杜金平+劉艷庭+武藝靜+吳紅華+徐硯通
[摘要] 現(xiàn)有抗抑郁藥物臨床起效緩慢,因此需要研發(fā)快速起效抗抑郁藥物。植物揮發(fā)油顯示具有快速起效抗抑郁潛能,首先,揮發(fā)油氣味芳香能夠直接刺激嗅神經(jīng),脂溶性高易于透過血腦屏障,揮發(fā)性強(qiáng)適合鼻腔腦靶向和吸入給藥,能夠快速調(diào)節(jié)腦功能,具有快速起效抗抑郁潛能;其次,抗抑郁活性植物揮發(fā)油化學(xué)和藥理研究進(jìn)展揭示了揮發(fā)油抗抑郁化學(xué)物質(zhì)基礎(chǔ)、抗抑郁效果及可能作用機(jī)制;再者,考察植物揮發(fā)油抗抑郁活性成分對快速起效抗抑郁靶點(diǎn)作用,發(fā)現(xiàn)植物揮發(fā)油化學(xué)成分能拮抗NMDA受體活性,提示植物揮發(fā)油具有快速起效抗抑郁靶點(diǎn)機(jī)制潛能;最后,探討通過整合抗抑郁揮發(fā)油特性、快速起效抗抑郁靶點(diǎn)機(jī)制和給藥方式,充分發(fā)揮植物揮發(fā)油快速起效抗抑郁優(yōu)勢,為新藥研發(fā)提供方向。
[關(guān)鍵詞] 植物; 揮發(fā)油; 快速; 抗抑郁
[Abstract] The existing antidepressants demonstrated delayed onset of clinical effects, so fast-onset antidepressants are required. Essential oil of herbs showed potentials fast-onset antidepressant potential. First, its aromatic odor can directly activate olfactory nerves; its high lipophilicity causes a high blood-brain barrier penetration rate; and its high volatility is suitable for nasal-brain targeting and inhalation delivery. Therefore, essential oils can rapidly regulate brain functions by multiple ways, suggesting a fast-onset antidepressant potential. Second, the advance of studies on chemistry and pharmacology of antidepressant essential oils demonstrated chemical substances, antidepressant effects and possible action mechanisms of antidepressant essential oils. Third, the effect of essential oils′ antidepressant components on fast-onset antidepressant targets was investigated. It was found that chemical constituents of essential oils antagonized NMDA receptor activities, suggesting that essential oils have fast-onset antidepressant effect. Finally, characteristics of essential oils, fast-onset antidepressant targets and drug delivery methods are integrated to give full play to essential oils′ fast-onset antidepressant advantage and provide a new direction for new drug discovery.
[Key words] herb; essential oil; fast-onset; antidepressant
現(xiàn)有抗抑郁藥物臨床起效緩慢,如三環(huán)類藥物(TCAs)、單胺轉(zhuǎn)運(yùn)體抑制劑(MTIs)和單胺氧化酶抑制劑(MAOIs)等,需要持續(xù)給藥至少3~6周時間,既影響患者治療依從性,又不能及時控制重癥抑郁癥患者致殘和自殺危險[1-2],因此臨床亟需快速起效抗抑郁藥物。目前快速起效抗抑郁藥物發(fā)現(xiàn)采用經(jīng)典的藥物靶點(diǎn)篩選方法,有別于傳統(tǒng)抗抑郁藥物靶點(diǎn)如單胺氧化酶(MAO)和單胺轉(zhuǎn)運(yùn)體(MTs),快速起效抗抑郁藥物作用于新靶點(diǎn),這些靶點(diǎn)根據(jù)起效時間可分為快速和中速兩類,快速起效抗抑郁藥物靶點(diǎn)為NMDA受體,起效時間在數(shù)小時內(nèi),代表性藥物如氯胺酮;中速起效靶點(diǎn)包括乙酰膽堿M受體、5-HT2C受體、5-HT4受體、5-HT7受體、TrkB受體等,起效時間在7 d內(nèi),代表性藥物如東莨菪堿、RS 102221、BDNF等[1]。
根據(jù)快速起效抗抑郁藥物研究進(jìn)展[1],結(jié)合植物揮發(fā)油理化特性和給藥途徑,本文提出植物揮發(fā)油具有快速起效抗抑郁潛能,對此從以下4個方面進(jìn)行分析和論證。
1 植物揮發(fā)油能夠快速調(diào)節(jié)腦功能
揮發(fā)油是一類具有芳香氣味的油狀液體總稱,在常溫下能揮發(fā),可隨水蒸氣蒸餾[3]。植物揮發(fā)油氣味芳香能夠直接刺激嗅神經(jīng)快速調(diào)節(jié)腦功能;脂溶性高易于通過血腦屏障,克服了諸多藥物難于入腦的問題[4];揮發(fā)性強(qiáng)適合鼻腔給藥和吸入給藥[5],這些特征提示植物揮發(fā)油具有快速起效抗抑郁潛能。
2 植物揮發(fā)油具有顯著抗抑郁效果
揮發(fā)油植物來源廣泛,尤其在蕓香科、傘形科、姜科、菊科常見,多以油滴狀態(tài)存在于植物表皮的腺毛、油室、油細(xì)胞或油管中。揮發(fā)油化學(xué)成分復(fù)雜,主要包括萜類化合物(如單萜、倍半萜及其氧化產(chǎn)物)、芳香族化合物和脂肪族化合物,此外,少數(shù)揮發(fā)油還存在一些薁類化合物和含硫化合物等[3]。目前植物揮發(fā)油抗抑郁研究可以歸納為揮發(fā)油提取物和揮發(fā)油化學(xué)成分2類。揮發(fā)油提取物是指將總揮發(fā)油作為有效部位進(jìn)行研究,其中包含多種化學(xué)成分,能夠較好代表原植物化學(xué)特征,符合多成分作用于多靶點(diǎn)方式,但存在化學(xué)成分不夠清晰,樣品難于質(zhì)量控制,作用機(jī)制難于深入研究的不足之處。揮發(fā)油化學(xué)成分是指揮發(fā)油中單體化學(xué)成分,主要包括萜類和芳香族,分子結(jié)構(gòu)明確,有利于質(zhì)量控制和藥理作用機(jī)制研究,不足之處在于其難于反映原植物化學(xué)特征,且因其沸點(diǎn)低、易揮發(fā)等特點(diǎn)較難制備獲得或保存。兩類研究各具特色,研究結(jié)論可以相互印證。植物揮發(fā)油提取物(表1)和化學(xué)成分(表2)抗抑郁研究的化學(xué)和藥理研究進(jìn)展歸納總結(jié)如下。
從植物揮發(fā)油抗抑郁化學(xué)物質(zhì)基礎(chǔ)看,在植物揮發(fā)油提取物(表1)中,主要化學(xué)成分按相對含量>60%標(biāo)準(zhǔn)確定,發(fā)現(xiàn)以萜類化合物為主要成分的植物包括17種,其中單萜類13種,倍半萜類4種,數(shù)量占絕對優(yōu)勢;以芳香族化合物為主要成分的植物包括4種;以小分子脂肪族化合物為主要成分的植物包括1種。這些植物揮發(fā)油提取物雖然證實(shí)具有抗抑郁活性,但由于提取物中含有多種化學(xué)成分,需要進(jìn)一步確定其中活性成分。在植物揮發(fā)油化學(xué)成分中(表2),萜類成分包括10個,其中單萜6個,倍半萜4個;芳香族化合物5個。雖然目前報道的抗抑郁活性植物揮發(fā)油化學(xué)成分?jǐn)?shù)量有限,但已經(jīng)證實(shí)了植物揮發(fā)油化學(xué)成分抗抑郁作用,更多揮發(fā)油化學(xué)成分有待進(jìn)一步考察。在具有抗抑郁活性揮發(fā)油化學(xué)成分中,存在相同化學(xué)成分見于多種植物提取物中的現(xiàn)象,如單萜類活性成分β-蒎烯,可見于檸檬、肉豆蔻、虎皮楠葉和迷迭香中;芳樟醇可見于薰衣草、鼠尾草、芫荽、虎皮楠葉、香葉天竺葵和迷迭香中;香葉醇可見于迷迭香、香葉天竺葵精油、玫瑰精油、檸檬草、鼠尾草中;檸檬烯可見于檸檬、檸檬葉、佛手、巴西胡椒果和紫蘇中。這一方面提示一種活性成分存在多種植物來源,便于擴(kuò)大藥源;另一方面提示一種活性成分可以作為多種植物活性標(biāo)識物,說明其抗抑郁活性化學(xué)物質(zhì)基礎(chǔ)。綜合表1和表2化學(xué)研究內(nèi)容可見,揮發(fā)油化學(xué)成分和揮發(fā)油提取物間抗抑郁活性能夠相互印證,因此揮發(fā)油活性成分既可以作為揮發(fā)油提取物的活性標(biāo)識成分用于質(zhì)量控制,又利于深入開展藥理作用機(jī)制研究工作。根據(jù)化學(xué)大類成分看,具有抗抑郁活性的植物揮發(fā)油成分化學(xué)類型特征明顯,集中在萜類和芳香族化合物。這些抗抑郁活性化合物可以作為新藥發(fā)現(xiàn)的先導(dǎo)化合物,進(jìn)行結(jié)構(gòu)修飾或合成來優(yōu)化活性分子結(jié)構(gòu),用于新藥研發(fā)工作。在植物揮發(fā)油化學(xué)物質(zhì)基礎(chǔ)方面,目前存在的主要問題是,雖然具有抗抑郁活性的揮發(fā)油提取物經(jīng)化學(xué)分析已經(jīng)確定了多數(shù)主要化學(xué)成分,但揮發(fā)油化學(xué)成分抗抑郁研究數(shù)量有限,因此有必要對揮發(fā)油提取物主要化學(xué)成分進(jìn)行系統(tǒng)抗抑郁評價,為研發(fā)抗抑郁新藥提供基礎(chǔ)。
從植物揮發(fā)油抗抑郁活性看,無論植物揮發(fā)油提取物還是化學(xué)成分,均在多種抗抑郁動物模型上顯示了抗抑郁效果。這些動物模型既包括經(jīng)典初篩模型如強(qiáng)迫游泳(FST)[56]、懸尾(TST)[57]和曠場(OFT)[58]實(shí)驗,又包括公認(rèn)度很高的慢性不可預(yù)知溫和應(yīng)激模型(CUMS)[59],此外還有嗅球摘除模型(OBX)和利血平藥物誘導(dǎo)模型等[60-61],表明植物揮發(fā)油抗抑郁活性確切可靠。此外,臨床實(shí)驗證實(shí)薰衣草揮發(fā)油膠囊(Lasea)治療后顯著降低了HAMD評分[62],乳香精油吸入配合灸法療效與氟西汀治療HAMD評分無顯著性差異[63],為揮發(fā)油抗抑郁療效進(jìn)一步提供了臨床證據(jù)。從植物揮發(fā)油抗抑郁機(jī)制看,現(xiàn)有研究內(nèi)容系統(tǒng)性有待進(jìn)一步提高,這與目前抑郁癥發(fā)生病理生理機(jī)制認(rèn)識存在多種假說有關(guān)。根據(jù)現(xiàn)有抗抑郁機(jī)制研究內(nèi)容可以看出,有些研究立足經(jīng)典單胺類神經(jīng)遞質(zhì)假說[64-66],有些研究立足應(yīng)激誘發(fā)下丘腦-垂體-腎上腺皮質(zhì)軸(HPA)假說[67],有些研究立足神經(jīng)可塑性假說[68],有些研究立足免疫因子假說[69],這些研究內(nèi)容提示植物揮發(fā)油具有多系統(tǒng)活性,能夠協(xié)同發(fā)揮抗抑郁效果?,F(xiàn)有研究內(nèi)容顯示植物揮發(fā)油抗抑郁機(jī)制研究對于藥物作用靶點(diǎn)環(huán)節(jié)缺失,多數(shù)研究停留在藥效評價方面,即使是多層面的藥效評價體系,也難于深入系統(tǒng)揭示活性成分的抗抑郁機(jī)制,這方面研究工作有待深入。總體而言,目前植物揮發(fā)油抗抑郁研究局限在證明藥效方面,從快速起效抗抑郁角度研究尚未見報道,未能充分體現(xiàn)植物揮發(fā)油快速抗抑郁潛能。例如,從給藥途徑看,現(xiàn)有研究工作多數(shù)采用了灌胃和腹腔注射方式,這些給藥方式雖然能夠驗證植物揮發(fā)油抗抑郁活性,但沒有體現(xiàn)出植物揮發(fā)油特性和優(yōu)勢。有些研究工作采用了吸入給藥方式,驗證了揮發(fā)油抗抑郁效果[4],但這些研究工作未關(guān)注給藥方式對藥物起效速度影響,有待于進(jìn)一步考察。
3 植物揮發(fā)油化學(xué)成分與快速抗抑郁靶點(diǎn)存在相互作用
為了探討植物揮發(fā)油快速起效抗抑郁機(jī)制,基于已報道快速起效抗抑郁靶點(diǎn)[1],考察抗抑郁活性揮發(fā)油化學(xué)成分潛在快速起效作用。谷氨酸NMDA受體拮抗劑是目前公認(rèn)的快速長效抗抑郁藥物。臨床前動物實(shí)驗證實(shí),NMDA受體活性化合物包括:①非競爭性NMDA受體離子通道阻斷劑,如氯胺酮、MK-801和CPP;②選擇性NMDA受體NR2B亞基拮抗劑,如Ro 25-6981,CP-101,606;③NMDA受體甘氨酸位點(diǎn)激動劑,如GLYX-13,均證實(shí)具有快速長效抗抑郁效果[1]。臨床研究證實(shí)單次靜脈輸注低于麻醉劑量的氯胺酮在2 h內(nèi)起效,療效可持續(xù)至7 d[70]。選擇性NMDA受體亞基NR2B拮抗劑CP-101,606單次靜脈注射后迅速起效并持續(xù)至少7 d時間[71]。因此,基于NMDA受體發(fā)現(xiàn)快速起效抗抑郁藥物具有堅實(shí)基礎(chǔ)。
經(jīng)文獻(xiàn)整理發(fā)現(xiàn),抗抑郁活性的植物揮發(fā)油化學(xué)成分顯示了NMDA受體拮抗劑活性,目前已報道的包括單萜類芳樟醇和芳香族α-細(xì)辛醚、β-細(xì)辛醚、丁香酚、甲基丁香酚。放射性配體競爭結(jié)合實(shí)驗是考察藥物與靶點(diǎn)直接相互作用的經(jīng)典方法,芳樟醇能夠劑量依賴地競爭性抑制3H-谷氨酸結(jié)合[IC50為(0.57±0.05) mmol·L-1][72],但劑量依賴地非競爭性抑制3H-MK801結(jié)合(IC50為2.97 mmol·L-1)[73],證實(shí)芳樟醇能夠直接與NMDA受體相互作用但具體作用位點(diǎn)有待進(jìn)一步確定。在生物活性方面,芳樟醇具有鎮(zhèn)痛[73-74]、抑制NMDA誘導(dǎo)驚厥和戊四唑點(diǎn)燃癲癇[72]、損傷記憶獲得[75]等活性。α-細(xì)辛醚和β-細(xì)辛醚能夠劑量依賴地特異抑制3H-MK801結(jié)合,表明它們能夠直接作用于NMDA受體離子通道內(nèi)MK801結(jié)合位點(diǎn)。在生物活性方面,α-細(xì)辛醚和β-細(xì)辛醚能夠在原代培養(yǎng)大鼠皮層神經(jīng)元上劑量依賴地抑制谷氨酸和NMDA誘導(dǎo)的神經(jīng)毒性[76]。丁香酚和甲基丁香酚與NMDA受體相互作用來源于間接證據(jù),研究證實(shí)丁香酚在原代培養(yǎng)大鼠皮層神經(jīng)元細(xì)胞上能夠?qū)筃MDA受體誘導(dǎo)的損傷,抑制NMDA受體誘導(dǎo)的Ca2+增高,證實(shí)丁香酚具有神經(jīng)保護(hù)作用[77]。甲基丁香酚能夠抑制椎管注射NMDA所誘發(fā)的疼痛相關(guān)行為[78],雖然丁香酚和甲基丁香丁香酚能夠?qū)筃MDA受體效應(yīng),但它們與NMDA受體是否存在直接相互作用有待進(jìn)一步證實(shí)。對于中速起效靶點(diǎn)包括乙酰膽堿M受體、5-HT2C受體、5-HT4受體、5-HT7受體、TrkB受體,經(jīng)文獻(xiàn)查證未發(fā)現(xiàn)具有抗抑郁活性的植物揮發(fā)油化學(xué)成分與這些靶點(diǎn)直接相互作用的報道。目前為止,具有抗抑郁活性的植物揮發(fā)油化學(xué)成分已被證實(shí)與快速起效抗抑郁靶點(diǎn)NDMA受體存在直接相互作用,雖然原始文獻(xiàn)研究內(nèi)容不是抗抑郁研究,但是提示這些化學(xué)成分具有快速長效抗抑郁潛能,值得進(jìn)一步考察研究。
4 優(yōu)勢組合提高臨床起效速度
為了實(shí)現(xiàn)快速起效抗抑郁目標(biāo),可以將揮發(fā)油理化特性、快速起效抗抑郁靶點(diǎn)機(jī)制和給藥途徑綜合考慮,充分發(fā)揮植物揮發(fā)油各方面特長,例如,將具有快速起效抗抑郁靶點(diǎn)活性揮發(fā)油成分通過鼻腔腦靶向/吸入給藥,實(shí)現(xiàn)植物揮發(fā)油快速起效效應(yīng)最大化。
在此對植物揮發(fā)油鼻腔給藥和吸入給藥進(jìn)行探討。鼻腔給藥能夠通過4條途徑調(diào)節(jié)快速調(diào)節(jié)腦功能[79]。第1條途徑是嗅神經(jīng)。揮發(fā)油芳香氣味激活嗅神經(jīng),通過嗅覺系統(tǒng)快速調(diào)節(jié)腦功能。第2條途徑是三叉神經(jīng),鼻腔有三叉神經(jīng)分支分布,通過三叉神經(jīng)系統(tǒng)來調(diào)節(jié)腦功能是又一快捷通道。第3條途徑是血液循環(huán)通路。藥物既可以通過鼻腔動脈進(jìn)入體循環(huán),又可以通過鼻腔靜脈逆流轉(zhuǎn)移至頸動脈,血管周圍通道也是藥物進(jìn)入腦內(nèi)的重要途徑。第4條途徑是腦脊液和淋巴循環(huán)。連接蛛網(wǎng)膜下腔腦脊液-嗅神經(jīng)周圍空隙-鼻腔淋巴通路是藥物經(jīng)鼻腔進(jìn)入腦內(nèi)又一條通路,可見鼻腔-腦靶向給藥涉及多種途徑,是一個復(fù)雜過程[80]。鼻腔給藥明顯不足之處是載藥量受限,且不適合頻繁給藥。吸入給藥是植物揮發(fā)油又一種優(yōu)勢給藥方式,藥物主要經(jīng)肺吸收進(jìn)入體循環(huán),通過血腦屏障進(jìn)入中樞神經(jīng)系統(tǒng),部分藥物可以經(jīng)過鼻腔給藥途徑進(jìn)入腦部[5],但不如鼻腔給藥腦靶向優(yōu)勢明顯,吸入給藥載藥量大于鼻腔給藥??傊?,這2種給藥方式均能夠同時啟動多條快速調(diào)節(jié)腦功能途徑,體現(xiàn)了揮發(fā)油特色,在設(shè)計藥物給藥途徑和藥物制劑時應(yīng)充分發(fā)揮其特長。
5 結(jié)論
本文針對現(xiàn)有抗抑郁藥物臨床起效緩慢問題,提出植物揮發(fā)油具有快速起效抗抑郁潛能,通過四方面內(nèi)容分析和論證,指出基于揮發(fā)油理化特性,結(jié)合快速起效抗抑郁靶點(diǎn)機(jī)制,采用揮發(fā)油特色給藥途徑,從抗抑郁活性植物揮發(fā)油中研發(fā)快速起效抗抑郁新藥是一個值得重視的研究新方向。
[參考文獻(xiàn)]
[1] 黃吉生,杜金平,徐硯通.快速起效抗抑郁藥物研究進(jìn)展[J].中國新藥雜志,2015(23):2669.
[2] 瞿偉,谷珊珊.抑郁癥治療研究新進(jìn)展[J].第三軍醫(yī)大學(xué)學(xué)報,2014,36(11):1113.
[3] 吳立軍.天然藥物化學(xué)[M].6版.北京:人民衛(wèi)生出版社,2012:264.
[4] 許慧,徐金勇,李光武.芳香物質(zhì)經(jīng)嗅覺通路防治抑郁癥實(shí)驗進(jìn)展[J].實(shí)用中醫(yī)藥雜志,2013,29(5):412.
[5] 陳柏君.淺論吸入給藥[J].云南中醫(yī)學(xué)院學(xué)報,2009,32(5):63.
[6] 佟棽棽.迷迭香和檸檬草的揮發(fā)性成分及其抗抑郁、抑菌作用的研究[D].上海:上海交通大學(xué),2009.
[7] Machado D G,Cunha M P,Neis V B,et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L[J]. Food Chem, 2013, 136(2): 999.
[8] 牛利華,胡慶東,徐金勇,等.薰衣草經(jīng)嗅覺通路吸入對小鼠抑郁樣行為改變及其作用機(jī)制初步探討[J].環(huán)境與健康雜志,2010,27(10):861.
[9] Hritcu L,Cioanca O,Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats[J]. Phytomedicine, 2012, 19(6): 529.
[10] Seol G H,Shim H S,Kim P J,et al. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats[J]. J Ethnopharmacol, 2010, 130(1): 187.
[11] 蔡繼寶,林平,桑文強(qiáng),等.精油中揮發(fā)性成分GC/FTIR與GC/MS聯(lián)合分析[J].光譜學(xué)與光譜分析,2005,25(10):1599.
[12] Cioanca O,Hritcu L,Mihasan M,et al. Inhalation of coriander volatile oil increased anxiolytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer′s disease[J]. Physiol Behav, 2014, 131(8): 68.
[13] Guzmán-Gutiérrez S L,Gómez-Cansino R,García-Zebadúa J C,et al. Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles[J]. J Ethnopharmacol, 2012, 143(2): 673.
[14] Hyangsook Choi,Song H S,Hiroyuki Ukeda A,et al. Radical-scavenging activities of citrus essential oils and their components:detection using 1,1-diphenyl-2-picrylhydrazyl[J]. J Agric Food Chem, 2000, 48(9): 4156.
[15] Kabir M,Rizkalla S W,Champ M,et al. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice[J]. Behav Brain Res, 2006, 172(2): 240.
[16] Hao C W,Lai W S,Ho C T,et al. Antidepressant-like effect of lemon essential oil is through a modulation in the levels of norepinephrine, dopamine, and serotonin in mice: use of the tail suspension test[J]. J Funct Foods, 2013, 5(1): 370.
[17] LML C,Gonalves E S C,De Almeida A A,et al. Sedative, anxiolytic and antidepressant activities of citrus limon (Burn) essential oil in mice[J]. Pharmazie, 2011, 66(8): 623.
[18] 蘆紅,吳月霞,楊麗嘉,等.川佛手提取物對小鼠的抗抑郁作用[J].鄭州大學(xué)學(xué)報:醫(yī)學(xué)版, 2011, 46(2): 220.
[19] 高洪元,田青.佛手揮發(fā)油的抗抑郁作用機(jī)制探討[J].中國實(shí)驗方劑學(xué)雜志,2012,18(7): 231.
[20] Kim K N,Ko Y J,Yang H M,et al. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis ) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells[J]. Food Chem Toxicol, 2013, 57: 126.
[21] Piccinelli A C,Santos J A,Konkiewitz E C,et al. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from fruits in a neuropathic pain model[J]. Nutr Neurosci, 2015, 18(5): 217.
[22] Richter R,Reu S H V,Konig W A. Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi[J]. Phytochemistry, 2010, 71(11/12): 1371.
[23] Yi L T,Li J,Geng D,et al. Essential oil of Perilla frutescens -induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice[J]. J Ethnopharmacol, 2013, 147(1): 245.
[24] Ji Wei-Wei,Li Rui-Peng,Li Meng ,et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice[J]. Chin J Nat Med, 2014, 12(10): 753.
[25] 林碩,邵平,馬新,等.紫蘇揮發(fā)油化學(xué)成分GC/MS分析及抑菌評價研究[J].核農(nóng)學(xué)報,2009(3):477.
[26] 盧金清,李雨玲,李婷,等. 肉豆蔻揮發(fā)油化學(xué)成分的GC-MS分析[J]. 西北藥學(xué)雜志, 2012, 27(3): 202.
[27] 孫婷婷. 肉豆蔻揮發(fā)油抗抑郁作用及機(jī)制研究[D]. 鄭州:河南中醫(yī)學(xué)院,2014.
[28] Zarghami M,F(xiàn)arzin D,Khalaj L. Evaluation of antidepressant activities of rose oil and geranium oil in the mouse forced-swim test[J]. Behav Pharmacol, 2005, 16(Supplement 1):42.
[29] Maher B,Simmonds M S J,Sami S,et al. Chemical composition and biological activities of polar extracts and essential oil of rose-scented geranium, Pelargonium graveolens[J]. Phytother Res, 2013, 27(8): 1206.
[30] 應(yīng)麗亞. 玫瑰精油化學(xué)成分及其功能性研究[D]. 杭州:浙江大學(xué), 2012.
[31] 秦路平,丁如賢,張衛(wèi)東,等. 積雪草揮發(fā)油成分分析及其抗抑郁作用研究[J]. 第二軍醫(yī)大學(xué)學(xué)報, 1998, 19(2): 186.
[32] Victoria F N,Brahm A D S,Savegnago L,et al. Involvement of serotoninergic and adrenergic systems on the antidepressant-like effect of E. uniflora L. leaves essential oil and further analysis of its antioxidant activity[J]. Neurosci Lett, 2013, 544(24): 105.
[33] Duan D,Chen L,Yang X,et al. Antidepressant-like effect of essential oil isolated from Toona ciliata Roem. var. yunnanensis[J]. J Nat Med, 2015, 69(2): 191.
[34] Sah S P,Mathela C S,Chopra K. Involvement of nitric oxide (NO) signalling pathway in the antidepressant activity of essential oil of Valeriana wallichii Patchouli alcohol chemotype[J]. Phytomedicine, 2011, 18(14): 1269.
[35] Mehta A K,Halder S,Khanna N,et al. The effect of the essential oil of Eugenia caryophyllata in animal models of depression and locomotor activity[J]. Nutr Neurosci, 2013, 16(5):233.
[36] Park H J,Lim E J,Rong J Z,et al. Effect of the fragrance inhalation of essential oil from Asarum heterotropoides on depression-like behaviors in mice[J]. BMC Complement Alternat Med, 2015, 15(1): 1.
[37] Cioanca O,Hancianu M,Mircea C,et al. Essential oils from Apiaceae as valuable resources in neurological disorders: Foeniculi Vulgare Aetheroleum[J]. Ind Crops Prod, 2016, 88: 51.
[38] Han P,Han T,Peng W,et al. Antidepressant-like effects of essential oil and asarone, a major essential oil component from the rhizome of Acorus tatarinowii[J]. Pharm Biol, 2013, 51(5): 589.
[39] 陶桓晟,羅霞,楊志榮,等.南葶藶子油抗抑郁作用的初步研究[J].四川大學(xué)學(xué)報:自然科學(xué)版, 2008, 45(1): 185.
[40] 弓建紅,張艷麗,匡海學(xué),等. GC-MS分析南葶藶子揮發(fā)油成分的研究[J].世界科學(xué)技術(shù)——中醫(yī)藥現(xiàn)代化, 2014(9):1942.
[41] Guzmán-Gutiérrez S L,Bonilla-Jaime H,Gómez-Cansino R,et al. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway[J]. Life Sci, 2015, 128: 24.
[42] Deng X Y,Xue J S,Li H Y,et al. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model[J]. Physiol Behav, 2015, 152(Pt A): 264.
[43] Ww J,Sy W,Zq M,et al. Effects of perillaldehyde on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration[J]. Pharmacol Biochem Behav, 2014, 116(1): 1.
[44] Ito N,Nagai T,Oikawa T,et al. Antidepressant-like effect of l-perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system[J]. Evid Based Complement Alternat Med, 2011,doi:10.1093/ecam/nen045.
[45] Oshima Y,Matsuoka S,Ohizumi Y. Antidepressant principles of Valeriana fauriei roots[J]. Chem Pharm Bull (Tokyo), 1995, 43(1): 169.
[46] Bahi A,Al Mansouri S,Al Memari E,et al. beta-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice[J]. Physiol Behav, 2014, 135: 119.
[47] 徐金勇,李光武,蔡榮鳳,等.丁香酚吸入調(diào)節(jié)小鼠抑郁樣行為及其機(jī)制探討[J].中國神經(jīng)精神疾病雜志,2009,35(7):422.
[48] Norte M C,Cosentino R M,Lazarini C A. Effects of methyl-eugenol administration on behavioral models related to depression and anxiety, in rats[J]. Phytomedicine, 2005, 12(4): 294.
[49] 榮華,董海影,張靜艷,等. β-細(xì)辛醚對抑郁模型大鼠海馬CA3區(qū)超微結(jié)構(gòu)的改變及腦組織ERK蛋白表達(dá)的影響[J].中國醫(yī)學(xué)創(chuàng)新, 2013(36): 10.
[50] 趙春明,張曉杰,董海影,等. β-細(xì)辛醚對抑郁模型大鼠行為及海馬MKP-1,MSK-1,CREB和Bcl-2的影響[J].中國實(shí)驗方劑學(xué)雜志,2013,19(16):272.
[51] 王志恒,張曉杰,韓麗君. β-細(xì)辛醚對抑郁癥模型大鼠海馬區(qū)bcl-2的影響[J].臨床軍醫(yī)雜志, 2013,41(4): 329.
[52] 王俊蘋,董海影,趙春明,等. β-細(xì)辛醚對抑郁模型大鼠行為及生物鐘基因表達(dá)的影響[J].中國實(shí)驗方劑學(xué)雜志,2015,21(2):170.
[53] 高志影,張春,董海影,等.石菖蒲有效成分對抑郁模型大鼠海馬神經(jīng)元的保護(hù)作用[J].中國老年學(xué)雜志,2014,34(4):1000.
[54] 王艷梅.香草醛吸嗅改善C57小鼠抑郁樣行為及其機(jī)制的探索[D].合肥:安徽醫(yī)科大學(xué), 2013.
[55] 許慧.香蘭素吸嗅干預(yù)大鼠抑郁樣行為及腦內(nèi)BDNF、血清Mg2+的研究[D].合肥:安徽醫(yī)科大學(xué),2014.
[56] Porsolt R D,Pichon M L,Jalfre M. Depression: a new animal model sensitive to antidepressant treatment[J]. Nature, 1977, 266(5604): 730.
[57] Steru L,Chermat R,Thierry B,et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology, 1985, 85(3): 367.
[58] 王瓊,買文麗,李翊華,等.自主活動實(shí)時測試分析處理系統(tǒng)的建立與開心散安神鎮(zhèn)靜作用驗證[J].中草藥,2009,40(11):1773.
[59] Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation[J]. Psychopharmacology, 1997, 134(4): 319.
[60] Ponzio F,Achilli G,Calderini G,et al. Depletion and recovery of neuronal monoamine storage in rats of different ages treated with reserpine[J]. Neurobiol Aging, 1984, 5(2): 101.
[61] 陳紅霞,張黎明,薛瑞,等.大鼠嗅球切除抑郁癥動物模型的改進(jìn)與評價[J].中國藥理學(xué)通報, 2011, 27(3): 436.
[62] Fiβler M,Quante A. A case series on the use of lavendula oil capsules in patients suffering from major depressive disorder and symptoms of psychomotor agitation, insomnia and anxiety[J]. Complement Ther Med, 2014, 22(1): 63.
[63] 劉瑤,喬瑜,李玲,等.芳香療法配合灸法治療抑郁癥臨床研究[J].實(shí)用中醫(yī)藥雜志,2009, 25(4): 213.
[64] Bunney W E,Davis J M. Norepinephrine in depressive reactions. A review[J]. Arch Gen Psychiatry, 1965, 13(6): 483.
[65] Coppen A,Shaw D M,Malleson A. Changes in 5-hydroxytryptophan metabolism in depression[J]. Br J Psychiatry, 1965, 111(470): 105.
[66] Andersen H,Braestrup C,Randrup A. Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms[J]. Brain Behav Evol, 1975, 11(5/6): 365.
[67] Catalán R,Gallart J M,Castellanos J M,et al. Plasma corticotropin-releasing factor in depressive disorders[J]. Biol Psychiatry, 1998, 44(1): 15.
[68] Duman R S,Malberg J,Thome J. Neural plasticity to stress and antidepressant treatment[J]. Biol Psychiatry, 1999, 46(9): 1181.
[69] M M,E V,R R,et al. Increased serum interleukin-1-receptor-antagonist concentrations in major depression[J]. J Affect Disord, 1996, 36(1/2): 29.
[70] Berman R M,Cappiello A,Anand A,et al. Antidepressant effects of ketamine in depressed patients[J]. Biol Psychiatry, 2000, 47(4): 351.
[71] Preskorn S H,Baker B,Kolluri S,et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder[J]. J Clin Psychopharmacol, 2008, 28(6): 631.
[72] Elisabetsky E,Brum L F S,Souza D O. Anticonvulsant properties of linalool in glutamate-related seizure models[J]. Phytomedicine, 1999, 6(6): 107.
[73] Brum L F,Elisabetsky E,Souza D. Effects of linalool on[(3)H]MK801 and[(3)H]muscimol binding in mouse cortical membranes[J]. Phytother Res, 2001, 15(5): 422.
[74] Peana A T,Marzocco S,Popolo A,et al. (-)-Linalool inhibits in vitro NO formation: probable involvement in the antinociceptive activity of this monoterpene compound[J]. Life Sci, 2006, 78(7): 719.
[75] Coelho V R,Gianesini J,Von Borowski R,et al. (-)-Linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats[J]. Phytomedicine, 2011, 18(10): 896.
[76] Cho J,Kim Y H,Kong J Y,et al. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus[J]. Life Sci, 2002, 71(5): 591.
[77] Wie M B,Won M H,Lee K H,et al. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures[J]. Neurosci Lett, 1997, 225(2): 93.
[78] Yano S,Suzuki Y,Yuzurihara M,et al. Antinociceptive effect of methyleugenol on formalin-induced hyperalgesia in mice[J]. Eur J Pharmacol, 2006, 553(1/3): 99.
[79] Dhuria S V,Hanson L R,F(xiàn)rey W H. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations[J]. J Pharm Sci, 2010, 99(4): 1654.
[80] Kozlovskaya L,Aboukaoud M,Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route[J]. J Control Release, 2014, 189(36): 133.
[責(zé)任編輯 張寧寧]