陳禮俊++蘭志勇
摘 要: 為了滿足高壓電源小型化、智能化的要求,設(shè)計(jì)一種基于單片機(jī)控制,輸出電壓為5~10 kV可調(diào)的新型高壓直流電源。通過理論分析與硬件電路實(shí)驗(yàn)相結(jié)合的方法,對控制電路中高頻PWM方波的產(chǎn)生、斬波與半橋的驅(qū)動(dòng)電路以及電源輸出過電保護(hù)電路做出簡要的分析與說明。重點(diǎn)研究隔離型Zeta斬波電路調(diào)壓原理與控制電路工作原理,同時(shí)針對實(shí)現(xiàn)數(shù)字化電源,提出了程序調(diào)壓的設(shè)計(jì)思想。實(shí)驗(yàn)結(jié)果表明所設(shè)計(jì)電源可行且輸出電壓穩(wěn)定。
關(guān)鍵詞: 單片機(jī)控制; 高壓直流電源; 隔離型Zeta斬波電路; PWM
中圖分類號: TN86?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2017)12?0165?04
Abstract: In order to satisfy the requirements of small?size and intelligence of the high?voltage power supply, a new high?voltage DC power supply controlled by single chip microcomputer was designed, whose output voltage is 5~10 kV adjustable. The method of combining theoretical analysis with hardware circuit experiment is adopted to analyze and describe the drive circuits of high?frequency PWM (pulse width modulation) square wave generation, chopping wave and half bridge, and over?voltage protection circuit of the output power supply. The voltage?regulation principle and working principle of the isolated Zeta chopper circuit are studied emphatically. The design thought of voltage regulation based on program is proposed to implement the digital power supply. The experimental results show that the power supply is feasible, and its output voltage is stable.
Keywords: single chip microcomputer control; high?voltage DC power supply; isolated Zeta chopper circuit; PWM
0 引 言
高壓直流電源在工業(yè)生產(chǎn)應(yīng)用和實(shí)驗(yàn)研究得到廣泛運(yùn)用,如工業(yè)環(huán)境的靜電除塵、醫(yī)用X光機(jī)、CT機(jī)等。傳統(tǒng)的高壓直流電源大多采用工頻變壓器升壓,再經(jīng)整流濾波得到,存在著電源體積大、效率低、輸出電壓紋波大等缺點(diǎn)[1?3]。隨著電力電子技術(shù)的發(fā)展,開關(guān)電源技術(shù)逐步應(yīng)用到高壓直流電源中,高頻技術(shù)的引入大大降低了設(shè)計(jì)電源的體積,同時(shí)隨著電氣智能化的發(fā)展,智能電源也隨之發(fā)展起來。本文設(shè)計(jì)以AT89C51單片機(jī)為控制核心智能開關(guān)電源,通過程序調(diào)節(jié)前級Zeta斬波與半橋逆變的輸出電壓,從而控制電源輸出電壓,最高輸出電壓10 kV。電源的特點(diǎn)是能實(shí)現(xiàn)程序完全控制輸出電壓,同時(shí)具有自動(dòng)監(jiān)測和保護(hù)功能。
1 電源結(jié)構(gòu)與工作原理
本文將單片機(jī)技術(shù)與脈沖寬度調(diào)節(jié)(PWM)相結(jié)合,進(jìn)行直流高壓電源的逆變、調(diào)壓、升壓控制。電源主體由濾波整流、Zeta斬波、半橋逆變、高頻升壓、倍壓整流、保護(hù)電路以及PWM調(diào)節(jié)控制部分組成。電源基本工作原理為:市電220 V,50 Hz輸入,電壓經(jīng)過電磁干擾(EMI)濾波以及全波整流變?yōu)殡妷褐导s為300 V的直流電,再通過隔離型Zeta斬波電路將電壓控制在200~400 V之間,之后經(jīng)過半橋逆變電路將其變?yōu)楦哳l交流電,最后通過高頻變壓器升壓和二倍壓整流電路,將其變?yōu)樗O(shè)定的直流高壓。其中Zeta斬波、半橋逆變的開關(guān)頻率與脈沖寬度利用單片機(jī)程序控制。為了使電源工作穩(wěn)定且利于調(diào)節(jié),設(shè)計(jì)規(guī)定Zeta斬波輸出電壓在DC 200~400 V即控制斬波電路開關(guān)占空比在0.4~0.6之間。同時(shí)在輸出端設(shè)置過電壓反饋控制回路,防止程序錯(cuò)誤,電壓異常升高。圖1為電源整體結(jié)構(gòu)圖。
2 隔離型Zeta斬波調(diào)壓電路
與Zeta斬波電路相比,隔離型Zeta斬波電路將高頻變壓器與電感L0并聯(lián),此時(shí)前級電路電壓可通過變壓器將電能遞到后級電路[2?5]。如為考慮升高/降低電壓,則可將變壓器原副邊變比增大/減小。采用Zeta隔離型斬波電路的優(yōu)點(diǎn):相同的輸入、輸出電壓極性;輸出電壓可調(diào);輸入電流低,EMI小;輸入、輸出電氣隔離。圖2為Zeta隔離斬波調(diào)壓電路[6?8]。
設(shè)計(jì)隔離型Zeta電路工作在電感電流不連續(xù)模式(DCM),電路存在三種不同的工作狀態(tài):
(1) 時(shí),S閉合,電源E向L0充電,同時(shí)中間電容C1向L1與C2供電,二極管D截至,此時(shí)通過L1電流增加,輸出電壓Uo增加;
(2) 時(shí),S斷開,L0向變壓器原邊電感充電,變壓器工作并通過副邊電感向C1充電,二極管D導(dǎo)通,電感L1與電容C2向負(fù)載供電,輸出電壓Uo增加;
(3) 時(shí),S處于斷開階段,變壓器轉(zhuǎn)換能量結(jié)束,二極管D截至,這時(shí)電容C1與C2向電感L2與負(fù)載供電,此時(shí)輸出電感L2電流上升,輸出電壓Uo減小。
3 控制電路的設(shè)計(jì)
控制電路以AT89C51單片機(jī)為核心,通過單片機(jī)程序控制P1.0~P1.2口的輸出脈沖,即可控制斬波與逆變電路[9?11]。圖5為隔離型Zeta斬波控制電路,當(dāng)單片機(jī)P1.0口輸出低電平時(shí),控制脈沖通過TPL250隔離驅(qū)動(dòng)Q1開通即斬波電路工作,反之輸出高電平,Q1截至。
圖6為單片機(jī)控制半橋逆變電路圖。單片機(jī)P1.1、P1.2輸出脈沖通過IR2110驅(qū)動(dòng)芯片,驅(qū)動(dòng)半橋開關(guān)管。當(dāng)輸出為低電平時(shí),經(jīng)非門轉(zhuǎn)換為高電平,再經(jīng)驅(qū)動(dòng)芯片IR2110驅(qū)動(dòng)Q2,Q3的開通,反之Q2,Q3截至。為使電源各芯片工作穩(wěn)定,由兩個(gè)獨(dú)立的LM317精密穩(wěn)壓源提供各芯片工作電壓,同時(shí)限制斬波與逆變的開關(guān)頻率與占空比,即通過單片機(jī)控制輸出端口的脈沖頻率與脈沖寬度。為使電源各級電壓輸出在規(guī)定可調(diào)范圍(斬波輸出DC 200~400 V,倍壓輸出為5~10 kV),在各級分別設(shè)置由TL431與PC817和TL431與TLP521?1構(gòu)成的光耦隔離過壓反饋保護(hù)電路。當(dāng)輸出過壓時(shí),反饋電路工作,控制芯片中斷/復(fù)位,各級引腳輸出高電平Q1,Q2,Q3關(guān)閉,電路暫停工作,復(fù)位LED(D,D3)燈亮。
4 實(shí)驗(yàn)結(jié)果與分析
進(jìn)行單片機(jī)程序控制實(shí)驗(yàn),得到電源電壓輸出波形。圖7為Zeta斬波輸出電壓與其驅(qū)動(dòng)脈沖波形。由圖7得驅(qū)動(dòng)脈沖理想,斬波電路工作正常。圖8為半橋驅(qū)動(dòng)波形與電源電壓輸出波形。圖8中驅(qū)動(dòng)脈沖幅值與電源電壓相位相差180°且有一定時(shí)間延遲(防直通)即死區(qū)時(shí)間,電源輸出電壓(電阻線性降壓測得)紋波小,電路工作穩(wěn)定。
5 結(jié) 論
本文以單片機(jī)為核心,研制了一種新型依據(jù)程序控制的智能高壓直流電源。將高頻引入電源設(shè)計(jì)中,有效地減小電源體積,節(jié)約電源成本;采用隔離型Zeta斬波調(diào)壓電路,實(shí)現(xiàn)低壓控制高壓輸出。實(shí)驗(yàn)結(jié)果表明,所設(shè)計(jì)電源輸出電壓穩(wěn)定、輸電紋波小、負(fù)載能力強(qiáng)。
參考文獻(xiàn)
[1] 廖平,陳峰,馬洪秋.基于ATmega16的智能數(shù)控高壓直流電源的設(shè)計(jì)[J].高電壓技術(shù),2008,34(4):734?738.
[2] MURTHY?BELLUR D, KAZIMIERCZUK M K. Isolated two?transistor Zeta converter with reduced transistor voltage stress [J]. IEEE transactions on circuits & systems II: express briefs, 2011, 58(1): 41?45.
[3] SINGH B, SINGH S. Isolated Zeta PFC converter based voltage controlled PMBLDCM drive for air?conditioning application [C]// Proceedings of 2011 IEEE India International Conference on Power Electronics. New Delhi: IEEE, 2011: 1?5.
[4] BIST V, SINGH B. A brushless DC motor drive with power factor correction using isolated Zeta converter [J]. IEEE transactions on industrial informatics, 2014, 10(4): 2064?2072.
[5] RUSELER A, BARBI I. Isolated Zeta?SEPIC bidirectional DC?DC converter with active?clamping [C]// Proceedings of 2013 Brazilian Power Electronics Conference. Gramado: IEEE, 2013: 1985?1991.
[6] CALLEGARO A D, MARTINS D C, BARBI I. Isolated single?phase high power factor rectifier using Zeta converter operating in DCM with non?dissipative snubber [C]// Proceedings of 2013 Brazilian Power Electronics Conference. Gramado: IEEE, 2013: 1?6.
[7] WORANETSUTTIKUL K, PINSUNTIA K, JUMPASRI N, et al. Comparison on performance between synchronous single?ended primary?inductor converter (SEPIC) and synchronous Zeta converter [C]// Proceedings of 2014 International Electrical Engineering Congress. [S.l.]: IEEE, 2014: 1?4.
[8] WANG L H, WEI X Y, ZHANG J H. Design of sinusoidal photovoltaic inverter based on DSP [C]// Proceedings of 2012 Asia Innovative Smart Grid Technologies. Tianjin, China: IEEE, 2012: 1?4.
[9] 張安保,劉展辰,于靜,等.基于AT89C51的小功率調(diào)頻調(diào)壓電源設(shè)計(jì)[J].東北石油大學(xué)學(xué)報(bào),2012,36(3):104?109.
[10] SINGH H K, BEZBORUAH T. Micro?controller based frequency to digital converter for interfacing frequency output sensors [C]// Proceedings of 2015 International Conference on Electronic Design, Computer Networks & Automated Verification. Shillong: IEEE, 2015: 34?37.
[11] WANG Z, LIU L S. The design of a speed regulator of DC motor based on TMS320LF2407A and AT89C51 [C]// Proceedings of 2010 International Conference on E?Product E?Service and E?Entertainment. Henan, China: IEEE, 2010: 1?4.