常澤輝,賈檸澤,侯 靜,鄭宏飛,李文龍,劉 洋
?
聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置光熱性能
常澤輝1,2,賈檸澤1,侯 靜3,鄭宏飛4,李文龍1,劉 洋1
(1. 內(nèi)蒙古工業(yè)大學(xué)能源與動(dòng)力工程學(xué)院,呼和浩特 010051; 2. 內(nèi)蒙古工業(yè)大學(xué)風(fēng)能太陽(yáng)能利用技術(shù)省部教育部重點(diǎn)實(shí)驗(yàn)室,呼和浩特 010051; 3. 內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特 010051; 4. 北京理工大學(xué)機(jī)械與車(chē)輛學(xué)院,北京 100081)
該文針對(duì)傳統(tǒng)設(shè)施農(nóng)業(yè)土壤滅蟲(chóng)除菌過(guò)程使用化學(xué)消毒法所帶來(lái)的環(huán)境污染和農(nóng)作物藥物殘留等問(wèn)題,提出了新型聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置,利用太陽(yáng)能聚光集熱技術(shù)加熱空氣進(jìn)而對(duì)農(nóng)業(yè)種植土壤進(jìn)行高溫消毒,同時(shí)將土壤所含有機(jī)物加熱揮發(fā),實(shí)現(xiàn)對(duì)農(nóng)業(yè)種植土壤的修復(fù),同時(shí)處理后的熱土壤對(duì)進(jìn)料空氣進(jìn)行預(yù)熱,提高了裝置的熱能利用效率。該文介紹了聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置的工作原理,利用光學(xué)仿真軟件對(duì)裝置中復(fù)合多曲面聚光器的光學(xué)效率進(jìn)行了計(jì)算,基于光學(xué)計(jì)算結(jié)果,對(duì)聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置的光熱性能進(jìn)行了室外試驗(yàn),測(cè)試了裝置的空氣加熱溫度和集熱效率。結(jié)果表明,用于土壤滅蟲(chóng)除菌的熱空氣在聚光比為3.6,流動(dòng)速度為1.075 m/s時(shí),裝置的集熱效率最高,加熱后空氣溫度最高達(dá)到了88 ℃左右,集熱效率為65%左右,能夠滿(mǎn)足農(nóng)業(yè)土壤滅蟲(chóng)除菌所需的溫度需求。
土壤;滅菌;太陽(yáng)能集光器;聚光;太陽(yáng)能;光熱轉(zhuǎn)化效率
設(shè)施農(nóng)業(yè)內(nèi)作物長(zhǎng)期在高溫、潮濕的微環(huán)境下生長(zhǎng),這為土壤中病原菌和害蟲(chóng)的繁殖、生長(zhǎng)提供了適宜的條件,加之設(shè)施農(nóng)業(yè)發(fā)展迅速、多年重茬連作,使得土壤種植環(huán)境不斷惡化,病蟲(chóng)害逐年累積,導(dǎo)致土傳病蟲(chóng)害連年爆發(fā),成為了制約設(shè)施農(nóng)業(yè)可持續(xù)發(fā)展的瓶頸[1]。常規(guī)的化學(xué)防治手段對(duì)環(huán)境和人員毒副作用大,農(nóng)業(yè)手段可行性不高[2]。隨著溴甲烷的禁用和對(duì)無(wú)公害綠色蔬菜的需求日益增加,物理土壤消毒技術(shù)受到了國(guó)內(nèi)外研究學(xué)者的關(guān)注[3-13]。Gay等[14-15]設(shè)計(jì)、建造了由履帶車(chē)輛牽引的土壤蒸汽滅蟲(chóng)裝置,分析了裝置中非常規(guī)蒸汽噴射系統(tǒng)的性能,測(cè)試了不同土壤深度溫度隨裝置運(yùn)行時(shí)間變化的趨勢(shì)。張燕麗等[16]對(duì)覆膜加麥麩太陽(yáng)能消毒技術(shù)對(duì)土壤溫度的影響進(jìn)行了試驗(yàn)研究,結(jié)果表明試驗(yàn)土壤地下30 cm處溫度可以保持在44.8 ℃,有效降低番茄枯萎病的發(fā)病率。杜蕙等[17]研究了太陽(yáng)能消毒時(shí)覆膜與添加有機(jī)物對(duì)土壤溫度的影響機(jī)理,試驗(yàn)中,0~20 cm深度內(nèi)土壤最高溫度可以達(dá)到40 ℃,顯著增大了土壤日溫差,使得對(duì)病害的控制效果得到了提升。吳雪芬等[18]進(jìn)行了夏季土壤高溫消毒、太陽(yáng)能日曬消毒、石灰消毒和生物技術(shù)等土壤消毒技術(shù)對(duì)比試驗(yàn),證明無(wú)公害土壤消毒技術(shù)對(duì)土壤病蟲(chóng)害控制作用明顯。
現(xiàn)有的土壤物理滅殺技術(shù)主要是利用高溫工作介質(zhì)或電流殺死害蟲(chóng)、致病菌和雜草種子,隨著滅殺效果的提高,滅殺過(guò)程所需要消耗的化石能源需求量也很高[19-21]。如果能夠減少化石能源的使用,利用太陽(yáng)能集熱技術(shù)對(duì)設(shè)施農(nóng)業(yè)種植土壤進(jìn)行高溫處理[22-26],同時(shí)使得土壤中有機(jī)物受熱揮發(fā)排出土壤作進(jìn)一步處理,有效消滅初侵染源,促進(jìn)土壤形成“生物真空”,然后接種有益微生物,進(jìn)而提高設(shè)施農(nóng)業(yè)農(nóng)產(chǎn)品品質(zhì)[27]。那么對(duì)此技術(shù)開(kāi)展研究的意義就不言而喻了。
鑒于此,本文在前期研究基礎(chǔ)上,結(jié)合設(shè)施農(nóng)業(yè)土壤滅蟲(chóng)除菌的溫度要求,設(shè)計(jì)了一種聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置。其具體結(jié)構(gòu)及工作原理如圖1所示。
其工作原理是空氣經(jīng)引風(fēng)機(jī)抽入到位于槽式復(fù)合多曲面太陽(yáng)能聚光器焦斑位置的雙層玻璃真空管內(nèi)管狀黑色吸收體中,太陽(yáng)光經(jīng)聚光器匯集形成高密度光能,對(duì)吸收體內(nèi)的流動(dòng)空氣進(jìn)行加熱,空氣將在吸收體遠(yuǎn)離引風(fēng)機(jī)端口處溫度達(dá)到最高,然后進(jìn)入到帶保溫層的熱空氣腔中,加熱第一級(jí)帶褶皺的金屬換熱板上的土壤,對(duì)土壤中的致病菌、害蟲(chóng)和雜草種子進(jìn)行高溫滅殺,隨后空氣經(jīng)蘑菇型通風(fēng)道進(jìn)入到尾氣回流通道,蘑菇型通風(fēng)道可以將土壤和熱空氣分開(kāi)流通,避免相互混合接觸,處理后的土壤在重力和自振彈簧振動(dòng)作用下沿?fù)Q熱板下滑到第二級(jí)帶褶皺的金屬換熱板上,然后繼續(xù)下滑到滑送帶排出裝置,從第二級(jí)帶褶皺的金屬換熱板到離開(kāi)裝置過(guò)程中,高溫土壤與經(jīng)蘑菇型通風(fēng)道進(jìn)入的新鮮空氣換熱,實(shí)現(xiàn)裝置的熱土壤回?zé)峁δ?,土壤中的有機(jī)揮發(fā)物受熱氣化后從裝置上方排氣管排出并進(jìn)行后期進(jìn)一步無(wú)害化處理。裝置中利用太陽(yáng)能消毒抑制農(nóng)業(yè)土壤病蟲(chóng)害的基礎(chǔ)是多數(shù)植物病菌和有害生物是中溫的,它們?cè)跍囟雀哂?2 ℃以上不能生長(zhǎng),可被高溫直接或間接殺死,而耐高溫和濕熱的有益土壤微生物通常能存活下來(lái)[28]。
本裝置具有如下特點(diǎn):1)裝置利用太陽(yáng)能聚光加熱的流動(dòng)空氣對(duì)土壤中的致病菌、害蟲(chóng)和雜草種子等進(jìn)行物理滅殺及揮發(fā)性有機(jī)物的分離,不需要消耗化石能源,不對(duì)土壤造成二次污染,提高了農(nóng)產(chǎn)品品質(zhì);2)裝置對(duì)換熱后的尾氣進(jìn)行了再次循環(huán)重復(fù)利用,同時(shí)處理后的高溫土壤對(duì)進(jìn)料空氣進(jìn)行了預(yù)熱,提高了裝置的熱能利用效率;3)裝置利用土壤的重力和對(duì)金屬換熱板端頭安裝彈簧的沖擊產(chǎn)生的自振作用,實(shí)現(xiàn)了土壤的半自動(dòng)滑送和傳輸;4)所采用的槽式復(fù)合多曲面太陽(yáng)能聚光器具有對(duì)跟蹤精度要求低、接收體位于聚光器內(nèi)部、可吸收部分散射光等優(yōu)點(diǎn)。
聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置光熱性能測(cè)試試驗(yàn)系統(tǒng)實(shí)物如圖2所示,測(cè)試系統(tǒng)包括槽式復(fù)合多曲面聚光系統(tǒng),空氣流速測(cè)試系統(tǒng)、空氣溫度檢測(cè)系統(tǒng)及太陽(yáng)能輻射觀測(cè)站。空氣流速測(cè)試系統(tǒng)的探頭安裝在引風(fēng)機(jī)出風(fēng)口處,并在管狀黑色吸收體進(jìn)、出口處沿徑向?qū)ΨQ(chēng)軸等間距放置3個(gè)K型熱電偶,環(huán)境溫度和太陽(yáng)輻照度由太陽(yáng)輻射觀測(cè)站實(shí)時(shí)采集。
聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置通過(guò)復(fù)合多曲面聚光器將太陽(yáng)光聚焦到雙層玻璃真空管內(nèi),被涂有吸收率高、反射率低的吸收性涂層的直通管式黑色吸收體吸收,進(jìn)而加熱其內(nèi)部的空氣。在光熱轉(zhuǎn)化過(guò)程中,由于雙層玻璃真空管內(nèi)抽成真空,則吸收體與環(huán)境的輻射換熱和對(duì)流換熱較少,計(jì)算時(shí)忽略這部分熱量損失。
測(cè)試用直通管式黑色接收體吸收的經(jīng)槽式聚光器匯聚的太陽(yáng)輻射能為
式中I是槽式聚光器入光口所接收到的太陽(yáng)輻照度,W/m2;ape是槽式聚光器的入光口面積,m2;opt是槽式聚光器的光學(xué)效率。
直通管式黑色接收體進(jìn)出口的空氣平均溫度可由下式計(jì)算得到
式中T表示3個(gè)K型熱電偶所測(cè)溫度值,℃。
則直通管式黑色接收體的集熱量為
式中是直通管式黑色接收體內(nèi)空氣的密度,kg/m3,是管式接收體截面積,m2,V是管式接受體內(nèi)空氣流速,m/s,C是管式黑色吸收體內(nèi)流動(dòng)空氣的定壓比熱容,kJ/(kg·K),in、out是管式黑色吸收體進(jìn)出口空氣溫度,K。
則裝置的光熱轉(zhuǎn)換效率為
聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置中對(duì)太陽(yáng)能進(jìn)行匯聚的聚光器采用的是槽式復(fù)合多曲面聚光器,大大提高了太陽(yáng)光能流密度[29-30],保證所加熱空氣達(dá)到滅蟲(chóng)除菌需要的溫度范圍(50~90 ℃)。它是由2條拋物線(xiàn)經(jīng)過(guò)旋轉(zhuǎn)和平移后,再與第3條拋物線(xiàn)經(jīng)直線(xiàn)連接而成,沿對(duì)稱(chēng)軸平移后形成的。利用光學(xué)仿真計(jì)算軟件LightTools對(duì)槽式復(fù)合多曲面聚光器的聚光性能進(jìn)行計(jì)算、分析,對(duì)于后續(xù)裝置的跟蹤精度及光熱性能測(cè)試具有參考和指導(dǎo)意義。
槽式復(fù)合多曲面聚光器的左、右對(duì)稱(chēng)拋物線(xiàn)方程分別為
(6)
底部拋物線(xiàn)方程為
當(dāng)光線(xiàn)正入射時(shí),聚光器內(nèi)部光線(xiàn)追跡如圖3所示。直通管式接收體表面能流密度計(jì)算結(jié)果及分布如圖4所示。
設(shè)定直通管式接收體的半徑為22 mm,入光口寬度為500 mm,豎直反射面高度為20 mm,反射面光學(xué)反射率為0.8,入射光線(xiàn)設(shè)定為柵格匯聚光束,張角為太陽(yáng)光線(xiàn)張角(0.53°),模擬光束為100×100條,光線(xiàn)輻射強(qiáng)度為700 W/m2。
從圖3可知,正入射到槽式復(fù)合多曲面聚光器的光線(xiàn)在理想狀態(tài)下會(huì)匯聚到直通管式接收體表面。東西放置的聚光器在運(yùn)行過(guò)程中會(huì)受到太陽(yáng)高度角和太陽(yáng)方位角的影響,其影響程度決定了裝置對(duì)跟蹤系統(tǒng)精度的要求,進(jìn)而會(huì)影響到裝置的滅蟲(chóng)除菌效果和經(jīng)濟(jì)性。為了便于研究,定義聚光效率為僅考慮入射光的逸出或被遮擋所造成的能量損失,不考慮光的衰減時(shí),直通管式接收體表面接收到的光線(xiàn)輻射強(qiáng)度與入射光線(xiàn)輻射強(qiáng)度之比。光線(xiàn)接受率為接收體表面接收到的光線(xiàn)數(shù)量與通過(guò)入光口的入射光線(xiàn)數(shù)量之比。裝置中使用的槽式復(fù)合多曲面聚光器的聚光效率、管式接收體表面光線(xiàn)接受率隨太陽(yáng)高度角跟蹤精度(徑向入射偏角)變化曲線(xiàn)如圖5所示。
圖5曲線(xiàn)變化規(guī)律顯示,槽式聚光器聚光效率、接收體表面光線(xiàn)接受率隨徑向入射偏角的增加而減小。在太陽(yáng)正入射時(shí),接收體表面光線(xiàn)接受率為99.66%,聚光效率為81.48%,當(dāng)徑向入射偏角增加為3°時(shí),光線(xiàn)接受率仍為90.57%。隨著入射偏角繼續(xù)增加,光線(xiàn)接受率、聚光效率大體呈直線(xiàn)下降;當(dāng)徑向入射偏角增加為7°時(shí),接收體表面光線(xiàn)接受率為66.20%。
當(dāng)太陽(yáng)方位角跟蹤精度(軸向入射偏角)變化時(shí),聚光器聚光效率和接收體表面光線(xiàn)接受率變化趨勢(shì)如圖6所示。
從圖6中可以看出,槽式聚光器的聚光效率、接收體表面光線(xiàn)接受率隨軸向入射偏角的增加而呈直線(xiàn)下降趨勢(shì)。當(dāng)軸向入射偏角增大為2°時(shí),接收體表面光線(xiàn)接受率減小為89.29%,聚光效率減小為73.07%,比正入射時(shí)分別減小了11.61%和11.50%。
4.1 試驗(yàn)測(cè)試系統(tǒng)及設(shè)備參數(shù)
試驗(yàn)中,工作介質(zhì)空氣在直通管式接收體進(jìn)出口溫度用多路溫度采集儀(TYD-WD,北京天裕德科技有限公司,北京)實(shí)時(shí)記錄,空氣在直通管式接收體內(nèi)的流動(dòng)速度由數(shù)字風(fēng)速儀(GM8902,深圳市若谷科技有限公司,深圳)實(shí)時(shí)采集,管式接收體內(nèi)空氣由引風(fēng)機(jī)(XP-311,惠州市盛鑫科技有限公司,惠州)驅(qū)動(dòng),用太陽(yáng)能發(fā)電監(jiān)測(cè)站系統(tǒng)(TRM-FD1,錦州陽(yáng)光氣象科技有限公司,錦州)對(duì)試驗(yàn)地太陽(yáng)輻照度和環(huán)境溫度進(jìn)行在線(xiàn)監(jiān)測(cè)。測(cè)量空氣溫度所用熱電偶為K型熱電偶,測(cè)量精度為±1 ℃。
試驗(yàn)測(cè)試前,對(duì)數(shù)字風(fēng)速儀、K型熱電偶、太陽(yáng)總輻射表、測(cè)溫儀等進(jìn)行測(cè)試精度校核。裝置中所使用的槽式復(fù)合多曲面聚光器為自行制作,尺寸規(guī)格完全與仿真計(jì)算模型一致,反射面貼有反射率為80%的鋁板,可以實(shí)現(xiàn)對(duì)太陽(yáng)雙軸跟蹤。雙層真空玻璃集熱管為定做型號(hào),長(zhǎng)度為1 000 mm,直通管式接收體內(nèi)徑為40 mm,壁厚為2 mm。
4.2 測(cè)試方法
設(shè)施農(nóng)業(yè)種植用土溫度在冬季為全年最低,如果聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置在冬季的光熱性能能夠滿(mǎn)足設(shè)施農(nóng)業(yè)的滅殺要求,則其全年的運(yùn)行性能就能滿(mǎn)足設(shè)施農(nóng)業(yè)滅蟲(chóng)除菌的溫度要求。試驗(yàn)中,對(duì)不同空氣流速條件下,空氣的溫升特性進(jìn)行對(duì)比試驗(yàn)研究?;谇懊嫜b置光學(xué)仿真計(jì)算結(jié)果,測(cè)試在太陽(yáng)高度角跟蹤精度為5°情況下,最佳空氣流速工況時(shí)裝置的瞬時(shí)熱效率變化曲線(xiàn)。試驗(yàn)測(cè)試時(shí)間選定在冬季,地點(diǎn)選擇在內(nèi)蒙古呼和浩特市(北緯40°50′,東經(jīng)111°42′)。在管式接收體進(jìn)出口端面等距放置3個(gè)K型熱電偶,其平均值為進(jìn)出口空氣的有效溫度值。采集的試驗(yàn)數(shù)據(jù)包括太陽(yáng)總輻射值I,空氣流速V,環(huán)境溫度T,空氣進(jìn)口溫度in,空氣出口溫度out,太陽(yáng)直接輻照度E。
4.3 測(cè)試結(jié)果及分析
在相近太陽(yáng)輻照度和環(huán)境溫度條件下,改變聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置中直通管式接收體內(nèi)空氣流動(dòng)速度,測(cè)試不同空氣流速下,經(jīng)槽式復(fù)合多曲面聚光器加熱后的空氣溫升曲線(xiàn),如圖7所示。
由圖7可以看出,在相同運(yùn)行時(shí)間內(nèi),穩(wěn)態(tài)運(yùn)行的直通管式接收體進(jìn)口平均溫度約為?6 ℃時(shí),接收體出口空氣溫度隨空氣流速的減小而增加。在相同流速條件下,空氣溫度變化很小,輸出穩(wěn)定。當(dāng)空氣流速為1.075 m/s時(shí),接收管出口空氣最高溫度可以達(dá)到79 ℃左右,約比空氣流速為4.076 m/s時(shí)的溫度高70 ℃。對(duì)上述空氣流速條件下的裝置光熱轉(zhuǎn)換效率進(jìn)行計(jì)算,如表1所示。
表1 不同空氣流速下裝置光熱效率對(duì)比
表1計(jì)算結(jié)果表明,在太陽(yáng)輻照度相近,直通管式接收體進(jìn)口溫度相同條件下,裝置光熱轉(zhuǎn)換效率隨管式接收體內(nèi)空氣流速增加而減小,在空氣流速為1.075 m/s時(shí),光熱轉(zhuǎn)換效率可以達(dá)到62.18%,比空氣流速為4.076 m/s時(shí)增加了84.51%,出口空氣溫度達(dá)到了78.45 ℃,滿(mǎn)足了設(shè)施農(nóng)業(yè)土壤滅蟲(chóng)除菌所需溫度要求。在實(shí)際設(shè)施農(nóng)業(yè)土壤滅蟲(chóng)除菌運(yùn)行時(shí),需要將入光口面積增加為試驗(yàn)測(cè)試裝置入光口面積的數(shù)倍,以進(jìn)一步提高裝置的運(yùn)行效果。
在晴好天氣,槽式復(fù)合多曲面聚光器中管式接收體內(nèi)的空氣流速選為1.075 m/s,對(duì)太陽(yáng)高度角單軸跟蹤,無(wú)風(fēng)條件下,測(cè)試裝置的運(yùn)行環(huán)境溫度、太陽(yáng)輻照度,變化曲線(xiàn)如圖8所示。測(cè)試管式接收體出口空氣溫度隨太陽(yáng)輻照度和環(huán)境溫度變化曲線(xiàn)如圖8所示,瞬時(shí)聚光器光熱轉(zhuǎn)換效率,出口空氣溫度變化曲線(xiàn)如圖9所示。
從圖9可以得出,直通管式接收體出口空氣溫度、裝置光熱轉(zhuǎn)換效率隨太陽(yáng)輻照度的變化而變化。當(dāng)進(jìn)口空氣溫度為?1 ℃左右時(shí),直通管式接收體出口空氣溫度最高可以達(dá)到88 ℃左右,最低溫度也在50 ℃以上,光熱轉(zhuǎn)換效率可以達(dá)到65%左右。滿(mǎn)足了冬季設(shè)施農(nóng)業(yè)土壤滅蟲(chóng)除菌的溫度要求,則設(shè)施農(nóng)業(yè)全年的土壤滅蟲(chóng)除菌溫度需求可以得到保證。
聚光回?zé)崾教?yáng)能滅蟲(chóng)除菌裝置所產(chǎn)生的熱空氣通過(guò)金屬換熱板對(duì)設(shè)施農(nóng)業(yè)用土進(jìn)行升溫滅蟲(chóng)除菌,在夏秋季節(jié)運(yùn)行效果會(huì)比冬季更好。在此過(guò)程中,土壤的濕度、進(jìn)料速度、堆積厚度以及初始溫度等因素都將影響到裝置的滅殺效果和經(jīng)濟(jì)性,下一步我們將對(duì)上述因素的影響機(jī)理展開(kāi)試驗(yàn)測(cè)試和理論分析。
本文針對(duì)設(shè)施農(nóng)業(yè)常規(guī)土壤滅蟲(chóng)除菌過(guò)程中使用農(nóng)藥對(duì)土壤和人員的危害及物理滅殺過(guò)程需要使用大量化石能源的問(wèn)題,結(jié)合區(qū)域發(fā)展特點(diǎn),提出了聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置,盡可能地減少了設(shè)施農(nóng)業(yè)對(duì)土壤處理過(guò)程中對(duì)環(huán)境的二次污染和化石能源消耗量,提高設(shè)施農(nóng)業(yè)農(nóng)產(chǎn)品品質(zhì)。同時(shí)對(duì)裝置的光熱性能進(jìn)行了仿真計(jì)算和試驗(yàn)測(cè)試。
1)裝置中所設(shè)計(jì)的槽式復(fù)合多曲面聚光器,經(jīng)過(guò)光學(xué)仿真軟件LightTools的分析和計(jì)算,結(jié)果表明,在太陽(yáng)正入射時(shí),接收管表面光線(xiàn)接受率為99.66%,能量轉(zhuǎn)化效率為81.48%,當(dāng)徑向入射偏角為3°時(shí),管式接收體表面光線(xiàn)接受率仍為90.57%,接收體表面光線(xiàn)接受率和能量轉(zhuǎn)化效率隨軸向入射偏角的增加而呈直線(xiàn)下降趨勢(shì),能夠?yàn)榫酃饣責(zé)嵝吞?yáng)能土壤滅蟲(chóng)除菌裝置提供高密度熱能,跟蹤精度要求低。
2)聚光回?zé)嵝吞?yáng)能土壤滅蟲(chóng)除菌裝置利用槽式復(fù)合多曲面聚光器對(duì)工作介質(zhì)空氣進(jìn)行加熱,在進(jìn)口空氣溫度為?1 ℃時(shí),直通管式接收體出口空氣溫度可以達(dá)到88 ℃,達(dá)到設(shè)施農(nóng)業(yè)土壤滅菌除蟲(chóng)的溫度要求。
3)隨著聚光回?zé)嵝吞?yáng)能土壤滅蟲(chóng)除菌裝置中工作介質(zhì)空氣流速的減小,管式接收體出口空氣溫度升高,裝置光熱轉(zhuǎn)化效率提高,在對(duì)太陽(yáng)高度角單軸跟蹤時(shí),冬季室外試驗(yàn)中,該裝置的光熱轉(zhuǎn)化效率可以達(dá)到65%左右。
[1] 趙婷婷. 不同土壤消毒方式對(duì)大棚西瓜連作障礙抑制效果的研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
Zhao Tingting. Researching the Effects of Different Soil Disinfection Methods on the Continuous Cropping Obstacle of Watermelon in Plastic Shed [J]. Yangling: Northwest A & F University, 2016. (in Chinese with English abstract)
[2] 楊雅婷,胡檜,趙奇龍,等. 土壤物理消毒裝備研究進(jìn)展[J]. 農(nóng)業(yè)工程,2015,5(11):43-48.
Yang Yating, Hu Hui, Zhao Qilong, et al. Research progress of soil physical disinfection equipment[J]. Agriculture Engineering, 2015, 5(11): 43-48. (in Chinese with English abstract)
[3] Berrtuo R, Gay P, Piccarolo P, et al. Grey-box models for steam soil disinfestation simulation[J]. Mathematics and Computers in Simulation, 2004, 65: 191-200.
[4] Antonio Gelsomino, Beatrix Petrovicová, Francesco Zaffina, et al. Chemical and microbial properties in a greenhouse loamy soil after steam disinfestation alone or combined with CaO addition [J]. Soil Biology & Biochemistry, 2010, 42: 1091-1100.
[5] Roux-Michollet D, Czarnes S, Adam B, et al. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil[J].Soil Biology & Biochemistry, 2008, 40: 1836-1845.
[6] 李萍萍. 設(shè)施園藝中的土壤生態(tài)問(wèn)題分析及清潔生產(chǎn)對(duì)策[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):346-349.
Li Pingping. Soil ecological problem and its resolvent in greenhouse horticulture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 346-349. (in Chinese with English abstract)
[7] 辜松,王忠偉. 日本設(shè)施栽培土壤熱水消毒技術(shù)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(11):168-170.
Gu Song, Wang Zhongwei. Soil disinfection with hot water in Japan[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(11): 168-170. (in Chinese with English abstract)
[8] 隋俊杰. 土壤電消毒滅蟲(chóng)機(jī)在設(shè)施農(nóng)業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程,2012,2(S1):35-38.
Sun Junjie. Application of soil electrical disinfection and pest control machine in facility agriculture[J]. Agricultural Engineering, 2012, 2(S1): 35-38. (in Chinese with English abstract)
[9] 劉濱疆. 物理農(nóng)業(yè)的應(yīng)用及其產(chǎn)業(yè)化[J].農(nóng)業(yè)工程,2012,2(6):4-10.
Liu Binjiang. Application and industrialization of physical agriculture[J]. Agricultural Engineering, 2012, 2(6): 4-10. (in Chinese with English abstract)
[10] 許光輝,趙奇龍,高宇. 火焰高溫消毒技術(shù)防治農(nóng)田土壤病蟲(chóng)害研究與試驗(yàn)[J]. 農(nóng)業(yè)工程,2014,4(10):52-54.
Xu Guanghui, Zhao Qilong, Gao Yu. Research and experiment on preventing soil pests by high temperature flaming sterilization technology[J]. Agricultural Engineering, 2014, 4(10): 52-54. (in Chinese with English abstract)
[11] 王明友,肖宏儒,宋衛(wèi)東,等. 微波處理對(duì)溫室連作土壤中根結(jié)線(xiàn)蟲(chóng)的影響[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2013,34(4):95-99.
Wang Mingyou, Xiao Hongru, Song Weidong, et al. Influence of microwave treatment on the root-knot nematodes of continuous cropping soil in the greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 95-99. (in Chinese with English abstract)
[12] Pinel M P C, Bond W, White J G. Control of soil-borne pathogens and weeds in leaf salad monoculture by use of a self- propelled soil-steaming machine[J]. Acta Horticulturae, 2000(532): 125-130.
[13] Lu P, Ricauda Aimonino D, Gilardi G, et al. Efficacy of different steam distribution systems against five soil-borne pathogens under controlled laboratory conditions[J]. Phytoparasitica, 2010(38): 175-189.
[14] Gay P, Piccarolo P, Ricauda Aimonino D, et al. A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation[J]. Biosystems Engineering, 2010, 107: 74-85.
[15] Gay P, Piccarolo P, Ricauda Aimonino D, et al. A high efficacy steam soil disinfestation system, part II: Design and testing[J]. Biosystems Engineering, 2010, 107: 194-201.
[16] 張燕麗,李建設(shè),史娟. 覆膜加麥麩太陽(yáng)能消毒對(duì)土壤溫度及番茄生長(zhǎng)狀況的影響[J]. 北方園藝,2014(2):49-52.
Zhang Yanli, Li Jianshe, Shi Juan. Effect of solarization with plastic-film mulching and wheat bran on soil temperature and growth of tomato[J]. Northern Horticulture, 2014(2): 49-52. (in Chinese with English abstract)
[17] 杜蕙,漆永紅,呂和平. 太陽(yáng)能消毒時(shí)不同處理方式對(duì)土壤溫度的影響[J]. 北方園藝,2012(8):154-157.
Du Hui, Qi Yonghong, Lü Heping. Effect of different treatment on soil temperature under solarization[J]. Northern Horticulture, 2012(8): 154-157. (in Chinese with English abstract)
[18] 吳雪芬,周英,陳軍,等. 土壤消毒技術(shù)在安全無(wú)公害蔬菜生產(chǎn)上的應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué),2015,43(11):85-87.
Wu Xuefen, Zhou Ying, Chen Jun, et al. Application of soil sterilization technology in safe and pollution-free vegetable production[J]. Journal of Anhui Agri. Sci., 2015, 43(11): 85-87. (in Chinese with English abstract)
[19] 施印炎,李成光,汪小旵,等. 可移動(dòng)式土壤蒸汽消毒機(jī)的設(shè)計(jì)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2017,38(1):56-59.
Shi Yinyan, Li Chenggang, Wang Xiaochan, et al. Design of removable soil steam sterilization machine[J]. Journal of Chinese Agriculture Mechanization, 2017, 38(1): 56-59. (in Chinese with English abstract)
[20] 卓杰強(qiáng),陳立振,周增產(chǎn),等. 無(wú)土栽培基質(zhì)蒸汽消毒機(jī)研究與應(yīng)用[J]. 農(nóng)機(jī)化研究,2012,34(9):95-98.
Zhuo Jieqiang, Chen Lizhen, Zhou Zengchan, et al. Research and application of soilless cultivation matrix steam disinfection machine[J]. Journal of Agricultural Mechanization Research, 2012,34(9): 95-98. (in Chinese with English abstract)
[21] 包應(yīng)時(shí),吳曉蓮. 設(shè)施園藝基質(zhì)消毒設(shè)備的研制[J]. 農(nóng)機(jī)化研究,2011,33(4):107-141.
Bao Yingshi, Wu Xiaolian. Horticulture development matrix disinfection equipment[J]. Journal of Agricultural Mechanization Research, 2011, 33(4): 107-141. (in Chinese with English abstract)
[22] Kita N. Physical soil sterilization for soil-borne disease control[J]. Proceedings of Vegetable and Tea Science, 2006(3): 7-15.
[23] 張麗英,李賀年,翟珊珊,等. 太陽(yáng)能土壤消毒在草莓保護(hù)地栽培中的應(yīng)用效果[J]. 北方園藝,2010(14):67-68.
Zhang Liying, Li Henian, Zhai Shanshan, et al. Effects of solar soil disinfection technology on strawberry protected planting[J]. Northern Horticulture, 2010(14): 67-68. (in Chinese with English abstract)
[24] 漆永紅,杜蕙,曹素芳,等. 日光高溫消毒方式對(duì)土壤根結(jié)線(xiàn)蟲(chóng)的防治效果[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(35):122-127.
Qi Yonghong, Du Hui, Cao Sufang, et al. Control effect of solarization mode on soil root-knot nematode [J]. Chinese Agricultural Science Bulletin, 2015, 31(35): 122-127. (in Chinese with English abstract)
[25] Pinkerton J N, Ivors K L, Miller M L, et al. Effect of soil solarization and cover crops on populations of selected soilbrone plant pathogens in western oregon[J]. Plant Disease, 2000, 84(9): 952-960.
[26] Nico A I, Jimenez-Diaz R M, Castillo P. Solarization of soil in piles for the control of Meloidog yne incognita in olive nurseries in southern Spain[J]. Plant Pathology, 2003, 52(6): 770-778.
[27] 李英梅,曹紅梅,徐福利,等. 土壤消毒措施對(duì)土壤物理特性及黃瓜生長(zhǎng)發(fā)育的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(11):1189-1193.
Li Yingmei, Cao Hongmei, Xu Fuli, et al. Effects of different forms of soil disinfection on soil physical properties and cucumber growth[J]. Chinese Journal of Eco-Agriculture, 2010, 18(11): 1189-1193. (in Chinese with English abstract)
[28] Katan J. Physical and cultural methods for the management of soil-borne pathogens[J]. Crop Protection, 2000, 19(8): 725-731.
[29] 王金平,王軍,張耀明,等. 槽式太陽(yáng)能聚光集熱器傳熱特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):185-191.
Wang Jinping, Wang Jun, Zhang Yaoming, et al. Analysis of heat transfer characteristics for parabolic trough solar collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 185-191. (in Chinese with English abstract)
[30] 楊選民,王亞軍,邱凌,等. 槽式拋物面太陽(yáng)能聚光集熱器供熱厭氧反應(yīng)器研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):202-207.
Yang Xuanmin, Wang Yajun, Qiu Ling, et al. Design and implementation of parabolic trough concentrator heating anaerobic reacto[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 202-207. (in Chinese with English abstract)
Performance on concentrating regeneration type solar soildeinsectization and sterilization device
Chang Zehui1,2, Jia Ningze1, Hou Jing3, Zheng Hongfei4, Li Wenlong1, Liu Yang1
(1.010051,;2.010051,; 3.010051; 4.100081,)
In the last several decades, the problem of food shortage has been one of the main challenges in the world. It is necessary to enhance the use of protected agriculture in order to promote better microclimate conditions allowing high productivity, stable quality, earliest harvest dates and thus better economic output and good environment quality and food security. However, there are pests and pathogenic bacteria in the soil of agriculture production systems due to an ideal temperature, no wind and high humidity conditions in soil. Then soil disinfection treatments are used in agriculture before planting high-value cash crops, to reduce soil-borne crops pests including bacterial, fungal and nematode pathogens, weeds and insects. Methyl bromide fumigation is the widely used as a disinfection method due to its low cost and high effectiveness. But gaseous methyl bromide may destroy stratospheric ozone. Hence, forthcoming agro-ecological techniques should both reduce pollution hazards and be compatible with sustainable development guidelines. Many other chemical fumigants have become strongly restricted and more ecological treatments are now been sought. Alternative sustainable techniques such as soil electrical disinfection, steam soil disinfection and flame soil disinfection are utilized. However, many of these methods have the major drawbacks of their effect strongly depends on fossil energy. Moreover, the employment on a large scale of these methods could lead to a strong increase in environmental pollution. For this reason, in this paper, we presented a novel concentrating regeneration type solar soil extermination and sterilization device, which used high temperature air to kill soil-borne crop pests, reducing the employment of chemical fumigants and improving the quality of agriculture products. The device consisted of trough compound parabolic concentrating system, soil feed system, soil and air regeneration system and forced draft system, et al. The operational principle of concentrating light and regeneration type solar soil extermination and sterilization device was introduced. A 3D model of the concentrator supported with optical analysis software was used to analyze the tracking accuracy. The distribution of the concentrated light of the absorber could be visualized. Based on the simulation results, an experimental set-up, which can be used to verify the heat collection efficiency and the heating temperature, was designed and constructed. The results indicated that the overall ray’s receiving rate of the trough compound parabolic concentrating collector of 99.66%-62.20% were obtained with radial incidence angles of 0°-7°. The outlet air temperature of the device increased with the decreasing the air flow rate. The maximum outlet air temperature of the device at the air flow rate of 1.075m/s was higher than that of the device at the air flow rate of 4.076 m/s by 70 ℃. Under good sunshine in winter, the outlet air maximum temperature of the device with the tracking accuracy of 5°and the concentrating rate of 3.6 can reach to 88 ℃, and the heat efficiency can reach about 65%, thus, it is able to provide enough heat to soil disinfection in the protected agriculture, which is an idea solar soil extermination and sterilization method for protected agriculture.
soil; sterilization; solar concentrator; concentrating; solar energy; Light-thermal conversion efficiency
10.11975/j.issn.1002-6819.2017.09.027
TK519
A
1002-6819(2017)-09-0211-07
2016-12-21
2017-04-12
國(guó)家自然科學(xué)基金項(xiàng)目(51666013);內(nèi)蒙古自然科學(xué)基金項(xiàng)目(2013MS0704,2015MS0545);內(nèi)蒙古工業(yè)大學(xué)風(fēng)能太陽(yáng)能利用技術(shù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(201511);內(nèi)蒙古工業(yè)大學(xué)科學(xué)研究重點(diǎn)項(xiàng)目(ZD201507)
常澤輝,男(漢族),內(nèi)蒙古人,副教授,博士,主要從事太陽(yáng)能海水淡化、光熱利用研究。呼和浩特內(nèi)蒙古工業(yè)大學(xué)能源與動(dòng)力工程學(xué)院,010051。Email:changzehui@163.com
常澤輝,賈檸澤,侯 靜,鄭宏飛,李文龍,劉 洋. 聚光回?zé)崾教?yáng)能土壤滅蟲(chóng)除菌裝置光熱性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):211-217. doi:10.11975/j.issn.1002-6819.2017.09.027 http://www.tcsae.org
Chang Zehui, Jia Ningze, Hou Jing, Zheng Hongfei, Li Wenlong, Liu Yang. Performance on concentrating regeneration type solar soildeinsectization and sterilization device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 211-217. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.027 http://www.tcsae.org