侯和濤+程積潤+曲哲+付瑋琪+曲冰+崔士起+石磊+朱文燦+馬天翔
摘 要:為研究新型鋼管混凝土邊緣約束疊合剪力墻的抗震性能,設(shè)計(jì)制作了3片鋼管混凝土邊緣約束疊合剪力墻和1片現(xiàn)澆鋼筋混凝土剪力墻足尺試件進(jìn)行靜力往復(fù)加載試驗(yàn),試驗(yàn)中考慮了3種不同的墻身厚度取值,以考察高厚比對(duì)剪力墻抗震能力的影響.通過試驗(yàn),對(duì)比分析了剪力墻的承載力、延性、剛度及其退化、滯回特性、耗能能力及破壞特征.建立了新型鋼管混凝土邊緣約束疊合剪力墻的承載力計(jì)算模型,計(jì)算結(jié)果與實(shí)測(cè)結(jié)果吻合較好.研究表明:新型鋼管混凝土邊緣約束疊合剪力墻結(jié)合了鋼筋混凝土剪力墻側(cè)向剛度和承載力大與鋼管混凝土邊緣約束延性好的優(yōu)勢(shì),其承載力、剛度和耗能能力較現(xiàn)澆鋼筋混凝土剪力墻有所提高;在所試驗(yàn)的參數(shù)范圍內(nèi),高厚比對(duì)剪力墻的力學(xué)性能影響不大.
關(guān)鍵詞:鋼管混凝土;疊合剪力墻;擬靜力試驗(yàn);高厚比;抗震性能
中圖分類號(hào):TU375 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674-2974(2017)05-0027-10
Abstract:To study the seismic performance of a new concrete filled tube-confined sandwich shear wall (CFT-SSW), cyclic loading tests were carried out on three CFT-SSW specimens with different depth-thickness ratios and one conventional concrete shear wall specimen for comparison. The load-carrying capacity, ductility, stiffness and their degradation, hysteretic and energy dissipation characteristics, and failure modes of the specimens were investigated and compared. Equations for prediction of the strength of CFT-SSWs were also proposed. The calculated strengths were in good agreement with the test results. The results show that CFT-SSWs exhibited both the high lateral stiffness and strength due to reinforced concrete shear walls and the superior ductility due to concrete filled tubes. The strength, ductility, and stiffness of CFT-SSW specimens were greater than those of the cast-in-situ concrete shear wall specimens. In addition, the depth-thickness ratio has only marginal effects on the seismic behavior of the CFT-SSWs within the test range of the current tests.
Key words:concrete filled steel tube; sandwich shear wall; quasi-static test; depth-thickness ratio; seismic behavior
隨著我國建筑產(chǎn)業(yè)現(xiàn)代化的發(fā)展,高層建筑(特別是高層住宅)中預(yù)制剪力墻的應(yīng)用較為廣泛.國內(nèi)預(yù)制鋼筋混凝土剪力墻的研究主要針對(duì)全預(yù)制混凝土剪力墻、半預(yù)制混凝土剪力墻以及疊合式剪力墻,開展了大量的試驗(yàn)研究和數(shù)值分析,并對(duì)裝配式剪力墻進(jìn)行了抗震性能試驗(yàn)研究,得到了大量裝配式剪力墻的抗震性能試驗(yàn)數(shù)據(jù)[1-5].蔣慶等提出了疊合式剪力墻的力學(xué)計(jì)算模型并對(duì)其進(jìn)行耗能分析,計(jì)算結(jié)果與實(shí)測(cè)結(jié)果符合良好[6-7];葉獻(xiàn)國等對(duì)疊合板式剪力墻進(jìn)行了水平承載力試驗(yàn)研究、抗震性能試驗(yàn)分析、不同軸壓比下抗震性能試驗(yàn)分析,并取得了大量試驗(yàn)數(shù)據(jù)[8-10];文獻(xiàn)[11]中對(duì)邊緣約束構(gòu)件內(nèi)配置圓鋼管的剪力墻進(jìn)行了擬靜力試驗(yàn),研究了邊緣約束構(gòu)件的配箍率和軸壓比對(duì)其抗震性能的影響;其他學(xué)者關(guān)于鋼管混凝土邊緣約束構(gòu)件的研究也取得了不少成果[12-17].本文引入鋼管混凝土作為疊合剪力墻的邊緣約束構(gòu)件,形成新型的帶鋼管混凝土邊緣約束的疊合剪力墻(Concrete Filled Tube-confined Sandwich Shear Wall簡稱CFT-SSW).CFT-SSW的豎向鋼筋可以搭接連接,省去了鋼筋套筒,水平鋼筋直接與鋼管焊接,兩側(cè)的預(yù)制混凝土面板與鋼管在工廠預(yù)制而成;鋼管和混凝土板運(yùn)抵現(xiàn)場(chǎng)吊裝就位固定后,可以直接澆注混凝土,節(jié)省了大量的人工與模板支設(shè)工作,降低了成本.目前,對(duì)于疊合墻和CFT邊緣約束構(gòu)件的研究比較多,但尚沒有對(duì)于CFT-SSW的研究文獻(xiàn),其抗震性能有待研究.
1 試驗(yàn)概況
1.1 試件制作
設(shè)計(jì)制作了4片剪力墻試件,包括1片現(xiàn)澆剪力墻SW-1和3片CFT-SSW墻SW-2,SW-3和SW-4.試件高度均為3 000 mm,寬度為1 200 mm,水平荷載加載點(diǎn)距離剪力墻底面2 850 mm,剪跨比為2.38,試驗(yàn)軸壓比為0.15,墻身厚度分別為160,200和250 mm.墻身鋼筋均為HRB400級(jí)變形鋼筋,水平向配筋率為0.41%,豎向配筋率為0.57%;SW1端部暗柱縱筋配筋率2.01%,箍筋體積配箍率0.91%;SW-2,SW-3和SW-4的端部鋼管分別為:160 mm×200 mm×4 mm,200 mm×200 mm×4.5 mm,250 mm×200 mm×5 mm,均采用Q235B鋼材,預(yù)制與現(xiàn)澆混凝土均為C30.CFT-SSW的兩塊預(yù)制混凝土面板間采用2 mm厚的Q235B鋼板拉結(jié)帶,鋼板拉結(jié)帶中間開40 mm直徑圓孔,以使兩側(cè)現(xiàn)澆混凝土連通,增強(qiáng)整體性.試件的幾何尺寸、配筋和構(gòu)造如圖1所示.
1.2 加載裝置及加載方式
試驗(yàn)于中國地震局工程力學(xué)研究所恢先地震工程綜合實(shí)驗(yàn)室進(jìn)行.首先進(jìn)行預(yù)加載使試件各部分充分接觸并檢查儀器的可靠性,然后分2,3次加載至預(yù)定的軸壓力,并使軸壓力在整個(gè)試驗(yàn)過程中保持恒定.采用1 000 kN電液伺服作動(dòng)器施加水平荷載.試驗(yàn)過程中采用鋼板折架進(jìn)行面外約束,鋼板折架可方便地與試驗(yàn)體或其加載裝置緊密連接而不留縫隙,能夠有效地限制面外變形的發(fā)展[18].試驗(yàn)加載裝置見圖2.
試驗(yàn)加載采用位移控制,加載制度如圖3所示.采用7級(jí)加載,具體的加載位移取值如下.預(yù)加載:層間位移角(D1/HD1為試件的頂點(diǎn)位移;H為試件的凈高度,H=2 850 mm.)為1/2 000,循環(huán)1次;剪力墻結(jié)構(gòu)彈性層間位移角限值1/1 000,循環(huán)2次;框架結(jié)構(gòu)彈性層間位移角限值1/550,循環(huán)一次;日本抗震設(shè)計(jì)第一水準(zhǔn)層間位移角限值1/200,循環(huán)一次;剪力墻結(jié)構(gòu)彈塑性層間位移角限值1/120,循環(huán)2次;框架結(jié)構(gòu)彈塑性層間位移角限值1/50,循環(huán)一次;層間位移角1/30,循環(huán)一次.以觀察到墻體下端截面出現(xiàn)肉眼可見的裂縫確定為開裂荷載Fc,采用基于等效彈塑性屈服法確定屈服荷載Fy,以骨架曲線上荷載的峰值點(diǎn)作為峰值荷載Fm,以峰值荷載的85%作為極限荷載Fu對(duì)應(yīng)的位移作為極限位移.
1.3 位移測(cè)量
位移計(jì)布置如圖4所示.
在加載梁中部布置水平位移計(jì)D1,以測(cè)量整個(gè)墻體的水平位移;在墻體中部沿著作動(dòng)器方向布置水平位移計(jì)D2,以測(cè)量剪力墻的水平位移;在地梁的中部布置位移計(jì)D3,D4,以監(jiān)控剪力墻底座是否發(fā)生平動(dòng)滑移;在地梁的上部布置位移計(jì)D5,D6,以監(jiān)控地梁的轉(zhuǎn)動(dòng)滑移.
1.4 材性試驗(yàn)
實(shí)測(cè)C30混凝土預(yù)制部分的立方體抗壓強(qiáng)度平均值47.6 MPa,現(xiàn)澆部分33.81 MPa,HRB400鋼筋和Q235B鋼板的力學(xué)性能實(shí)測(cè)值見表1.
2 試驗(yàn)現(xiàn)象及破壞模式
現(xiàn)澆混凝土剪力墻SW-1的裂縫數(shù)量相對(duì)較少,裂縫主要分布在墻高的1/2以下,當(dāng)水平荷載較小時(shí),試件保持為彈性,未出現(xiàn)明顯裂縫.當(dāng)頂點(diǎn)位移角為1/610 (對(duì)應(yīng)的水平力為245.75 kN)左右時(shí),首先在剪力墻右下部與暗柱的交界處觀察到明顯的水平裂縫,如圖5(a)所示;隨著荷載增大,裂縫逐漸向墻身擴(kuò)展,當(dāng)頂點(diǎn)位移角為1/200 (對(duì)應(yīng)的水平力為424.97 kN)左右時(shí),裂縫變寬加深,底部水平裂縫最寬達(dá)到0.30 mm,裂縫由剪力墻左下部與暗柱的交界處沿墻體高度方向延伸;當(dāng)頂點(diǎn)位移角為1/120時(shí),墻身底座混凝土出現(xiàn)碎落跡象,墻身裂縫增多,且集中分布于墻身下半部分;當(dāng)頂點(diǎn)位移角為1/75時(shí),荷載達(dá)到峰值荷載431.71 kN;當(dāng)頂點(diǎn)位移角為1/68時(shí),荷載下降至極限承載力,同時(shí)墻身底部兩端的混凝土剝落嚴(yán)重,受力鋼筋彎曲外露,試驗(yàn)結(jié)束,試件主要發(fā)生彎曲型破壞.
SW-2加載初期未出現(xiàn)裂縫,當(dāng)位移角為正向1/550時(shí),距地梁頂面250 mm高處出現(xiàn)肉眼可見的水平裂縫;當(dāng)位移角為正向1/120時(shí),達(dá)到峰值承載力561.68 kN,此時(shí)裂縫已基本貫穿整個(gè)剪力墻;當(dāng)頂點(diǎn)位移角為正向1/50時(shí),試件承載力急劇下降,試件裂縫數(shù)量急劇增加,布滿整個(gè)混凝土剪力墻.當(dāng)試件承載力下降到峰值承載力的85%,即477.42 kN時(shí),極限位移角約為1/49.6,試件發(fā)生彎曲破壞.在CFT-SSW中,為了增強(qiáng)外側(cè)預(yù)制混凝土面板之間的拉結(jié),在剪力墻中央沿豎向增設(shè)貫穿墻高的Z形鋼板拉結(jié)帶,當(dāng)位移角為正向1/200時(shí),沿該鋼板拉結(jié)帶自下而上形成細(xì)小裂縫;當(dāng)頂點(diǎn)位移角為正向1/120時(shí),鋼板拉結(jié)帶裂縫加寬,最大裂縫寬度達(dá)到0.2 mm,形成一條豎向裂縫帶并有少量混凝土剝落;當(dāng)位移角為正向1/50時(shí),沿鋼板拉結(jié)帶有大面積混凝土脫落;當(dāng)位移角為正向1/30時(shí),鋼板拉結(jié)帶處混凝土整體脫落,鋼板拉結(jié)帶外露.SW-3和SW-4的破壞現(xiàn)象與SW-2基本相同,破壞以彎曲型破壞為主,并伴隨鋼板拉結(jié)帶處的豎向裂縫.
在本文試驗(yàn)中,CFT-SSW中混凝土墻身的裂縫分布與現(xiàn)澆混凝土剪力墻(SW-1)有較大差異,主要表現(xiàn)為裂縫數(shù)量相對(duì)較多,分布范圍廣,幾乎遍布整個(gè)鋼管混凝土剪力墻,這主要與Z形鋼板拉結(jié)帶的構(gòu)造有關(guān);由于Z形鋼板拉結(jié)帶貫穿墻身全高,Z形鋼板附近成為墻身的薄弱環(huán)節(jié),因而混凝土墻身沿著Z形鋼板拉結(jié)帶發(fā)生嚴(yán)重破壞,盡管如此,從圖5的照片可以看出CFT-SSW中的鋼管已經(jīng)發(fā)生了外鼓,外鼓位移達(dá)到15~20 mm,說明除了Z形板處薄弱層的破壞外,CFT-SSW的破壞仍主要集中在試件底部,為彎曲破壞.在隨后的研究中,應(yīng)注意改進(jìn)預(yù)制混凝土板的拉結(jié)構(gòu)造,避免形成明顯的薄弱部位.
3 試驗(yàn)結(jié)果與分析
3.1 承載力與位移
試件的承載力與相應(yīng)的位移見表2.由表2可以看出,CFT-SSW的開裂荷載均大于現(xiàn)澆混凝土剪力墻;屈服荷載和極限荷載也有明顯提高;3個(gè)CFT-SSW試件的延性系數(shù)m比現(xiàn)澆混凝土剪力墻分別提高了37.41%,38.55%和38.78%;3個(gè)CFT-SSW試件的延性系數(shù)m′比現(xiàn)澆混凝土剪力墻分別提高了36.15%,29.39%和40.54%;屈強(qiáng)比也均比現(xiàn)澆混凝土剪力墻小,說明從明顯屈服階段到極限荷載階段的發(fā)展過程很長,這對(duì)于實(shí)現(xiàn)“大震不倒”的抗震性能目標(biāo)是有利的.SW-2與SW-1相比,極限位移角為1/50時(shí),水平荷載明顯高于SW-1;在配鋼率相同的條件下,CFT-SSW隨著高厚比的減小,承載力逐漸增大.
3.2 滯回曲線
各試件的水平荷載位移角滯回曲線如圖6所示,SW-1在屈服前,滯回環(huán)狹長,滯回環(huán)面積很小;試件屈服后,滯回環(huán)面積明顯增大,并在加載后期滯回環(huán)有向反S形過渡的趨勢(shì),滯回環(huán)出現(xiàn)一定程度的捏攏現(xiàn)象.試件SW-2,SW-3和SW-4的滯回曲線也表現(xiàn)出比較明顯的捏攏現(xiàn)象,此處由于Z形板的不良構(gòu)造,對(duì)CFT-SSW的耗能能力造成了一定的影響.
3.3 骨架曲線
根據(jù)《建筑抗震試驗(yàn)方法規(guī)程》(JGJ 101-96)規(guī)定,圖7給出了骨架曲線特征點(diǎn)的確定方法,定義結(jié)構(gòu)的極限荷載Fu=0.85Fm,相應(yīng)的位移為極限位移Δu;圖8給出了一種屈服點(diǎn)定義的簡化方法,最遠(yuǎn)點(diǎn)法:曲線上距離原點(diǎn)和峰值點(diǎn)連線最遠(yuǎn)的點(diǎn)為屈服點(diǎn);如果有多個(gè)點(diǎn),一般可按照這些點(diǎn)的荷載取平均,對(duì)應(yīng)到曲線上得到屈服點(diǎn).圖8中在構(gòu)件力變形曲線上,以原點(diǎn)與峰值點(diǎn)連線的平行線與力變形曲線的切點(diǎn)為屈服點(diǎn),且要求平移的距離d值不得過小,當(dāng)有多個(gè)切點(diǎn)時(shí)一般取d值最大的點(diǎn)為屈服點(diǎn):
由圖9可見,各試件初始剛度基本一致,墻體開裂前,骨架曲線基本為直線,開裂后,墻體的剛度開始出現(xiàn)明顯的下降,墻體進(jìn)入彈塑性工作階段,墻體剛度降低,荷載增長減緩,達(dá)到峰值荷載后,曲線開始下降.SW-2,SW-3和SW-4的峰值荷載均高于SW-1,分別提高了34.10%,50.97%和65.04%.
采用文獻(xiàn)[13]中的鋼管混凝土邊框組合剪力墻承載力計(jì)算方法,計(jì)算模型見圖10,計(jì)算公式如下.
由表3可見,CFT-SSW的承載力計(jì)算值與實(shí)測(cè)值相差2%~6%,兩者吻合較好.
3.4 剛度退化
剛度退化曲線上的特征點(diǎn)包括初始點(diǎn)、開裂點(diǎn)、屈服點(diǎn)、峰值點(diǎn)和極限點(diǎn),根據(jù)剪力墻衰減的3個(gè)階段,試件的初始彈性剛度、開裂點(diǎn)割線剛度、屈服點(diǎn)割線剛度、峰值點(diǎn)割線剛度和極限點(diǎn)割線剛度退化與位移關(guān)系見圖11.可見各個(gè)試件的剛度退化過程類似,隨著位移的增加,試件的剛度降低,鋼管混凝土邊緣約束剪力墻的剛度始終大于現(xiàn)澆混凝土剪力墻.
3.5 耗能能力
本文采用等效黏滯阻尼系數(shù)ξe來評(píng)價(jià)結(jié)構(gòu)的耗能能力.以圖12為例,滯回環(huán)的等效黏滯阻尼系數(shù)
試件的耗能能力如表4所示.在峰值荷載時(shí),SW-1的等效黏滯阻尼系數(shù)為0.382,與SW-2(0.384)相當(dāng),但大于SW-3(0.370)和SW-4(0.372),此時(shí)SW-1的耗能能力稍優(yōu)于CFT-SSW;在極限荷載時(shí),CFT-SSW的等效黏滯阻尼系數(shù)均大于SW-1,此時(shí)CFT-SSW的耗能能力優(yōu)于SW-1;高厚比對(duì)試件耗能能力影響不大,3個(gè)試件等效黏滯阻尼系數(shù)之間的偏差不超過10%.
4 結(jié) 論
通過本文的試驗(yàn)和相關(guān)討論分析,可以得到以下結(jié)論.
1)現(xiàn)澆混凝土短肢剪力墻的裂縫主要分布在墻高的1/2以下,破壞發(fā)生在墻體底部,以彎曲破壞為主;CFT-SSW的裂縫雖然幾乎貫穿整個(gè)墻體,但其破壞仍以底部的彎曲破壞為主.
2)CFT-SSW結(jié)合了鋼筋混凝土剪力墻側(cè)向剛度和承載力大與鋼管混凝土邊緣約束延性好的優(yōu)勢(shì),其承載力、剛度和延性均較現(xiàn)澆鋼筋混凝土剪力墻有所提高.
3)在所試驗(yàn)的參數(shù)范圍內(nèi),高厚比對(duì)剪力墻的力學(xué)性能影響不大.通過現(xiàn)有的計(jì)算公式,可以比較準(zhǔn)確地估算CFT-SSW的承載力.
參考文獻(xiàn)
[1] 初明進(jìn),劉繼良,崔會(huì)趁,等.不同構(gòu)造豎縫的裝配式空心模板剪力墻抗震性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2014,35(1):13-22.
CHU Mingjin, LIU Jiliang, CUI Huichen, et al. Experimental study on seismic behaviors of assembled monolithic concrete shear walls built with precast two-way hollow slabs with various details[J]. Journal of Building Structures, 2014,35(1):13-22.(In Chinese)
[2] 初明進(jìn),劉繼良,崔會(huì)趁,等.裝配整體式雙向孔空心模板剪力墻受剪性能試驗(yàn)研究[J].工程力學(xué),2013,30(7):219-229.
CHU Mingjin, LIU Jiliang, CUI Huichen, et al. Experimental study on shear behaviors of assembled monolithic concrete shear walls built with precast two-way hollow slabs[J]. Engineering Mechanics, 2013,30(7):219-229.(In Chinese)
[3] 劉家彬,陳云鋼,郭正興,等.豎向新型連接裝配式剪力墻抗震性能試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(4):16-24.
LIU Jiabin, CHEN Yungang, GUO Zhengxing, et al. Test on the seismic performance of precast shear wall with vertical reinforcement lapping in Pore-forming on steel plate[J].Journal of Hunan University:Nataral Sciences, 2014,41(4):16-24.(In Chinese)
[4] 薛偉辰,古徐莉,胡翔,等. 螺栓連接裝配整體式混凝土剪力墻低周反復(fù)試驗(yàn)研究[J]. 土木工程學(xué)報(bào),2014,47(S2):221-226.
XUE Weichen, GU Xuli, HUXiang, et al. Experimental study of assembled monolithic concrete shear wall with bolted connection under low reversed cyclic loading[J].China Civil Engineering Journal, 2014,47(S2):221-226.(In Chinese)
[5]朱張峰,郭正興,湯磊,等.考慮不同預(yù)拉力的新型混合裝配式混凝土剪力墻抗震性能試驗(yàn)[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2015,42(11):41-48.
ZHU Zhangfeng, GUO Zhengxing, TANG Lei, et al. Seismic performance experiments on new hybrid precast concrete shear walls under different prestress forces[J]. Journal of Hunan University:Natural Sciences, 2015,42(11):41-48.(In Chinese)
[6] 蔣慶,葉獻(xiàn)國,種迅.疊合板式剪力墻的力學(xué)計(jì)算模型[J].土木工程學(xué)報(bào),2012,45(1):8-13.
JIANG Qing, YE Xianguo, CHONG Xun. Calculation model for superimposed slab shear walls[J]. China Civil Engineering Journal,2012,45(1):8-13.(In Chinese)
[7] 蔣慶,葉獻(xiàn)國,連星,等.疊合板式剪力墻的耗能分析[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2010,31(4):483-487.
JIANG Qing, YE Xianguo, LIAN Xing, et al. Analysis on energy dissipation of super imposed slab shear walls[J]. Journal of Jiangsu University:Natural Science, 2010,31(4): 483-487.(In Chinese)
[8] 葉獻(xiàn)國,張麗軍,王德才,等.預(yù)制疊合板式混凝土剪力墻水平承載力實(shí)驗(yàn)研究[J].合肥工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(8):1215-1218.
YE Xianguo, ZHANG Lijun, WANG Decai, et al. Experimental study on horizontal carrying capacity of super imposed slab shear walls[J]. Journal of Hefei University of Technology, 2009,32(8):1215-1218.(In Chinese)
[9] 連星,葉獻(xiàn)國,王德才,等.疊合板式剪力墻的抗震性能試驗(yàn)分析[J].合肥工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(8):1219-1223.
LIAN Xing, YE Xianguo, WANG Decai, et al. Experimental analysis of seismic behavior of super imposed slab shear walls[J].Journal of Hefei University of Technology,2009,32(8):1219-1223.(In Chinese)
[10]任軍,葉獻(xiàn)國.不同軸壓比下疊合板式剪力墻的抗震性能研究[J].結(jié)構(gòu)工程師,2010,26(5):66-72.
REN Jun, YE Xianguo. Seismic behavior research on the superimposed slab shear walls for different axial-load ratios[J].Structural Engineers, 2010,26(5): 66-72.(In Chinese)
[11]錢稼茹,江棗,紀(jì)曉東.高軸壓比鋼管混凝土剪力墻抗震性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào), 2010,31(7):5-13.
QIAN Jiaru, JIANG Zao, JI Xiaodong. Experimental study on seismic behavior of steel tube-reinforced concrete composite shear walls with high axial compressive load ratio[J]. Journal of Building Structures, 2010,31(7):5-13.(In Chinese)
[12]錢稼茹,魏勇,趙作周,等.高軸壓比鋼骨混凝土剪力墻抗震性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2008,29(2):43-50.
QIAN Jiaru, WEI Yong, ZHAO Zuozhou, et al. Experimental study on seismic behavior of SRC shear walls with high axial force ratio[J]. Journal of Building Structures, 2008,29(2):43-50.(In Chinese)
[13]方小丹,李青,韋宏,等.鋼管高強(qiáng)混凝土剪力墻壓彎性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2013,34(8):72-81.
FANG Xiaodan, LI Qing, WEI Hong, et al. Experimental study on axial-flexural behavior of shear walls with steel tube-confined high performance concrete[J]. Journal of Building Structures,2013,34(8):72-81.(In Chinese)
[14]曹萬林,王敏,王紹合,等.矩形鋼管混凝土邊框組合剪力墻及筒體結(jié)構(gòu)抗震研究[J].工程力學(xué),2008,25(S1):58-70.
CAO Wanlin, WANG Min, WANG Shaohe, et al. Aseismic research of composite shear walls with rectangular concrete filled steel tube columns[J]. Engineering Mechanics, 2008,25(S1):58-70.(In Chinese)
[15]方小丹,韋宏,劉慶輝.鋼管高強(qiáng)混凝土剪力墻抗震性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào),2015,36(9):1-8.
FANG Xiaodan, WEI Hong, LIU Qinghui. Experimental study on seismic behavior of shear walls with steel tube-confined high strength concrete[J]. Journal of Building Structures, 2015,36(9):1-8.(In Chinese)
[16]QIAN Jiaru, JIANG Zao, JI Xiaodong. Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading[J]. Engineering Structures,2012,36:173-184.
[17]HU Hongsong, NIE Jianguo, FAN Jiansheng, et al. Seismic behavior of CFST-enhanced steel plate-reinforced concrete shear walls[J].Journal of Constructional Steel Research,2016,119: 176-189.
[18]解晉珍,曲哲,王濤.折架在平面結(jié)構(gòu)試驗(yàn)面外約束中的應(yīng)用[C]//第24屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ冊(cè)), 北京:工程力學(xué),2015:152-156.
XIE Jinzhen, QU Zhe, WANG Tao. Pantographs for out-of-plane constraints in structural experiments[C]//Proceedings of the Twenty-fourth National Conference on Structural Engineering(Volume I).Beijing: Engineering Mechanics Press,2015:152-156.(In Chines)