響成像效果及分析判斷的準(zhǔn)確度。由圖3b可知,5號峰所在的區(qū)域(激發(fā)光波長350~420 nm 發(fā)射光波長400~700 nm)遠(yuǎn)離瑞利散射區(qū)域;橘芯與砂囊熒光強度存在明顯差異;且激發(fā)光跨越紫外與可見光區(qū)域;可選擇位于紫外波段的光源作為圖像采集光源,避免可見光污染。故選擇5號峰所在區(qū)域為去囊衣帶芯橘瓣專屬信號區(qū)。

2.2 砂囊與橘芯特征波段的選擇

為了進(jìn)一步提高信號采集的抗干擾能力,精選信號采集波段,繪制了5號峰所在區(qū)域(=350~420 nm、=400~700 nm)的熒光強度差值等高圖(圖4)。

按橘芯、砂囊熒光強度差值大小,將圖4劃分為A、B、C和D 4個小區(qū)。在A區(qū)橘芯與砂囊的熒光強度差異最大,但瀕臨瑞利散射峰,易受信號噪聲干擾,不宜作為信號采集區(qū);B區(qū)域為信號差值較小的平緩區(qū)域,亦不宜作為信號采集區(qū);C區(qū)域則呈現(xiàn)為一連綿峰脈,且在=440 nm處有自=370 nm綿延至=390 nm的平緩峰脊,利于進(jìn)行單色成像;相對信號差值尖峰而言,峰脊的存在降低了激發(fā)光源帶寬的要求,方便了激發(fā)光總能量的提升,還能產(chǎn)生相同波長發(fā)射光的強度累積,有助于獲得高亮差圖像;D區(qū)內(nèi)橘芯與砂囊的熒光強度差異最小,不宜作為信號選擇區(qū)域。

a. 原始圖像

a. Original image

b. 去除干擾峰圖

b. Image of removing interference peaks

注:1、2、3、4為倍頻散射的尾峰,6、7、8為瑞利散射的尾峰,5、9為遠(yuǎn)離瑞利散射和倍頻散射的熒光峰。

Note: 1, 2, 3, 4 are the tail peaks of frequency scattering, 6, 7, 8are the tail peaks of Rayleigh scattering, 5 and 9 are the fluorescence peaks that are away from Rayleigh scattering and frequency scattering.

圖3 橘芯、砂囊熒光強度3D差值原始圖及去除干擾峰圖

Fig.3 Original and removing interference peaks 3D fluorescence spectra of difference between orange core and gizzard

由此可見,去囊衣帶芯橘瓣熒光信號的采集條件宜為:激發(fā)光波長370~390 nm、發(fā)射光中心波長440 nm。

2.3 橘芯和砂囊熒光特性差異分析

將 50顆去囊衣帶芯橘瓣的砂囊和橘芯在370 nm紫外光激發(fā)下,400~700 nm處的熒光強度值分別從其三維熒光光譜中提取出來,并繪制兩者的二維熒光光譜圖(圖5)。

由圖5可知,在370 nm紫外光激發(fā)下,橘芯與砂囊均在440 nm處有熒光峰,但是熒光強度存在差異。在370 nm紫外光激發(fā)下,50顆去囊衣帶芯橘瓣橘芯與砂囊的熒光強度分布的中位數(shù)和四分位數(shù)如表1所示。

表1 橘芯與砂囊440 nm處熒光強度分布的中位數(shù)和四分位數(shù)

由表1可知,橘芯與砂囊在440 nm處熒光強度分布的中位數(shù)位置、四分位數(shù)位置均不同,表明兩者在370 nm紫外光激發(fā)下,在440 nm處熒光強度值存在明顯差異。以橘芯在440 nm處熒光強度的下四分位數(shù)(1)與砂囊在440 nm處熒光強度的上四分位數(shù)(3)的平均值作為臨界值(),熒光強度大于該臨界值的判斷為橘芯,熒光強度小于該臨界值的判斷為砂囊。由表2可知50顆橘芯中有6顆被判斷為砂囊,分類準(zhǔn)確率為88%;50顆砂囊中有9顆被判斷為橘芯,分類準(zhǔn)確率為82%;橘芯與砂囊平均分類準(zhǔn)確率為85%,因此,利用370 nm紫外光激發(fā)下,橘芯與砂囊在440 nm處熒光強度的差異可以將兩者有效區(qū)分。

表2 砂囊與橘芯依據(jù)Q臨界的分類表

2.4帶芯橘瓣的圖像分選

依據(jù)橘芯與砂囊熒光強度差異最大化條件,配置去囊衣橘瓣成像系統(tǒng)(圖6),該系統(tǒng)由暗箱、單色光源(2臺LED射燈,中心波長370±2 nm,功率30 w,光錐角30°)、CCD相機(Image soft G445彩色相機130萬像素)、濾光片(440±5 nm)、計算機和背景板組成。

在自然光、(370±2)nm紫外光激發(fā)和(370±2) nm紫外光激發(fā)加(440±5)nm濾光3種條件下,分別對去囊衣帶芯橘瓣和無芯橘瓣成像。

將采集到的bmp格式的彩色圖像,利用IN Vision Assistant圖像處理軟件依次進(jìn)行掩膜處理(掩膜是由0和1組成的一個二進(jìn)制圖像,在圖像處理中可用來提取感興趣區(qū)域,即用該二進(jìn)制圖像與待處理圖像相乘,得到感興趣區(qū)圖像,感興趣區(qū)內(nèi)圖像值保持不變,而區(qū)外圖像值都為0)、灰度圖像提?。▽GB圖像進(jìn)行B分量提取,因為在紫外激發(fā)下橘芯發(fā)出的熒光在440 nm附近,提取B分量轉(zhuǎn)化的灰度圖像亮度最高)、二值處理(二值化閾值為50)和形態(tài)學(xué)處理(高級形態(tài)學(xué)處理,去掉較小的目標(biāo),腐蝕數(shù)設(shè)定為2)[31-34],其結(jié)果見圖7。

由圖7a可知,去囊衣帶芯橘瓣在紫外光激發(fā)經(jīng)濾光后,橘芯部位出現(xiàn)藍(lán)色熒光亮斑(紫外光加濾光片),將其轉(zhuǎn)化成灰度圖像后進(jìn)行二值處理,橘芯部分基本可與砂囊部分區(qū)分,對二值化圖像進(jìn)行形態(tài)學(xué)處理,去除砂囊表面反光等信號噪音后,可觀察到橘芯部位亮斑(形態(tài)學(xué)處理圖像),將紫外光加濾光片形態(tài)學(xué)處理后的圖像與灰度圖像經(jīng)過邏輯加運算進(jìn)行疊加(邏輯運算圖像),可判斷提取出的特征區(qū)域是否為橘芯部位。

由圖7b可知,去囊衣無芯橘瓣在紫外光激發(fā)、濾光后的圖像中未出現(xiàn)熒光亮斑,將其轉(zhuǎn)化成灰度圖像后進(jìn)行二值處理和形態(tài)學(xué)處理,去除砂囊表面反光等信號噪音后,未提取出任何信息。

自然光Ambient light紫外光UV-light 紫外光加濾光片UV-light and optical filter二值化圖像Binary image形態(tài)學(xué)處理圖像Image of morphological processing邏輯運算圖像Logic operation image a. 帶芯橘瓣a. Mandarin segment with core 自然光Ambient light紫外光UV-light 紫外光加濾光片UV-light and optical filter二值化圖像Binary image形態(tài)學(xué)處理圖像Image of morphological processing邏輯運算圖像Logic operation image b. 無芯橘瓣b. Mandarin segment without core

據(jù)此可見,以(370±2)nm 激發(fā)進(jìn)行單色(440±5)nm成像后,利用機器視覺進(jìn)行分析、判別,可為剔除去囊衣橘瓣中的帶芯橘瓣提供有效的執(zhí)行信號。

3 結(jié) 論

為實現(xiàn)去囊衣帶芯橘瓣的機器分選,本文依據(jù)去囊衣帶芯橘瓣上橘芯、砂囊的熒光特性差異,判定了去囊衣帶芯橘瓣上橘芯、砂囊的熒光特性差異最大化條件;評估了利用熒光特性差異區(qū)分橘芯與砂囊的準(zhǔn)確率;并利用試驗驗證了紫外熒光成像進(jìn)行機器視覺識別去囊衣帶芯橘瓣的可行性,并得到如下結(jié)論:

1)去囊衣帶芯橘瓣上橘芯與砂囊在=370~390 nm、=440 nm區(qū)域內(nèi)熒光強度差異較大。

2)在激發(fā)波長為370 nm時,去囊衣帶芯橘瓣的橘芯與砂囊在中心波長440 nm處的熒光強度存在明顯差異,且以橘芯在440 nm處熒光強度的下四分位數(shù)(Q1)與砂囊在440 nm處熒光強度的上四分位數(shù)(Q3)的平均值作為分類標(biāo)準(zhǔn),去囊衣帶芯橘瓣分類準(zhǔn)確率可達(dá)85%。

3)以(370±2)nm為激發(fā)光源,對去囊衣橘瓣進(jìn)行濾光(440±5)nm成像后采用IN Vision Assistant進(jìn)行圖像處理,可以有效識別出去囊衣帶芯橘瓣。

[1] 汪薇,趙文紅,白衛(wèi)東. 我國柑橘加工中的技術(shù)難題[J].食品科技,2009,34(11):72-75.

Wang Wei, Zhao Wenhong, Bai Weidong. Technical problems of citrus processing in China[J]. Food Science And Technology, 2009, 34(11): 72-75. (in Chinese with English abstract)

[2] 單楊. 現(xiàn)代柑橘工業(yè)[M]. 北京:化學(xué)工業(yè)出版社,2013.

[3] 鄧秀新,彭抒昂. 柑橘學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2013.

[4] The Codex Alimentarius Commission. Standard for Certain Canned Citrus Fruits: CODEX STAN 254-2007[S].2007.

[5] 鄒英寧,魯蕾. 溫州蜜柑果實不同部位抗氧化性能的比較[J]. 貴州農(nóng)業(yè)科學(xué)2010,38(10):169-170.

Zou Yingning, Lu Lei.Oxidation resistance of different fruit parts of satsuma mandarin[J]. Guizhou Agricultural Sciences, 2010, 38(10): 169-170. (in Chinese with English abstract)

[6] 單楊,劉偉,李高陽. 柑橘工業(yè)國際標(biāo)準(zhǔn)體系建設(shè)研究[J].中國食品學(xué)報,2014,34(6):2-8.

Shan Yang, Liu Wei, Li Gaoyang. Research on construction of the citrus industry international standard systems[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 34(6): 2-8. (in Chinese with English abstract)

[7] 鄧立苗,杜宏偉,徐艷,等. 基于機器視覺的馬鈴薯智能分選方法與實現(xiàn)[J]. 中國農(nóng)機化學(xué)報,2015,36(5):145-150.

Deng Limiao, Du Hongwei, Xu Yan, et al. Implementation of intelligent potato grading method based on computer vision[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 145-150. (in Chinese with English abstract)

[8] 趙杰文,劉劍華,陳全勝,等. 利用高光譜圖像技術(shù)檢測水果輕微損傷[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(1):106-109.

Zhao Jiewen, Liu Jianhua, Chen Quansheng, et al. Detecting subtle bruises on fruits with hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 106-109. (in Chinese with English abstract)

[9] Blasco J, Aleixos N, Moltó E. Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm[J]. Journal of Food Engineering, 2007, 81(3): 535-543.

[10] Mehl P M, Chen Y R, Kim M S, et al. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations.[J]. Journal of Food Engineering, 2004, 61(1): 67-81.

[11] Throop J A, Aneshansley D J, Anger W C, et al. Quality evaluation of apples based on surface defects: development of an automated inspection system[J]. Postharvest Biology & Technology, 2005, 36(3): 281-290.

[12] 任磊. 基于機器視覺的脫囊衣橘片分揀裝置研究[D]. 金華:浙江師范大學(xué),2015.

Ren Lei. Research on Peeled Mandarin Segments Sorting Device Based on Machine Vision[D]. Jinhua: Zhejiang Normal University, 2015. (in Chinese with English abstract)

[13] BlascoJ, Aleixos N, Cubero S, et al. Automatic sorting of satsuma (citrus unshiu) segments using computer vision and morphological features[J]. Computers and Electronics in Agriculture, 2009, 66(1): 1-8.

[14] Spielmanns R, Spielmanns J, Damerow L, et al. Non-destructive determination of surface features of pomegranate fruit[J]. Acta Horticulturae, 2016(1137): 247-250.

[15] Bennedsen B S, Peterson D L, Amy Tabb. Identifying defects in images of rotating apples[J]. Computers and Electronics in Agriculture, 2005, 48(2): 92-102.

[16] Kleynen O, Leemans V, Destain M F. Development of a multi-spectral vision system for the detection of defects on apples.[J]. Journal of Food Engineering, 2005, 69(1): 41-49.

[17] Beers R V, Aernouts B, Gutiérrez L L, et al. Optimal illumination-detection distance and detector size for predicting braeburn, apple maturity from Vis/NIR laser reflectance measurements[J]. Food and Bioprocess Technology, 2015, 8(10): 2123-2136.

[18] 侯瑞鋒,黃嵐,王忠義,等. 農(nóng)產(chǎn)品組織中光輸運規(guī)律的初步研究[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(9):12-15.

Hou Ruifeng, Huang Lan, Wang Zhongyi, et al. Preliminary study of the light migration in farm product tissue[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 12-15. (in Chinese with English abstract)

[19] 張立彬,胡海根,計時鳴,等. 果蔬產(chǎn)品品質(zhì)無損檢測技術(shù)的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(4):176-180.

Zhang Libin, Hu Haigen, Ji Shiming, et al. Review of non-destructive quality evaluation technologyfor fruit and vegetable products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(4): 176-180. (in Chinese with English abstract)

[20] Vijayarekha K. Machine vision application for food quality: A review[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(24): 5453-5458.

[21] Albrecht R, Verrecchia E, Pfeifer H R. The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations.[J]. Talanta, 2015, 134: 453-459.

[22] 孫躍宗,程存歸,許茂成,等. 橘絡(luò)及其偽品的紅外光譜鑒別[J]. 中藥材,2002,25(11):783-786.

[23] Trong N N D, Rizzolo A, Herremans E, et al. Optical properties–microstructure–texture relationships of dried apple slices: Spatially resolved diffuse reflectance spectroscopy as a novel technique for analysis and process control[J]. Innovative Food Science & Emerging Technologies, 2014, 24(4): 145-153.

[24] 石舒寧,譚佐軍,謝靜,等. 果皮厚度對水果組織中光傳輸特性的影響[J]. 光譜學(xué)與光譜分析,2015,35(7):1817-1823.

Shi Shuning, Tan Zuojun, Xie Jing, et al. The effects of skin thickness on optical transmission characteristics in fruits tissues[J]. Spectroscopy and Spectral Analysis, 2015, 35(7): 1817-1823. (in Chinese with English abstract)

[25] 王葉群,楊增玲,張紹英,等. 用于污染黃曲霉毒素花生分選的熒光信號研究[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(1):187-192.

Wang Yequn, Yang Zengling, Zhang Shaoying, et al. Fluorescent signal characteristics for sorting of peanut contaminated by aflatoxion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 187-192. (in Chinese with English abstract)

[26] Baek I S, Kim M S, Lee H, et al. Optimal fluorescence waveband determination for detecting defective cherry tomatoes using a fluorescence excitation-emission matrix.[J]. Sensors, 2014, 14(11): 21483-21496.

[27] Qin J, Lu R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging[J]. 2007, 61(4): 388-396.

[28] Fernández-Romero M L, Clark J M, Collins C D, et al. Evaluation of optical techniques for characterising soil organic matter quality in agricultural soils[J]. Soil & Tillage Research, 2016, 155: 450-460.

[29] Hu D, Fu X P, Wang A C, et al. Measurement methods for optical absorption and scattering properties of fruits and vegetables[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2015, 58(5): 1387-1401.

[30] 斯蒂格,尤里奇,威德曼.機器視覺算法與應(yīng)用[M]. 北京:清華大學(xué)出版社,2008.

[31] 郭永豪. 蘋果特征圖像提取與分類算法的研究與應(yīng)用[D].重慶:重慶大學(xué),2010.

Guo Yonghao. Research and Application on Apple Image Feature Extraction and Classification Algorithms[D]. Chongqing: University Chongqing China, 2010. (in Chinese with English abstract)

[32] 趙娟,彭彥昆,Sagar Dhakal,等. 基于機器視覺的蘋果外觀缺陷在線檢測[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(增刊1):260-263.

Zhao Juan, Peng Yankun, Sagar Dhakal, et al. On-line detection of apple surface defect based on image processing method[J].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 260-263. (in Chinese with English abstract)

[33] 任永新,單忠德,張靜,等. 計算機視覺技術(shù)在水果品質(zhì)檢測中的研究進(jìn)展[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2012,14(1):98-103.

Ren Yongxin, Shan Zhongde, Zhang Jing, et al. Research progress on computer vision technique in fruit quality inspection[J]. Journal of Agricultural Science and Technology, 2012, 14(1): 98-103. (in Chinese with English abstract)

[34] Sardar H. Fruit quality estimation by color for grading[J]. International Journal of Modeling & Optimization, 2014, 4(1): 38-42.

Sorting of peeled mandarin segments with orange core based on characteristic fluorescent signal

Wang Yequn1, Yang Zengling1, Ren Weidong2, Liu Ting1, Yang Jie1, Zhang Shaoying1※

(1.100083,; 2.,100176,)

The peeled mandarin segment with orange core (central column residue) is one kind of defective mandarin segment during the production of canned mandarin. So it is necessary to remove the defective mandarin segments according to the requirement of quality before canning. Due to the differences of physical and chemical properties between orange core and orange gizzard, the fluorescence spectra of orange core and orange gizzard are different theoretically. For the purpose of offering direct and accurate signals to the machine to identify the peeled mandarin segments with orange cores, in this study, the peeled mandarin segments were taken as the samples, and the 3D (three-dimensional) fluorescence spectra of orange core and orange gizzard were determined by Cary Eclipse fluorescent spectrophotometer (excitation wavelength in the range of 250-700 nm, 5 nm interval; emission wavelength in the range of 300-800 nm, 1 nm interval; discharge voltage of 600 V, scanning speed of 1 200 nm/min). The differences of fluorescence characteristics of orange core and orange gizzard were found according to the 3D fluorescence spectra after removing Rayleigh and Raman scatter. In order to verify the differences further, the fluorescence spectra of orange core and orange gizzard of 50 peeled mandarin segments were determined by Cary Eclipse fluorescent spectrophotometer (at an excitation wavelength of 370 nm, an emission wavelength in the range of 400-700 nm with the interval of 1 nm, a discharge voltage of 600 V, a scanning speed of 1 200 nm/min). The differences of fluorescence intensities at 440 nm for orange core and orange gizzard were evaluated by means of drawing the box-plots of the fluorescence intensity at 440 nm. The accuracy rate of the discrimination of orange core and orange gizzard was analyzed, and the average value between fluorescence intensity of orange core at the lower quartile and that of orange gizzard at the upper quartile at 440 nm was used as classification criterion. The camera obscura was taken as a platform, and 2 sets of ultraviolet light sources with center wavelength of (370±2 nm) were selected asimaging light sources. The fluorescence images of the mandarin segments with and without orange core were taken using a monochrome fluorescence image acquisition system, which was set up by putting a band-pass filter (440±5 nm) in the front of Image soft G445 camera objective. The grayscale images were obtained by extracting B color component from RGB images, and then the binary images were generated by applying the threshold values, with the IN Vision Assistant software. The results showed that there were significant differences between orange core and orange gizzard of peeled mandarin segments at an excitation wavelength of 370-390 nm and an emission wavelength of 440 nm. According to the classification criterion the discrimination accuracy of orange core and orange gizzard was 85%. Meanwhile, using the fluorescence image acquisition system, the monochrome images of the mandarin segments with and without orange core were obtained respectively.There was significant difference between them, and thus the mandarin segments with orange core and the mandarin segments without orange core could be distinguished effectively. Overall, the study indicates that the fluorescence signal at an excitation wavelength of 370-390 nm and an emission wavelength of 440 nm can be the exclusive light signal of the orange core for on-line, nondestructive sorting, which is help to eliminate the peeled mandarin segments with orange core.

image processing; spectrum; fluorescence; peeled mandarin segments; orange core; orange gizzard; sorting

10.11975/j.issn.1002-6819.2017.09.039

TP391.44

A

1002-6819(2017)-09-0296-06

2016-11-29

2017-04-13

國家重點研發(fā)計劃(2016YFD0400305)

王葉群,女,陜西人,博士生,主要從事農(nóng)產(chǎn)品檢測與分選研究。北京 中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:yequnwang@126.com

張紹英,男,河北人,教授,博士生導(dǎo)師,主要從事農(nóng)產(chǎn)品加工與裝備研究。北京 中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:cauzsy@cau.edu.cn

王葉群,楊增玲,任衛(wèi)東,劉 婷,楊 杰,張紹英. 基于特征熒光信號的去囊衣帶芯橘瓣分選[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):296-301. doi:10.11975/j.issn.1002-6819.2017.09.039 http://www.tcsae.org

Wang Yequn, Yang Zengling, Ren Weidong, Liu Ting, Yang Jie, Zhang Shaoying. Sorting of peeled mandarin segments with orange core based on characteristic fluorescent signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 296-301. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.039 http://www.tcsae.org

猜你喜歡
橘瓣紫外光熒光
干式熒光發(fā)光法在HBV感染診療中應(yīng)用價值
成功不大也不遠(yuǎn)
北方人(2021年1期)2021-04-02 10:14:55
成功不大也不遠(yuǎn)
成功不大也不遠(yuǎn)
紫外光分解銀硫代硫酸鹽絡(luò)合物的研究
四川冶金(2019年5期)2019-12-23 09:04:48
高熒光量子產(chǎn)率BODIPY衍生物的熒光性能研究
橘瓣暖情
紫外光交聯(lián)膨脹型無鹵阻燃聚烯烴材料的研究
電線電纜(2016年5期)2016-02-27 09:02:08
紫外光固化模塑成型性研究
中國塑料(2014年1期)2014-10-17 02:46:36
紫外光照射對聚丙烯核孔膜蝕刻的影響
广宁县| 兰州市| 盘锦市| 鹤岗市| 庄浪县| 织金县| 汶上县| 馆陶县| 湖口县| 珠海市| 石屏县| 伽师县| 昂仁县| 和硕县| 扶风县| 梁河县| 大新县| 顺昌县| 南靖县| 柘城县| 湖口县| 泽库县| 炉霍县| 青冈县| 昌黎县| 施甸县| 太仓市| 雅江县| 新巴尔虎右旗| 准格尔旗| 泸西县| 定远县| 揭东县| 类乌齐县| 彰化县| 昌吉市| 伽师县| 贵南县| 炎陵县| 平潭县| 阿克陶县|