国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

滇西小龍?zhí)兜V區(qū)始新世巖漿巖的成因及其地質(zhì)意義

2017-06-05 14:19:36王根厚
關(guān)鍵詞:埃達(dá)克斑巖鋯石

周 潔, 王根厚, 張 莉

(1.中國地質(zhì)大學(xué) 地球科學(xué)與資源學(xué)院,北京 100083;2.地球系統(tǒng)科學(xué),延世大學(xué),韓國 首爾 120749)

滇西小龍?zhí)兜V區(qū)始新世巖漿巖的成因及其地質(zhì)意義

周 潔1, 王根厚1, 張 莉2

(1.中國地質(zhì)大學(xué) 地球科學(xué)與資源學(xué)院,北京 100083;2.地球系統(tǒng)科學(xué),延世大學(xué),韓國 首爾 120749)

云南省賓川縣小龍?zhí)兜V區(qū)是一個(gè)大型斑巖型銅多金屬礦床,銅礦體主要產(chǎn)于斑巖體及其外圍接觸帶,礦化與斑巖體密切相關(guān)。對礦區(qū)主要侵入巖開展全巖地球化學(xué)、鋯石LA-ICP-MS U-Pb年代學(xué)和Hf同位素研究,獲得含礦二長斑巖的206Pb/238U加權(quán)平均年齡為(35.98±0.16) Ma,屬于始新世巖漿活動(dòng)的產(chǎn)物。斑巖體SiO2質(zhì)量分?jǐn)?shù)變化較大(64.81%~69.6%),高鉀(4.36%~10.95%)和堿(Na2O+K2O>8%),A/CNK為0.99~1.36,屬高鉀的堿性—過堿性、準(zhǔn)鋁質(zhì)—過鋁質(zhì)斑巖;富集大離子親石元素(K、Rb、Ba、Sr等)、虧損高場強(qiáng)元素(Ta、Nb、P、Ti等),富集輕稀土元素、虧損重稀土元素;雖被劃入富堿侵入巖及A型花崗巖,但具C型埃達(dá)克巖地球化學(xué)特征。斑巖體鋯石εHf(t)值為-26.93~1.66,地殼模式年齡為1 009~4 141 Ma,顯示斑巖體來源于下地殼物質(zhì)的部分熔融,并有幔源物質(zhì)的加入。結(jié)合區(qū)域演化特征,認(rèn)為小龍?zhí)栋邘r體形成于造山期后的拉張環(huán)境,陸陸碰撞擠壓后應(yīng)力松弛,巖漿沿?cái)嗔鸭按渭墧嗔焉锨?,進(jìn)而形成銅多金屬礦床。

云南小龍?zhí)?;始新世;斑巖;鋯石U-Pb;LA-MC-ICP-MS

三江地區(qū)富堿侵入巖帶(亦稱哀牢山—金沙江富堿侵入巖帶)是世界上著名的富堿侵入巖帶之一,也是中國最重要的有色金屬和貴金屬多金屬成礦帶之一,區(qū)內(nèi)構(gòu)造巖漿活動(dòng)頻繁而強(qiáng)烈,成礦條件優(yōu)越,找礦潛力巨大,對富堿斑巖成因機(jī)制及其與成礦的關(guān)系研究受到了密切關(guān)注[1-5]。關(guān)于三江地區(qū)出露的與成礦相關(guān)的富堿侵入巖體的成因類型一直存在爭議:一種觀點(diǎn)認(rèn)為該區(qū)富堿斑巖體為A 型花崗巖,其巖石類型、元素地球化學(xué)特征及構(gòu)造背景與世界A型花崗巖極為相似[6-11],認(rèn)為其形成主要是在非造山的環(huán)境下以干熔融為主[12-13];另一種觀點(diǎn)認(rèn)為該區(qū)斑巖體具C型埃達(dá)克巖特征,來源于加厚的下地殼底部[14-16]。小龍?zhí)兜V區(qū)斑巖體(成礦母巖)屬馬廠箐-小龍?zhí)?華坪北東向斑巖亞帶,是金沙江-哀牢山喜馬拉雅期富堿侵入巖帶的重要組成部分[17],淺成斑巖(二長斑巖及花崗斑巖等)為主要賦礦巖石。小龍?zhí)兜V區(qū)始新世侵入巖體研究程度較低,正確判斷其成因類型,對于分析其礦床成因,構(gòu)建成礦模式均具有重要意義。本文運(yùn)用鋯石U-Pb年代學(xué)、元素地球化學(xué)以及Lu-Hf 同位素方法研究礦區(qū)內(nèi)中酸性侵入巖體,以期探討巖體侵位時(shí)代、巖漿來源及構(gòu)造背景對成礦的指示意義。

1 地質(zhì)背景

小龍?zhí)躲~礦區(qū)地處揚(yáng)子地塊西南邊緣活動(dòng)帶,緊靠程?!e川斷裂,處于大致平行且緊密分布的斷層與褶皺相間的南北向構(gòu)造體系(圖1-A)。

礦區(qū)地層主要為上三疊統(tǒng)白土田組(T3b),根據(jù)巖性組成特征,將白土田組分為5段,5個(gè)巖性段對稱分布,形成礦區(qū)筌麻箐—小龍?zhí)断蛐?,礦體主要產(chǎn)于向斜的揚(yáng)起端。礦床位于東西向之核桃箐斷裂兩側(cè),其形態(tài)及分布受近南北向的斷裂及筌麻箐—小龍?zhí)断蛐笨刂?,產(chǎn)狀與斑巖體產(chǎn)狀基本一致,走向近南北向展布,傾向北西,多以脈狀產(chǎn)出(圖1-B)。區(qū)域巖漿活動(dòng)頻繁,具多期性。小龍?zhí)兜V區(qū)斑巖體是一套由二長斑巖、花崗斑巖組成的復(fù)合巖體,其中以紫灰色石英二長斑巖為主,銅礦化較好(圖1-C、D),巖體內(nèi)普遍發(fā)育自交代作用和熱液蝕變作用[18-21]。

2 樣品及測試

2.1 樣品特征

U-Pb年齡測定的樣品取自礦區(qū)內(nèi)沿核桃箐斷層廣泛分布的主要含礦斑巖體——石英二長斑巖,地球化學(xué)樣品取自礦區(qū)石英二長斑巖、黑云角閃石英二長斑巖及花崗斑巖(圖1-B)。

含礦石英二長斑巖呈紫灰色,多為斑狀結(jié)構(gòu),塊狀構(gòu)造(圖1-C)。斑晶主要由斜長石、鉀長石、石英、角閃石、黑云母構(gòu)成,粒度為0.1~5 mm。斜長石為中長石,其質(zhì)量分?jǐn)?shù)(w)約為25%,呈半自形寬板狀,可見輕微絹云母化、高嶺土化,多見隱約環(huán)帶。鉀長石為正長石,質(zhì)量分?jǐn)?shù)約為20%,呈半自形板狀,可見輕微高嶺土化?;|(zhì)內(nèi)長英質(zhì)粒徑一般<0.05 mm,質(zhì)量分?jǐn)?shù)為40%~45%,石英含量稍高,與鱗片狀黑云母、柱粒狀角閃石均零散分布(圖1-D)。

2.2 測試方法

鋯石單礦物分選工作采用常規(guī)重力及電磁分選法,在河北省區(qū)調(diào)隊(duì)實(shí)驗(yàn)室完成。在顯微鏡下挑選裂紋較少、透明度好、干凈的鋯石,交由北京凱德正科技有限公司制成環(huán)氧樹脂樣品靶;在中國科學(xué)院地質(zhì)與地球物理研究所電子探針實(shí)驗(yàn)室完成透射光、反射光和陰極發(fā)光(CL)圖像的拍攝。使用UP193-FX ArF準(zhǔn)分子激光器(美國ESI公司生產(chǎn))和Neptune多接收器電感耦合等離子體質(zhì)譜儀(Thermo Fisher公司生產(chǎn)),在天津地質(zhì)礦產(chǎn)研究所完成鋯石LA-MC-ICP-MSU-Pb同位素分析,激光剝蝕束斑直徑為50 μm[22],其中U-Pb同位素分餾校正使用GJ-1作為外部鋯石年齡標(biāo)準(zhǔn),普通鉛校正使用208Pb校正法,鋯石Pb、U、Th含量計(jì)算使用NIST612玻璃標(biāo)樣,數(shù)據(jù)處理使用ICPMSDataCal程序[23],平均值計(jì)算和U-Pb諧和圖繪制使用Isoplot程序[24]。

圖1 小龍?zhí)栋邘r型銅礦區(qū)地質(zhì)略圖Fig.1 Simplified geological map of the Xiaolongtan porphyry copper deposit(A)區(qū)域地質(zhì)略圖;(B)礦區(qū)地質(zhì)略圖;(C)礦區(qū)始新世石英二長斑巖野外露頭;(D)礦區(qū)始新世石英二長斑巖顯微照片(正交偏光)。Bi.黑云母;Pl.斜長石;Q.石英;Or.正長石

全巖主元素、痕量元素和稀土元素測試分析是在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所實(shí)驗(yàn)室完成。選取新鮮原巖樣品粉碎至200目,主元素的測試采用荷蘭PANalytical公司生產(chǎn)的X射線熒光光譜儀(Axios max X)完成,其檢出限(質(zhì)量分?jǐn)?shù))為0.05%~0.1%;稀土元素和痕量元素的測試,運(yùn)用的是等離子體質(zhì)譜儀(ICP-MS,X Serise 2,由美國Thermor Fisher公司生產(chǎn)),其檢出限(質(zhì)量分?jǐn)?shù))為0.1×10-6~1×10-6。

鋯石Hf同位素分析點(diǎn)均位于鋯石U-Pb同位素分析點(diǎn)附近(圖2),測試工作在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所完成,采用了Newwave UP213激光剝蝕系統(tǒng)和Finnigan Neptune型多接收器等離子體質(zhì)譜儀,激光剝蝕束斑直徑44 μm。本實(shí)驗(yàn)采用GJ-1作為標(biāo)準(zhǔn)鋯石,用于檢測實(shí)驗(yàn)數(shù)據(jù)。GJ-1的Hf同位素質(zhì)量分?jǐn)?shù)為0.282 012±0.000 017(2σ,N=24),與文獻(xiàn)記載的參考值[25]在誤差范圍內(nèi)一致。

2.3 分析結(jié)果

2.3.1 鋯石U-Pb同位素特征

小龍?zhí)兜V區(qū)含礦石英二長斑巖中的鋯石普遍為透明柱狀或粒狀,自形程度相對較高,長徑為100~300 μm;wTh/wU比值一般為0.15~ 0.42(表1),明顯大于0.1,平均值為0.26;可見典型的巖漿振蕩環(huán)帶結(jié)構(gòu)(圖2)。本次研究分析了二長斑巖樣品的30顆鋯石(表1),30個(gè)分析點(diǎn)均在和諧線上或其附近,計(jì)算得出諧和度在95%以上,表明鋯石未受明顯的后期熱事件影響。被測鋯石點(diǎn)的206Pb/238U年齡為35~38 Ma,變幅較小,其加權(quán)平均值為(35.93±0.16) Ma(2σ,MSWD=1.17),顯示小龍?zhí)兜V區(qū)斑巖體為古近紀(jì)始新世巖漿活動(dòng)的產(chǎn)物。小龍?zhí)兜V區(qū)年代學(xué)研究程度較低,與附近研究程度較高的馬廠箐斑巖型銅礦區(qū)相比,此結(jié)果也與前人研究結(jié)果一致[26-28]。根據(jù)斑巖型銅礦成礦規(guī)律[29-30],礦區(qū)富堿侵入巖體與斑巖型銅鉬礦化同屬一個(gè)斑巖成礦系統(tǒng),即成巖略早于成礦,但為同期產(chǎn)物,所以礦區(qū)銅礦床的形成時(shí)間為35~38 Ma B.P.。

表1 小龍?zhí)兜V區(qū)石英二長斑巖樣品鋯石LA MC ICP MSU Pb同位素分析結(jié)果

圖2 小龍?zhí)兜V區(qū)石英二長斑巖樣品鋯石代表性陰極發(fā)光圖像及鋯石U-Pb諧和圖、206Pb/238U年齡圖Fig.2 Representative CL images, zircon U-Pb concordia diagram and 206Pb/238U age plot for the quartz-monzonite-porphyry in Xiaolongtan mining area圖A中1、2、4等數(shù)字為測試點(diǎn)號;(36±0.16) Ma等為206Pb/238U年齡;實(shí)線圈為U-Pb同位素測試點(diǎn);虛線圈為Lu-Hf同位素測試點(diǎn)

2.3.2 全巖地球化學(xué)特征

小龍?zhí)兜V區(qū)始新世斑巖體全巖主元素的質(zhì)量分?jǐn)?shù)(表2):SiO2為64.81%~69.6%,平均為66.80%;Na2O+K2O為8.9~12.82%,平均為11.27%;MgO為0.28%~1.42%,平均為0.78%;TFeO為1.15%~4.03%,平均為2.52%;CaO為0.1%~1.75%,平均為0.59%:總體呈中性富堿高鉀低MgO、TFeO、CaO的特征。堿度率(AR)為3~8.27,里特曼指數(shù)(δ)為3.41~7.54,平均5.45,屬于堿性系列;在AR-SiO2圖解(圖3-A)中,落入堿性—過堿性區(qū)域;A/CNK為0.99~1.36,平均為1.09,屬次鋁、過鋁質(zhì)巖石;A/NK-A/KNC圖解(圖3-B),落入準(zhǔn)鋁質(zhì)—過鋁質(zhì)過渡區(qū)域。巖石CIPW標(biāo)準(zhǔn)礦物組合為石英、鉀長石、鈉長石、鈣長石、透輝石,屬于SiO2過飽和型。所以小龍?zhí)兜V區(qū)始新世斑巖體屬于高鉀的堿性—過堿性、準(zhǔn)鋁質(zhì)—過鋁質(zhì)斑巖。

圖3 小龍?zhí)兜V區(qū)斑巖體AR-SiO2圖解及A/CNK-A/NK圖解Fig.3 AR-SiO2 and A/CNK-A/NK diagrams for the porphyry in Xiaolongtan mining area(A)作圖方法據(jù)J.B.Wright(1969); (B)作圖方法據(jù)Maniar and Piccoli(1989)

表2 小龍?zhí)兜V區(qū)始新世石英二長斑巖全巖元素特征

續(xù)表2

巖性黑云角閃石英二長斑巖石英二長斑巖花崗斑巖樣品號D2?b2D5?b1D1?b1D4?b1D4?b2D4?b3D6?b1D5?b3D7?b1(wGd/wYb)N4.874.805.685.106.504.574.793.684.97δCe1.050.650.520.510.500.540.870.750.68δEu0.971.130.890.981.031.121.010.991.08w/10-6Cs2.842.393.173.243.243.291.751.723.93Rb110.40268.00226.20298.00283.00278.0097.40243.00334.00Sr1091.10580.00447.80286.00481.00411.001508.00574.00266.00Ba246832531780145723472418227817962224Ga19.5028.7027.4028.9024.9025.7022.5024.3016.70Nb10.368.4812.239.028.6410.0013.8010.102.74Ta0.570.340.590.390.400.750.520.750.31Zr208.60189.00198.80212.00249.00234.00236.00203.00160.00Hf7.665.146.376.566.257.4311.405.904.98Th19.1820.2018.4920.9026.0021.9026.0023.0017.40V79.6034.9080.5042.0045.1038.0040.7051.7047.20Cr32.609.0418.8012.808.3011.6020.7015.5017.20Co6.806.0815.5014.008.403.048.602.571.06Ni24.003.439.804.595.382.9921.004.932.51Li11.9513.7018.0123.0017.6015.6010.5012.4023.20wLREE/wHREE15.2517.2026.2521.5623.7318.5819.8718.4021.31(wLa/wYb)N24.7425.3063.7144.1553.7428.8436.4427.8936.61(wLa/wSm)N2.693.316.965.715.193.814.814.984.68(wGd/wYb)N4.874.805.685.106.504.574.793.684.97δCe1.050.650.520.510.500.540.870.750.68δEu0.971.130.890.981.031.121.010.991.08

小龍?zhí)兜V區(qū)始新世斑巖體痕量元素含量如表2。稀土元素的總質(zhì)量分?jǐn)?shù)(w∑REE)為(225.5~405.46)×10-6,平均為304.94×10-6;wLREE/wHREE為15.25~26.25,平均為20.24;(wLa/wYb)N為24.74~63.71,平均為37.94,屬輕稀土元素富集型;δEu為0.89~1.13,平均為1.02,具較弱或無負(fù)銪異常。稀土配分曲線(圖4-A)為右陡平滑曲線,屬輕稀土富集型。痕量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖4-B)顯示富集大離子親石元素,如Rb、Ba、K、Sr等,虧損Ta、Nb、P、Ti等高場強(qiáng)元素。由于Sr、Eu一般富集于斜長石中,所以Sr、Eu負(fù)異常反映巖漿源區(qū)可能存在少量殘留的斜長石,或者在巖漿結(jié)晶分異過程中有部分斜長石發(fā)生了分離作用。

2.3.3 鋯石Hf同位素特征

小龍?zhí)兜V區(qū)始新世二長斑巖30顆鋯石Hf同位素(表3)顯示176Yb/177Hf比值為0.028 636~0.063 337,176Lu/177Hf比值為0.000 739~0.001 577,均小于0.002,表明在鋯石形成之后,并沒有明顯的放射性成因?qū)е翲f積累,因此,可以用所測得的176Hf/177Hf比值代表形成時(shí)Hf同位素的組成[31]。鋯石的176Hf/177Hft比值為0.281 988~0.282 796,對應(yīng)εHf(t)值為-26.93~1.66,地殼模式年齡為1 009~4 141 Ma。

3 討 論

3.1 成因類型

關(guān)于小龍?zhí)兜V區(qū)所處的三江地區(qū)富堿侵入巖體的成因類型存在一定爭議。

從主元素測試結(jié)果來看,小龍?zhí)兜V區(qū)斑巖體SiO2質(zhì)量分?jǐn)?shù)為64.81%~69.6%(平均為66.8%),均>56%;高鋁,Al2O3質(zhì)量分?jǐn)?shù)為15.24%~16.45%(平均為15.67%),均>15%;MgO質(zhì)量分?jǐn)?shù)為0.28%~1.42%(平均為0.78%),均<3%;貧Y,Y質(zhì)量分?jǐn)?shù)為(9.22~17.40)×10-6(平均為13.72×10-6),均<18×10-6;貧Yb,Yb質(zhì)量分?jǐn)?shù)為(0.86~1.36)×10-6(平均為1.12×10-6),均<1.9×10-6;富Sr,Sr質(zhì)量分?jǐn)?shù)為(266~1508)×10-6(平均為627×10-6),絕大多數(shù)>400×10-6;輕稀土元素富集,無或弱負(fù)Eu異常。具有埃達(dá)克巖的地球化學(xué)特征[35-37],wYb-(wLa/wYb)投圖亦落入埃達(dá)克巖區(qū)域(圖5-A);此外,K2O的質(zhì)量分?jǐn)?shù)為4.36%~10.95%,平均高達(dá)9.01%,符合典型的鉀質(zhì)埃達(dá)克巖(SKA)特征,屬鉀質(zhì)的C型埃達(dá)克巖[38-39]。

表3 小龍?zhí)兜V區(qū)始新世石英二長斑巖樣品鋯石lu Hf同位素分析結(jié)果

圖4 小龍?zhí)兜V區(qū)斑巖體類稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線圖(A)及痕量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(B)Fig.4 Chondrite-normalized REE patterns (A) and primitive mantle-normalized trace element patterns (B) for the porphyry in Xiaolongtan mining area(A)標(biāo)準(zhǔn)化值據(jù)Boynton(1984); (B)標(biāo)準(zhǔn)化值據(jù)Sun and McDonough(1989)

但是,對于中國的埃達(dá)克巖及C型埃達(dá)克巖的概念,國內(nèi)地學(xué)界爭議廣泛。埃達(dá)克巖原意是指一類島弧型巖漿巖,是具有明確巖性學(xué)、巖石成因及大地構(gòu)造環(huán)境的巖石[39]。一般將具有埃達(dá)克質(zhì)成分特征但非俯沖成因、非島弧環(huán)境的巖石稱為“埃達(dá)克質(zhì)巖”(Adakite-like)[38-41]。一般認(rèn)為C型埃達(dá)克巖是玄武質(zhì)巖漿底侵到加厚陸殼(厚度>50 km)底部導(dǎo)致下地殼基性巖部分熔融的產(chǎn)物[39-40]。前人認(rèn)為中國的斑巖型銅礦多與埃達(dá)克質(zhì)巖有關(guān),有些被劃歸富堿侵入巖或A型花崗巖的斑巖銅礦也具有與埃達(dá)克巖類似的富Sr和貧Y、Yb以及wSr/wY和wSr/wYb值高的特征[8],并將小龍?zhí)兜V區(qū)所在區(qū)域劃為與埃達(dá)克質(zhì)巖(C型埃達(dá)克巖)有關(guān)的羌塘-藏東-川西-滇西成礦亞帶(30~40 Ma B.P.)[37]。

此外,小龍?zhí)躲~礦床產(chǎn)于陸塊內(nèi),屬于與埃達(dá)克質(zhì)巖有關(guān)的陸內(nèi)成礦作用,普遍認(rèn)為C型埃達(dá)克巖起源于下地殼深部,處于下地殼增厚環(huán)境[42-50]。小龍?zhí)栋邘r體強(qiáng)烈虧損重稀土元素和高場強(qiáng)元素,具有強(qiáng)烈的Nb、Ta負(fù)異常,指示其源區(qū)殘留相中有石榴石,較陡的REE配分模式和高的wSr/wYb(平均為56)也說明發(fā)生部分熔融時(shí)殘留相為榴輝巖相[51];斑巖體的wY/wYb為9.56~14.78,平均為12.69,表明巖體的源區(qū)殘留相中除了石榴石還可能有角閃石,即(角閃)榴輝巖相,因此,小龍?zhí)栋邘r體巖漿源區(qū)深度大致在50~60 km。新生代板塊碰撞,導(dǎo)致青藏高原整體隆升,地殼增厚(圖5-B),形成全球地殼厚度最大的地區(qū)(厚度>50 km),為小龍?zhí)兜V區(qū)C型埃達(dá)克質(zhì)巖的產(chǎn)出提供了必要條件。

圖5 小龍?zhí)兜V區(qū)斑巖體Yb-(La/Yb)圖解和青藏高原碰撞造山帶東緣及小龍?zhí)兜V區(qū)構(gòu)造-巖漿-成礦事件年代格架圖Fig.5 Yb-(La/Yb) plots for the porphyry in Xiaolongtan mining area and the geochronological framework of major tectonics-magmatism- metallogenesis events in the eastern margin of Qinghai-Tibet Plateau collision belt and Xiaolongtan district(A)據(jù)M.J.Defant等(1990); (B)據(jù)文獻(xiàn)[6,7]修改

另一方面,小龍?zhí)兜V區(qū)斑巖體的TFeO含量較高,質(zhì)量分?jǐn)?shù)為1.15%~4.03%,明顯高于1.00%;wNa2O/wK2O比值較低,為0.04~1.04,均小于1.18;1000×wGa/wAl值較高,為2.03~3.55,多數(shù)大于2.6;Ce質(zhì)量分?jǐn)?shù)相對較高(96.9×10-6~183.0×10-6),其中大多數(shù)樣品均大于100×10-6,與A型花崗巖的特征相符。在10000×wGa/wAl對wNa2O+K2O圖解中(圖6-A),投影的樣品全部落入A型花崗巖區(qū);在(wY/wNb)-(wYb/wTa)圖解中(圖6-B),樣品均落入A2型花崗巖區(qū)。小龍?zhí)兜V區(qū)緊鄰研究程度較高的馬廠箐銅礦床[11,27-28,52-53],將小龍?zhí)栋邘r體與世界A型花崗巖、馬廠箐巖體及哀牢山—金沙江富堿侵入巖等地的A型花崗巖的痕量元素特征作對比,結(jié)果顯示,小龍?zhí)兜V區(qū)與其他A型花崗巖痕量元素特征變化趨勢一致(表4,圖7)。此結(jié)論也與前人將該區(qū)域斑巖型Cu礦床劃為富堿侵入巖及A型花崗斑巖礦床結(jié)論一致[8,54]。

綜上所述,小龍?zhí)兜V區(qū)斑巖體雖被劃入富堿侵入巖及A型花崗巖,但具埃達(dá)克巖典型地球化學(xué)特征,可定為埃達(dá)克質(zhì)巖;根據(jù)其產(chǎn)出位置(大陸內(nèi)部),可認(rèn)為研究區(qū)斑巖體為C型埃達(dá)克質(zhì)巖。

圖6 小龍?zhí)兜V區(qū)斑巖體(10000×Ga/Al)-(Na2O+K2O)圖解(A)及(Y/Nb)-(Yb/Ta)圖解(B)Fig.6 (10000×Ga/Al)-(Na2O+K2O) and (Y/Nb)-(Yb/Ta) plots for the porphyry in Xiaolongtan mining area(A)作圖方法據(jù)J.B.Whalen等(1987); (B)作圖方法據(jù)C.N.Eby(1992)

表4 小龍?zhí)栋邘r體及其他A型花崗巖痕量元素含量(w/10-6)

GB.表示Gold Butle A型花崗巖[55]; PD.表示Parker Dam A型花崗巖[55]; ALS-3,ALS-4.哀牢山—金沙江富堿侵入巖體帶中的A型花崗巖[56]; 馬廠箐巖體.馬廠箐A型花崗巖[8]。

圖7 小龍?zhí)栋邘r體與其他富堿侵入巖痕量元素含量對比圖Fig.7 The comparison diagrams of trace element contents in Xiaolongtan alkali-rich porphyry and other intrusive rocks(A)與世界A型花崗巖對比; (B)與哀牢山—金沙江富堿侵入巖帶及馬廠箐巖體的A型花崗巖對比

3.2 巖漿源區(qū)及其指示意義

從上文可知,小龍?zhí)兜V區(qū)斑巖地球化學(xué)特征更接近C型埃達(dá)克巖,說明其可能為陸陸碰撞造成的加厚基性下地殼部分熔融的產(chǎn)物。

鋯石Hf 同位素在研究地質(zhì)演化與巖漿巖物源示蹤領(lǐng)域中,具有很大的優(yōu)勢[31]。小龍?zhí)兜V區(qū)斑巖體鋯石的Hf同位素特征顯示,其176Hf/177Hf比值多數(shù)較低(0.281 988~0.282 748),εHf(t)顯示為負(fù)值,指示其主要來自于地殼巖石的部分熔融;另外,所研究的30顆鋯石中有5顆176Hf/177Hf比值為0.282 757~0.282 796,其εHf(t)為正,說明這些鋯石可能含有幔源物質(zhì)。

此外,礦區(qū)斑巖鋯石Hf 同位素地殼模式年齡在1.0~4.1 Ga之間變化(集中于1.0~1.5 Ga)(圖8-B),說明小龍?zhí)栋邘r體主要來源于中晚元古代地殼物質(zhì)的部分熔融;鋯石εHf(t)值變化范圍較大:-26.93~1.66(集中于-2左右)(圖8-A)。通常認(rèn)為,殼幔相互作用,或者其他混源作用,造成分布較寬的εHf(t) 值域,并且正負(fù)值變化較大[57-58]。本次研究分析的數(shù)據(jù)通過投點(diǎn)顯示,多數(shù)樣品分布于球粒隕石演化線的下方(圖9),εHf(t)值總體偏負(fù),最大值與最小值相差高達(dá)45個(gè)單位,明顯超出了分析方法自身所造成的誤差[59]。鋯石Hf同位素的不均一性,同樣指示礦區(qū)巖體的多來源特征。鋯石εHf(t)值集中在-2左右(圖8-A),其中含有εHf(t)=-27左右的另一種鋯石,反映了巖漿混合作用:εHf(t)=-2的鋯石反映下地殼熔融成因,εHf(t)=-27表示該巖石可能來自于軟流圈或虧損的巖石圈地幔。發(fā)生巖漿混合作用時(shí),由于鋯石結(jié)晶相對較早,且Hf同位素體系具有較高的封閉溫度,該同位素比值不會(huì)受到巖漿部分熔融或分離結(jié)晶作用的影響,因此可以保留不同的鋯石Hf同位素比值,不但記錄了早期未混合巖漿的初始同位素組成,也記錄了后期受幔源巖漿混合后體系的同位素組成[60]。

圖8 小龍?zhí)兜V區(qū)斑巖體鋯石εHf(t)分布直方圖及鋯石Hf同位素地殼模式年齡直方圖Fig.8 εHf(t) and DMhistogram for the Eocene porphyry in Xiaolongtan mining area

圖9 小龍?zhí)兜V區(qū)斑巖體鋯石εHf(t)-鋯石U-Pb年齡圖解Fig.9 εHf(t)-zircon U-Pb age plot for the porphyry in Xiaolongtan mining area

綜上所述,小龍?zhí)兜V區(qū)始新世斑巖體主要來源于下地殼物質(zhì)的部分熔融,并有幔源物質(zhì)的加入。

3.3 構(gòu)造背景及地質(zhì)意義

在R1-R2圖解中(圖10),小龍?zhí)兜V區(qū)斑巖體樣品落入造山晚期(4區(qū))和非造山(5區(qū))交界部位,說明小龍?zhí)兜V區(qū)斑巖形成于造山期向非造山期的轉(zhuǎn)換期。在洋中脊花崗巖標(biāo)準(zhǔn)化模式圖上(圖11),強(qiáng)烈虧損的元素主要有Nb、Ta、Zr、Hf等,與造山期后花崗巖特征一致,說明小龍?zhí)兜V區(qū)斑巖形成于構(gòu)造期后[61]。此外,C型埃達(dá)克巖常產(chǎn)于造山作用后碰撞階段[62],在此構(gòu)造應(yīng)力下,熱的軟流圈地幔物質(zhì)上涌,在地幔熱的烘烤下,使下地殼部分熔融形成埃達(dá)克巖。小龍?zhí)兜V區(qū)斑巖體為一套高鉀的過堿性—鈣堿性的堿性—過堿性巖,為典型拉張環(huán)境下的產(chǎn)物。

圖10 小龍?zhí)兜V區(qū)始新世斑巖體R1-R2圖解Fig.10 R1-R2 plots for the porphyry in Xiaolongtan mining area(作圖方法據(jù)Batchelor & Bowddrn, 1985)1.地幔斜長花崗巖; 2.破壞性活動(dòng)板塊邊緣(板塊碰撞前)花崗巖;3.板塊碰撞后隆起期花崗巖;4.晚造山期花崗巖;5.非造山區(qū)A型花崗巖; 6.同碰撞(S型)花崗巖;7.造山期后A型花崗巖

晚始新世至漸新世末期(38.6~23.3 Ma B.P.),喜馬拉雅構(gòu)造運(yùn)動(dòng)產(chǎn)生會(huì)聚碰撞,致使滇西及青藏高原會(huì)聚帶的地殼急劇縮短。該時(shí)期印度地塊向北擠壓,導(dǎo)致地體內(nèi)部發(fā)生劇烈收縮,最終使得該區(qū)域產(chǎn)生大幅度的地形隆升。為吸收和調(diào)節(jié)印—亞大陸強(qiáng)烈的碰撞和變形,伴隨發(fā)生較大范圍的以陸內(nèi)上沖推覆與剪切走滑活動(dòng)為特征的陸內(nèi)塊體間的相對運(yùn)動(dòng)。在此過程中,金沙江—哀牢山韌性剪切帶、賓川—程海斷裂、麗江—木里斷裂等深大斷裂發(fā)生大規(guī)模走滑拉分作用。與此同時(shí),周圍地體的碰撞擠壓作用致使深部軟流圈物質(zhì)上涌和熱侵蝕,導(dǎo)致長期復(fù)雜的地殼和地幔之間的相互作用,進(jìn)而形成區(qū)內(nèi)廣泛分布的新生代巖漿巖,以及與之緊密伴隨的成礦作用。小龍?zhí)兜V區(qū)斑巖正是這樣一個(gè)大的構(gòu)造背景下的產(chǎn)物,斑巖體沿賓川—程海斷裂的次級斷裂上侵而形成。

圖11 小龍?zhí)兜V區(qū)斑巖體洋中脊花崗巖標(biāo)準(zhǔn)模式圖Fig.11 Standard patterns of mid-ocean ridge granite for the Eocene porphyry in Xiaolongtan mining area(作圖方法據(jù)Pearce,1982)

4 結(jié) 論

a.小龍?zhí)兜V區(qū)斑巖體的鋯石SHRIMP U-Pb年齡為(35.98±0.16) Ma,顯示礦區(qū)斑巖體是古近紀(jì)始新世巖漿活動(dòng)作用的產(chǎn)物。

b.小龍?zhí)栋邘r型Cu多金屬礦床雖被劃入富堿侵入巖及A型花崗巖礦床,但具埃達(dá)克巖典型地球化學(xué)特征,根據(jù)其產(chǎn)出位置(大陸內(nèi)部),可認(rèn)為研究區(qū)斑巖體為C型埃達(dá)克巖。

c.小龍?zhí)兜V區(qū)斑巖體元素地球化學(xué)特征及鋯石Hf同位素組成的分析結(jié)果顯示,礦區(qū)巖體具有多種物質(zhì)來源,主要來自于下地殼物質(zhì)的部分熔融,并且混有幔源物質(zhì)。

d.喜馬拉雅構(gòu)造運(yùn)動(dòng)會(huì)聚碰撞,致使局部產(chǎn)生較強(qiáng)拉張環(huán)境,研究區(qū)即處在此構(gòu)造背景下的擠壓后應(yīng)力松弛階段,斑巖體沿賓川—程海斷裂的次級斷裂上侵,進(jìn)而形成銅多金屬礦床。

[1] 金志升,黃智龍,朱成明.云南三江地區(qū)富堿侵入巖與煌斑巖的同源性[J].礦物巖石地球化學(xué)通報(bào),1997,16(4):14-16. Jin Z H, Huang Z L, Zhu C M. Consanguinity of Alkaline Intrusions and Lamprophyres of Sanjiang district, Yunnan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997, 16(4): 14-16. (in Chinese)

[2] 高蘭,肖克炎,叢源,等.西南三江鋅鉛銀銅銻金成礦帶成礦特征及資源潛力[J].地質(zhì)學(xué)報(bào),2016,90(7):1650-1667. Gao L, Xiao K Y, Cong Y,etal. Metallogenic characteristics and mineral resource potential of the southwestern Sanjiang Zn-Pb-Cu-Ag-Sb-Au metallogenic belt[J]. Acta Geologica Sinica, 2016, 90(7): 1650-1667. (in Chinese)

[3] Hou Z Q, Zaw K, Pan G T,etal. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31: 48-87.

[4] 莫宣學(xué),潘桂棠.從特提斯到青藏高原形成:構(gòu)造-巖漿事件的約束[J].地學(xué)前緣,2006,13(6):41-51. Mo X X, Pan G T. From the Tibetan Plateau to Tethys formed: structure-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 41-51. (in Chinese)

[5] 叢源,董慶吉,肖克炎.三江成礦帶斑巖型礦床成礦模式與找礦方向研究[J].地質(zhì)學(xué)刊,2013,37(4):562-569. Cong Y, Dong Q J, Xiao K Y. Study on metallogenic model and ore exploration of porphyry deposits in Sanjiang metallogenic belt[J]. Journal of Geology, 2013, 37(4): 562-569. (in Chinese)

[6] 和文言,莫宣學(xué),喻學(xué)惠,等.滇西馬廠箐斑巖型銅鉬(金)礦床成巖成礦時(shí)代研究[J].地學(xué)前緣,2011,18(1): 207-215. He W Y, Mo X X, Yu X H,etal. Geochronological study of magmatic intrusions and mineralization of Machangqing porphyry Cu-Mo-Au deposit, western Yunnan Province[J]. Earth Science Frontiers, 2011, 18(1): 207-215. (in Chinese)

[7] 侯增謙,曲曉明,王淑賢,等.西藏高原岡底斯斑巖銅礦帶輝鉬礦Re-Os年齡:成礦作用時(shí)限與動(dòng)力學(xué)背景應(yīng)用[J].中國科學(xué):D輯, 2003,33(7):609-618. Hou Z Q, Qu X M, Wang S X,etal. Molybdenite Re-Os age of porphyry copper belt in Tibet Plateau: Application of the mineralization time and dynamic background[J]. Science in China: Series D, 2003, 33(7): 609-618. (in Chinese)

[8] 畢獻(xiàn)武,胡瑞忠,葉造軍,等. A型花崗巖類與銅成礦關(guān)系研究——以馬廠箐銅礦為例[J].中國科學(xué)(D輯), 2000,43(7):93-102. Bi X W, Hu R Z, Ye Z J,etal. Relation between A-type granites and copper mineralization as exemplified by the Machangqing Cu deposit[J]. Science in China (Series D), 2000, 43: 93-102. (in Chinese)

[9] 畢獻(xiàn)武,胡瑞忠,彭建堂,等.姚安和馬廠箐富堿侵入巖體的地球化學(xué)特征[J].巖石學(xué)報(bào),2005,21(1):113-124. Bi X W, Hu R Z, Peng J T,etal. Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions[J]. Acta Petrologica Sinica, 2005, 21(1): 113-124. (in Chinese)

[10] 葛良勝,鄒依林,李振華,等.云南馬廠箐(銅、鉬)金礦床地質(zhì)特征及成因研究[J].地質(zhì)與勘探,2002,38(5):11-17. Ge L S, Zou Y L, Li Z H,etal. Geological features and genesis of Machangqing Cu-Mo-Au deposit related to the rich-alkli magmatic rock, Yunnan Province[J]. Geology and Prospecting, 2002, 38(5): 11-17. (in Chinese)

[11] 郭曉冬,李建文,夏銳,等.滇西馬廠箐富堿侵入巖體形成機(jī)制研究[J].地質(zhì)論評,2014,60(1):125-137. Guo X D, Li J W, Xia R,etal. Study on forming mechanism of Machangqing alkaline-rich intrusive rock in Western Yunnan[J]. Geological Review, 2014, 60(1): 125-137. (in Chinese)

[12] Muller D, Groves D I. Direct and indirect associations between pot assicigneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 8: 383-406.

[13] Jamen L W, Mohammed I, Feeix E M. Allard stock, La Plata Mountains, Colorado - An alkaline rock-hosted porphyry copper-precious metal deposit[J]. Can J Earth Sci, 1984, 21: 630-641.

[14] 張旗,錢青,王二七,等.燕山中晚期的中國東部高原:埃達(dá)克巖的啟示[J].地質(zhì)科學(xué),2001,36(2):248 -255. Zhang Q, Qian Q, Wang E Q,etal. Existence of East China Plateau in mid-late Yanshanian period: Implication from adakites[J]. Scientia Geologica Sinica, 2001, 36(2): 248-255. (in Chinese)

[15] 張旗,王焰,劉紅濤,等.中國埃達(dá)克巖的時(shí)空分布及其形成背景,附:國內(nèi)關(guān)于埃達(dá)克巖的爭論[J].地學(xué)前緣,2003,10(4):385-400. Zhang Q, Wang Y, Liu H T,etal. On the space-time distribution and geodynamic environments of adakites in China, Annex: the debates on adakite research in China[J]. Frontiers in Earth Sciences, 2003, 10(4): 385-400. (in Chinese)

[16] 張旗,王焰,劉偉,等.埃達(dá)克巖的特征及其意義[J].地質(zhì)通報(bào),2002,21(7):431-435. Zhang Q, Wang Y, Liu W,etal. Adakite: Its characteristics and implications[J]. Geological Bulletn of China, 2002, 21(7): 431-435. (in Chinese)

[17] 張金學(xué),羅洪昌,劉利超,等.賓川小龍?zhí)栋邘r銅鉬礦礦化特征及控礦條件[J].云南地質(zhì),2014,33(2):214-218. Zhang J X, Luo H C, Liu L C,etal. The metallogenetic feature and ore control conditions of Xiaolongtan porphyry Cu-Mo deposit, Binchuan[J]. Yunnan Geology, 2014, 33(2): 214-218. (in Chinese)

[18] 張金學(xué),王文超,雷陽艾,等.賓川小龍?zhí)栋邘r銅礦找礦方向思考[J].云南地質(zhì),2009,8(4):409-414. Zhang J X, Wang W C, Lei Y A,etal. Considerations of prospecting direction for Xiaolongtan porphyry copper deposit in Binchuan County[J]. Yunnan Geology, 2009, 8(4): 409-414. (in Chinese)

[19] 西南有色地質(zhì)勘查局310地質(zhì)分隊(duì).小龍?zhí)对u價(jià)報(bào)告書[R].昆明:云南有色地質(zhì)局,1977. 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Evaluation Report of Xiaolongtan Deposit[R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1977. (in Chinese)

[20] 西南有色地質(zhì)勘查局地質(zhì)研究所斑巖組及310地質(zhì)分隊(duì). 云南省賓川縣小龍?zhí)栋邘r銅礦點(diǎn)成礦規(guī)律[R]. 昆明:云南有色地質(zhì)局,1993. Southwest Institute of Geological Exploration and 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Mineralization Law of Xiaolongtan Porphyry Copper Deposit in Binchuan County, Yunnan Provincet[R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1993. (in Chinese)

[21] 西南有色地質(zhì)勘查局310地質(zhì)分隊(duì).賓川小龍?zhí)兜V化斑巖體地質(zhì)特征簡介[R].昆明:云南有色地質(zhì)局,1977. 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Profile of Mineralized Porphyry Geological Characteristics in Xiaolongtan Deposit, Binchuan County [R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1977. (in Chinese)

[22] 李懷坤,耿建珍,郝爽,等.用激光燒蝕多接收器等離子體質(zhì)譜儀(LA-MC-ICPMS)測定鋯石U-Pb同位素年齡的研究[J].礦物巖石地球化學(xué)通報(bào),2009,28(增刊):77. Li H K, Gen J Z, Hao S,etal. Determination of zircon U-Pb isotopic ages by laser ablation multi-collector plasma mass spectrometry (LA-MC-ICPMS)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(Supplement): 77. (in Chinese)

[23] Liu Y S, Gao S, Hu Z C,etal. Continental and oceanic crust recycling-induced melt-peridotite interactions in Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571.

[24] Ludwig K R. Users Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4: 1-71.

[25] 侯可軍.LA-MC-ICP-MS鋯石Hf同位素的分析方法及地質(zhì)應(yīng)用[J].巖石學(xué)報(bào),2007,23(10):2595-2604. Hou K J. LA-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. (in Chinese)

[26] 賈麗瓊,莫宣學(xué),董國臣,等.滇西馬廠箐煌斑巖成因:地球化學(xué)、年代學(xué)及Sr-Nd-Pb-Hf同位素約束[J].巖石學(xué)報(bào),2013,29(4):1247-1260. Jia L Q, Mo X X, Dong G C,etal. Genesis of lamprophyres from Machangqing, western Yunnan: Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes[J]. Acta Petrologica Sinica, 2013, 29(4): 1247-1260. (in Chinese)

[27] 王治華,郭曉東,葛良勝,等.云南馬廠箐銅多金屬礦床的成巖成礦時(shí)代及成礦動(dòng)力學(xué)背景[J].礦床地質(zhì),2011,30(1):45-56. Wang Z H, Guo X D, Ge L S,etal. Diagenetic and metallogenic epoch and ore-forming dynamic setting of Machangqing copperpolymetallic deposit, Yunnan Province[J]. Mineral Deposits, 2011, 30(1): 45-56. (in Chinese)

[28] 郭曉東,王治華,王梁,等.云南馬廠箐巖體(似)斑狀花崗巖鋯石LA-ICP-MS U-Pb年齡及地質(zhì)意義[J].中國地質(zhì),2011,38(3):610-622. Guo X D, Wang Z H, Wang L,etal. LA-ICP-MS zircon U-Pb ages of porphyritic granite in Machangqing complex of Yunnan Province and their geological significance[J]. Geology in China, 2011, 38(3): 610-622. (in Chinese)

[29] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ Geol, 1972, 67: 187-197.

[30] 曾鍵年,許繼峰.埃達(dá)克質(zhì)巖與成礦:困惑與探索[J].地學(xué)前緣,2008,15(6):278-292. Zeng J N, Xu J F. Adakite-like rocks and mineralization: confusion and inquiry[J]. Earth Science Frontiers, 2008, 15(6): 278-292. (in Chinese)

[31] 吳福元,李獻(xiàn)華,鄭永飛,等. Lu-Hf同位素體系及其巖石學(xué)應(yīng)用[J].巖石學(xué)報(bào),2007,23(2):185-220. Wu F Y, Li X H, Zheng Y F,etal. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. (in Chinese)

[32] Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

[33] Griffin W L, Pearson N J, Belousova E,etal. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimic et Cosmochimica Acta, 2000, 64: 133-147.

[34] Soderlund U, Patchett P J, Vervoort J D,etal. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324.

[35] 王焰,張琪,錢青.埃達(dá)克巖(adakite)的地球化學(xué)特征及其構(gòu)造意義[J].地質(zhì)科學(xué),2000,35(2):251-256. Wang Y, Zhang Q, Qian Q. Adakite: Geochemical characteristics and tectonic significances[J]. Scientia Geologica Sinica, 2000, 35(2): 251-256. (in Chinese)

[36] 張旗,秦克章,王元龍,等.加強(qiáng)埃達(dá)克巖研究——開創(chuàng)中國Cu、Au等找礦工作的新局面[J].巖石學(xué)報(bào),2004,20(2):195-204. Zhang Q, Qin K Z, Wang Y L,etal. Study oil adakite broadened to challenge the Cu and Au exploration in China[J]. Acta Petrologica Sinica, 2004, 20(2): 195-204. (in Chinese)

[37] 張旗,秦克章,許繼峰,等.中國與埃達(dá)克質(zhì)巖有關(guān)的礦床分布、找礦方向及找礦方法芻議[J].華南地質(zhì)與礦產(chǎn),2004(2):2-8. Zhang Q, Qin K Z, Xu J F,etal. Discussion of distribution, prospecting principle and method for deposits related to adakites in China[J]. Geology and Mineral Resources of South China, 2004(2): 2-8. (in Chinese)

[38] 張旗,許繼峰,王焰,等.埃達(dá)克巖的多樣性[J].地質(zhì)通報(bào),2004,23(9/10):959-965. Zhang Q, Xu J F, Wang Y,etal. Diversity of adakite[J]. Geological Bulletin of China, 2004, 23(9/10): 959-965. (in Chinese)

[39] 張旗.關(guān)于C型埃達(dá)克巖成因的再探討[J].巖石礦物學(xué)雜志,2011,30(4):739-747. Zhang Q. Reappraisal of the origin of C-type adakitic rocks from East China[J]. Acta Petrologica et Mineralogica, 2011, 30(4): 739-747. (in Chinese)

[40] 王元龍,張旗,王強(qiáng),等.埃達(dá)克質(zhì)巖與Cu-Au成礦作用關(guān)系的初步探討[J].巖石學(xué)報(bào),2003,19(3):543-550. Wang Y L, Zhang Q, Wang Q,etal. Study on adakitic rock and Cu-Au mineralization[J]. Acta Petrologica Sinica, 2003, 19(3): 543-550. (in Chinese)

[41] Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3): 257.

[42] Xu J F, Shinjo R, Defant M J,etal. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust[J]. Geology, 2002, 30: 1111-1114.

[43] Defant M J, Xu J F, Kepezhinskas P,etal. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.

[44] Kay R W, Kay S M. Creation and destruction of lower continental crust[J]. Geologische Rundschau, 1991, 80: 259-278.

[45] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219: 177-189.

[46] Wang Q, Xu J F, Jian P,etal. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47: 119-144.

[47] Atherton M P, Petford N. Generation of sodium-rich magmas from newly under plated basaltic crust[J]. Nature, 1993, 362: 144-146.

[48] Muir R J, Weaver S D, Bradshaw J D,etal. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere[J]. J Geol Soc Lond, 1995, 152: 689-701.

[49] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith[J]. Peru J Petrology, 1996, 37: 1491-1521 .

[50] Conrey R M, Hooper P R, Larson P B,etal. Trace element and isotopic evidence for two types of crustal melting beneath a high Cascade volcanic center, Mt. Jefferson, Oregon[J]. Contrib Mineral Petrol, 2001, 141: 710-732 .

[51] 牛耀齡.全球構(gòu)造與地球動(dòng)力學(xué)——巖石學(xué)與地球化學(xué)方法應(yīng)用實(shí)例[M].北京:科學(xué)出版社,2013. Niu Y L. Global Tectonics and Geodynamics: Some Applied Examples of Petrology and Geochemical Methods[M]. Beijing: Science Press, 2013. (in Chinese)

[52] 葛良勝,鄒依林,李振華,等.云南馬廠箐(銅、鉬)金礦床地質(zhì)特征及成因研究[J].地質(zhì)與勘探,2002,38(5):11-17. Ge L S, Zou Y L, Li Z H,etal. Geological features and genesis of Machangqing Cu-Mo-Au deposit related to the rich-alkli magmatic rock, Yunnan Province[J]. Geology and Prospecting, 2002, 38(5): 11-17. (in Chinese)

[53] 張民,劉顯凡,趙甫峰.滇西馬廠箐埃達(dá)克質(zhì)富堿斑巖特征、成因與成礦意義[J].成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(2):218-226. Zhang M, Liu X F, Zhao F F. Characteristics, genesis and metallogenic significance of Machangqing adakite porphyry rich in alkali from West Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 218-226. (in Chinese)

[54] 李朝陽.中國銅礦主要類型特征及其成礦遠(yuǎn)景[M].北京:地質(zhì)出版社,2000:351. Li C Y. Study on the Characteristics of Main Types and Metallogenic Prospect of Copper in China[M]. Beijing: Geological Publishing House, 2000: 351. (in Chinese)

[55] Anderson J L, Bender E E. Nature and origin of Proterozoic A-type graniticmagmatism in the southwestern United States of America[J]. Lithos, 1989, 23: 19-52.

[56] 張玉泉, 謝應(yīng)雯. 青藏高原及鄰區(qū)富堿侵入巖——以苦干子和太和二巖體為例[J].中國科學(xué):B輯,1994,24:1102-1108. Zhang Y Q, Xie Y W. Alkali-rich intrusive rock of Qinghai-Tibet Plateau and its adjacent areas-an Example on Kuganyu and Taiheer Rock[J]. Science in China: Series B, 1994, 24: 1102-1108.(in Chinese)

[57] 禹麗,李龔健,王慶飛,等.保山地塊北部晚白堊世巖漿巖成因及其構(gòu)造指示:全巖地球化學(xué)、鋯石U-Pb年代學(xué)和Hf同位素制約[J].巖石學(xué)報(bào),2014,30(9):2709-2724. Yu L, Li G J, Wang Q F,etal. Petrogenesis and tectonic signficance of the late Cretaceous magmatism in the northern part of the Baoshan block: Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2014, 30(9): 2709-2724. (in Chinese)

[58] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3/4): 144-162.

[59] Wu F Y, Yang Y H, Xie L W,etal. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126.

[60] 邱檢生,肖娥,胡建,等.福建北東沿海高分異I型花崗巖的成因:鋯石U-Pb年代學(xué)、地球化學(xué)和 Nd-Hf同位素制約[J].巖石學(xué)報(bào),2008,24(11):2468-2484. Qiu J S, Xiao E, Hu J,etal. Petrogenesis of highly fractioanted I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(11): 2468-2484. (in Chinese)

[61] Pearce J P. 花崗巖形成的大地構(gòu)造環(huán)境及其痕量元素判別圖解[J].地質(zhì)科學(xué)情報(bào),1986,5(1):57-67. Pearce J P. Discrimination diagrams on the tectonic environment and trace element of the granite formation[J]. Geoscience Information, 1986, 5(1): 57-67.

[62] Leloup P H, Arnaud N, Lacassin R,etal. New constraints on the structure, thermochronology and timing of the Ailaoshan Red River shear zone, SE Asia[J]. Journal of Geophysical Research, 2001, 66: 1083-6732.

Petrogenesis and geological significance of the Eocene porphyry in the Xiaolongtan mining area of the western Yunnan, China

ZHOU Jie1, WANG Genhou1, ZHANG Li2

1.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China;2.EarthSystemScience,YonseiUniversity,Seoul120749,RepublicofKorea

The copper mineralization of Xiaolongtan porphyry type copper-polymetallic deposit in Midu County of Yunnan Province is closely related to the porphyry and the ore-bodies mainly occur in the porphyry and its outer hornfels zone. Study of bulk geochemistry, zircon U-Pb dating, and Hf isotopic composition of the porphyry in the mining area reveals that the zircon U-Pb age of porphyry samples is (35.98±0.16) Ma, representing a product of the Eocene magmatic activity. Geochemical characters of the porphyry show large variation in SiO2(64.81%~69.6%), high in K2O (4.36%~10.95%) and Na2O+K2O (>8%), with the ratio of A/CNK being 0.99~1.36, belonging to K-rich alkaline-peralkaline and metaluminous-peraluminous porphyry series. Trace element analysis shows that the porphyry is deplete in Ta, Nb, P, Ti and rich in K, Rb, Ba, Sr, similar to the features of C-adakite. TheεHf(t) from the zircon is -26.93~1.66 and the model age is 1 009~4 141 Ma, suggesting that the Eocene porphyry are derived from the partial melting of the lower crust material, and associated with the addition of mantle source material. On the basis of regional geological evolution, it is considered that the porphyry is formed in an extensional setting of post collision. After the compression of continental collision, the stress relaxation leads to the magma intrusion along the faults and secondary faults, and forms the copper polymetallic deposits.

Xiaolongtan; Eocene; porphyry; zircon U-Pb; LA-MC-ICP-MS

10.3969/j.issn.1671-9727.2017.03.06

1671-9727(2017)03-0334-16

2017-02-20。

云南有色地質(zhì)局綜合研究項(xiàng)目(201307)。

周潔(1988-),女,博士研究生,構(gòu)造地質(zhì)學(xué)專業(yè), E-mail: 649448227@qq.com。

P588.1

A

猜你喜歡
埃達(dá)克斑巖鋯石
俄成功試射“鋯石”高超音速巡航導(dǎo)彈
軍事文摘(2020年24期)2020-02-06 05:56:36
斑巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
煌斑巖的研究進(jìn)展
紅鋯石
中國寶玉石(2016年2期)2016-10-14 07:58:30
鋯石微區(qū)原位U-Pb定年的測定位置選擇方法
試論埃達(dá)克巖與斑巖銅礦的成礦關(guān)系
科技視界(2015年30期)2015-10-22 10:06:56
鉆石與鋯石的區(qū)別知多少?
埃達(dá)克巖成因研究進(jìn)展概述
埃達(dá)克巖的種類及拉曼實(shí)驗(yàn)討論
康保县| 拉萨市| 石柱| 裕民县| 博罗县| 确山县| 吉木乃县| 鄄城县| 莫力| 山阴县| 湖口县| 宁南县| 孝义市| 杭锦旗| 神农架林区| 同德县| 星座| 哈巴河县| 长治市| 阜城县| 石柱| 株洲县| 东海县| 呼玛县| 闽侯县| 科技| 樟树市| 沙田区| 安远县| 托克托县| 黔东| 渝中区| 依安县| 炎陵县| 柏乡县| 胶州市| 梁平县| 永仁县| 尼勒克县| 延长县| 会理县|