王飛,吳真,2,張軍,潘青青,張瑜,李迅
(1.南京林業(yè)大學化學工程學院,江蘇省農(nóng)林生物質(zhì)資源化學利用國家重點實驗室培育點,江蘇省生物質(zhì)綠色燃料與化學品重點實驗室,南京 210037;2. 淮陰師范學院化學化工學院,江蘇省生物質(zhì)能與酶技術重點實驗室,江蘇 淮安 223300)
木質(zhì)素原料制備烴類化合物的研究進展
王飛1,吳真1,2,張軍1,潘青青1,張瑜1,李迅1
(1.南京林業(yè)大學化學工程學院,江蘇省農(nóng)林生物質(zhì)資源化學利用國家重點實驗室培育點,江蘇省生物質(zhì)綠色燃料與化學品重點實驗室,南京 210037;2. 淮陰師范學院化學化工學院,江蘇省生物質(zhì)能與酶技術重點實驗室,江蘇 淮安 223300)
木質(zhì)素是由烷基化的甲氧基苯酚通過氧或碳連接的高度交聯(lián)的大分子,可用于制備高附加值的燃料和化學品。以來源廣泛的木質(zhì)素為原料制備烴類化合物具有重要的研究價值和良好的應用前景。木質(zhì)素催化熱解是制備烴類化合物的主要方法之一,也是木質(zhì)素降解研究中的重點和難點,已經(jīng)受到了人們越來越廣泛的重視。筆者概述了近年來木質(zhì)素原料(含模型物)制備烴類化合物的研究成果,包括木質(zhì)素轉化烴類化合物的催化體系、溶劑體系、烴類化合物尤其是單環(huán)芳烴(MAHs)得率和選擇性的調(diào)控以及利用木質(zhì)素制備烴類化合物的其他方法,著重介紹了木質(zhì)素催化裂化及催化加氫脫氧制備烴類化合物的催化體系,并總結了木質(zhì)素在亞/超臨界流體及離子液體中烴類轉化的最新成果,最后對木質(zhì)素制備烴類化合物的研究前景進行了展望,以期為生物質(zhì)資源的綜合利用提供參考。
木質(zhì)素;烴類化合物;催化裂化;催化加氫脫氧;木質(zhì)素降解
隨著能源消耗的不斷增加,特別是化石燃料的逐漸耗竭和全球氣候的變化,人們越來越關注生物質(zhì)能、風能、太陽能、頁巖氣等替代能源的研究開發(fā)[1]。其中,生物質(zhì)能作為一種典型的清潔可再生能源,因具有儲量大、分布廣且可轉化為液體燃料等特點而受到格外關注。生物質(zhì)原料中的3種聚合組分——纖維素、半纖維素和木質(zhì)素相互滲透、交織,形成了復雜的高階結構。關于木質(zhì)素的研究已有數(shù)百年的歷史,特別是在造紙過程中如何有效地脫除木質(zhì)素[2],脫除的木質(zhì)素通常都被視作副產(chǎn)物而直接焚燒處理。木質(zhì)素研究開發(fā)的一個重要方向就是它的高值化利用,包括利用木質(zhì)素制備烴類化合物特別是芳烴化合物[3-4],而芳烴化合物如苯、甲苯、二甲苯和萘(Benzene,Toluene,Xylene,Naphthalene,簡稱BTXN)是有機化工的基本原料,廣泛應用于塑料、農(nóng)藥、醫(yī)藥和燃料等行業(yè)[5]。
在植物內(nèi)部,木質(zhì)素的作用是提供結構強度、密封連接根與葉的導水系統(tǒng)并且抵御外界不良環(huán)境。木質(zhì)素呈現(xiàn)出復雜的三維無定型結構,它由3種苯丙烷結構單元——芥子醇、松柏醇和香豆醇經(jīng)酶催化脫氫聚合而成。木質(zhì)素結構單元之間通常是通過一系列的C—O鍵和C—C鍵如β-O-4、β-5、4-O-5、5-5、β-β及β-1連接起來(圖1),形成一個非常復雜的高聚物。其中,最常見的連接方式是β-O-4醚鍵連接,50%(針葉材木質(zhì)素)到65%(闊葉材木質(zhì)素)的基本結構單元之間都是這種連接方式[6]。
圖1 木質(zhì)素基質(zhì)結構中的幾種典型鍵合模式[6]Fig. 1 Nomenclature of the main inter-subunit linkages in the lignin structure
木質(zhì)素在結構和組成上與纖維素、半纖維素有顯著差別,特點是芳香化程度高、含氧更少,與石油組成更為接近,經(jīng)過催化熱解重整后其苯、甲苯、二甲苯等芳烴的產(chǎn)率及選擇性較高[7]。評價生物質(zhì)能的重要指標是氫碳比(H/C)和氧碳比(O/C)。原油的H/C和O/C分別為1.60~2.10和0~0.03;木材的H/C和O/C分別高于1.40和0.61。與木材相比,木質(zhì)素的H/C(1.10~1.30)和O/C(0.32~0.46)則更低,更具有成為燃料來源的潛能[8]。
鑒于木質(zhì)素制備烴類化合物具有重要的研究價值和良好的應用前景,筆者歸納和總結了木質(zhì)素轉化烴類化合物的催化體系、溶劑體系、烴類化合物,尤其是單環(huán)芳烴(MAHs)得率和選擇性調(diào)控以及利用木質(zhì)素制備烴類化合物的其他方法等,以期為生物質(zhì)資源的綜合開發(fā)特別是工業(yè)化利用提供思路和參考。
利用木質(zhì)素制備烴類化合物主要有兩種技術方案:催化裂化(catalytic cracking)和加氫脫氧(hydrodeoxygenation,HDO)[9-10]。在催化裂化過程中,木質(zhì)素解聚產(chǎn)物在一些形狀選擇性催化劑如沸石存在條件下發(fā)生脫氧反應,反應可以在常壓下進行,不需要提供氫氣。裂化反應過程中C—C鍵的斷裂也伴隨著如脫水、脫羧、脫羰反應的發(fā)生;加氫脫氧反應通常在高H2分壓(10~20 MPa)及高溫(570~670 K)條件下進行,氧以水分子的形式脫除,反應產(chǎn)物除了水以外還有各種烴類和含氧化合物。反應類型包括脫羧、氫化、氫解、加氫裂化、脫水等,含氧產(chǎn)物包括水、CO2(脫羧反應中形成)、CO和甲醇[8]。木質(zhì)素非均相催化大多是采用可原位生成氫的供氫體系(如醇類)或者使用中高壓分子氫兩種加氫脫氧方式使C—C鍵和C—O鍵氫化裂解。兩種技術方案雖然在技術上都可行,但均存在自身缺點,目前還沒有實現(xiàn)規(guī)模化生產(chǎn)[11]。利用木質(zhì)素制備烴類通常需要對生物質(zhì)原料進行熱解,當熱解溫度達到250~300℃,β-O-4鍵開始發(fā)生斷裂,當溫度高于350℃,焦炭開始形成[12]。木質(zhì)素在直接快速熱解(無催化劑)時,產(chǎn)物主要是含氧物質(zhì)(苯酚類和愈創(chuàng)木酚類化合物),只有少量是烴類物質(zhì)(圖2)。木質(zhì)素在催化快速熱解時,產(chǎn)物分布會發(fā)生明顯變化,目標產(chǎn)物的產(chǎn)率和選擇性也有明顯改善[13]。
近年來,人們研究了各種催化劑對木質(zhì)素的催化降解作用,烴類特別是芳烴的產(chǎn)率得到不斷提高,取得了令人滿意的結果。
圖2 β-O-4鍵合低聚木質(zhì)素在熱解過程中可能的分解途徑[13]Fig. 2 The possible decomposition pathways of β-O-4 bonded oligo-lignin during the pyrolysis
1.1 催化裂化反應
催化裂化制備芳烴因易操作、成本低受到很多研究者的青睞,在木質(zhì)素的催化熱解過程中被廣泛采用。常用的催化劑為沸石型 ZSM-5分子篩、HY沸石等,此類催化劑是一種強酸性、中等孔徑、具有形狀選擇性的高活性催化劑。
Melligan等[14]采用ZSM-5分子篩催化蘇格蘭松屑熱解,與未加催化劑相比芳烴(苯、甲苯、乙苯)的得率增加了一倍以上。ZSM-5分子篩經(jīng)離子交換得到酸性更強的HZSM-5分子篩,HZSM-5分子篩因其具有更好的耐酸、耐熱性能,以及優(yōu)異的選擇性裂化、異構化和芳構化等催化性能,已經(jīng)成為生物質(zhì)催化裂解制備芳烴化合物最為有效的催化劑。人們就HZSM-5分子篩的類型、孔徑、酸度及催化劑用量對木質(zhì)素降解產(chǎn)物的得率及分布的影響進行了許多研究。Shen等[15]對不同木質(zhì)素來源及催化劑類型下的木質(zhì)素熱解制芳烴進行研究,比較了杉木木素和稻草木素以及不同類型、硅鋁比的分子篩對特定芳烴(苯、甲苯、二甲苯)產(chǎn)率的影響。結果表明,硅鋁比最小的HZSM-5(25)分子篩 650℃催化兩種木質(zhì)素熱解都可得到各自最大產(chǎn)率的芳烴,且減小硅鋁比有利于對二甲苯的生成,其影響比對甲苯更顯著。同時發(fā)現(xiàn),杉木木素熱解產(chǎn)物中聚合芳烴(萘和甲基萘)的得率比稻草木素明顯要高,這很可能與稻草木素的氧含量高于杉木木素有關。Li等[9]系統(tǒng)研究了HZSM-5分子篩硅鋁比(Si/Al=25~200)、催化劑用量(C/L=1~20)對產(chǎn)物分布的影響,發(fā)現(xiàn)500~650℃ 時隨著硅鋁比降低、催化劑用量增加,芳烴得率大幅度增加。HZSM-5催化劑硅鋁比降低,布朗斯特(Br?nsted)酸活性中心濃度增加,促進了木質(zhì)素來源的含氧物質(zhì)脫氧和芳構化。為了進一步比較不同類型、酸度和孔徑的沸石(Zeolites)催化效果,Ma等[16]分別采用Na-ZSM5、ASA、Silicalite、H-ZSM5、H-beta和H-USY沸石催化堿木質(zhì)素熱解,結果表明,H-ZSM5催化可以得到最大得率的烷氧基苯酚,而采用比H-ZSM-5具有更大孔徑(0.74 nm)和更小硅鋁比(Si/Al=7)的H-USY沸石可得到更高得率的芳烴(650℃,芳烴碳得率40%),說明可通過調(diào)節(jié)催化劑的酸度和孔徑實現(xiàn)對液體產(chǎn)物得率及選擇性的調(diào)控。為進一步提高分子篩的催化效果,通過改性處理引入一定數(shù)量的非硅原子,可以獲得一定的酸性中心及合適的孔徑,改變其酸堿性及結構。Wang 等[17]在ZSM-5上負載0.5%的Zn(Zn/ZSM-5),微波輔助催化花旗松(Douglasr)木屑顆粒熱解,結果生物油的最大得率由37.8%提高到44.8%(主要成分是芳烴),合成氣的最大得率由43.7%提高到55.5%。Mullen 等[18]也發(fā)現(xiàn)用Fe-HZSM-5(負載1.4%亞鐵離子)分子篩催化木質(zhì)素制備芳烴比用HZSM-5催化芳烴的得率更高。
不加入催化劑時,木質(zhì)素受熱解聚產(chǎn)生許多中間產(chǎn)物,這些產(chǎn)物具有較高的反應活性,很有可能重新聚合成固體。當一些不具有酸性位點的多孔材料如ZSM-5分子篩或Na-ZSM-5存在時,中間產(chǎn)物被多孔材料吸附固定而不會發(fā)生重新聚合,固體產(chǎn)物產(chǎn)率降低而液體產(chǎn)物產(chǎn)率升高。當這些多孔材料接上酸性位點后,會導致中間產(chǎn)物C—C鍵和C—O鍵斷裂而發(fā)生催化轉化。在熱解溫度下,沸石上的強酸性位點可引起脫羧、脫水、脫烷基化、裂化、異構化、齊聚等反應,從而促使芳烴生成(圖3)。
圖3 木質(zhì)素無催化/催化快速熱解的反應途徑[16]Fig. 3 Proposed reaction pathway of lignin non-catalytic/catalytic fast pyrolysis
1.2 加氫脫氧反應
加氫脫氧反應是在高壓和有氫氣或供氫溶劑存在條件下,采用金屬催化達到加氫和脫氧的目的。近年來,人們研究了各種催化劑對加氫脫氧反應的促進作用,在闡明各種催化劑功能和作用機理的同時,也試圖尋找到一種兼具催化活性、選擇性和抗失活性的催化劑。
加氫脫氧反應的催化劑通常有金屬[19-20]、金屬硫化物[21]、金屬磷化物[22]、金屬碳化物[23-24]、金屬氮化物[25-26],其中貴金屬如Pd、Pt、Ru等對加氫脫氧反應特別是芳環(huán)的加氫脫氧具有良好的催化活性。Pd是氫解(C-X裂解)和芳香環(huán)上雙鍵加氫反應最活潑的金屬,碳材料因為比表面積大且強腐蝕條件下化學惰性而經(jīng)常被用作載體。Pd/C催化劑是一種最常用的加氫催化劑,它具有加氫轉化率高、選擇性強、性能穩(wěn)定等特點[27-28],在木質(zhì)素催化加氫脫氧反應中被經(jīng)常使用[29-30]。Sun等[31]研究了Pd/C催化劑催化木質(zhì)素模型物愈創(chuàng)木酚的轉化情況,350℃、H2壓力40 kPa條件下,愈創(chuàng)木酚轉化率在95%以上,苯的得率為30%。酸是影響加氫脫氧反應中脫氧性能的重要因素,使甲氧基轉化為甲醇同時還催化羥基脫水[32]。Zhao等[33]以苯酚為原料,0.5%H3PO4溶液中Pd/C催化劑200℃催化反應0.5 h (H2壓力5 MPa),苯酚轉化率為99%,主要反應產(chǎn)物為環(huán)己烷(選擇性達到85%)。他們還分別采用Pt/C、Ru/C和Rh/C催化,苯酚轉化率都為100%,產(chǎn)物中環(huán)已烷的選擇性分別為86%,88%和92%,Rh表現(xiàn)出最好的催化活性,這一結果與Gutierrez等[34]基本一致。為了更好地說明木質(zhì)素在該體系中的降解情況,譚雪松等[35]以木質(zhì)素模型物愈創(chuàng)木酚為原料,Pd/C催化加氫脫氧制備烷烴,反應條件與Zhao等[33]基本相同(0.5%H3PO4,H2壓力5 MPa,1 h),烴類產(chǎn)物(環(huán)己烷和甲基環(huán)戊烷)收率達到78%,為理論最高收率的91%。Yan等[36]則直接以白樺木屑為原料,先在二氧六環(huán)/水/磷酸中Ru/C催化氫解,再在近臨界水中Pd/C催化加氫,木質(zhì)素直接轉化為烷烴和甲醇。
盡管碳基催化劑有良好的活性和穩(wěn)定性,但碳腐蝕仍不可避免,其表面存在的碳沉積現(xiàn)象也會導致催化劑的失活,于是人們又嘗試使用不同的載體,如Al2O3[37]、ZrO2[38]、SiO2[39]、HZSM-5[40]等,都獲得了比較好的催化效果。Zhang等[10]采用一種雙功能分子篩負載金屬Ru催化劑Ru/HZSM-5(Si/Al=25)催化木質(zhì)素基苯酚單體及二聚體加氫脫氧制備烷烴,苯酚的轉化率為99.9%,產(chǎn)物中環(huán)己烷的選擇性為96.3%,而環(huán)己醇為0.2%。同樣條件下,其他木質(zhì)素基苯酚單體及二聚體的轉化率都在99%以上,產(chǎn)物中烷烴的選擇性都接近90%。該催化劑孔道中存在的布朗斯特(Br?nsted)酸性位點可催化脫水,而負載的金屬Ru又可催化加氫。苯酚首先被Ru催化加氫生成環(huán)己醇,環(huán)己醇被HZSM-5催化脫水生成環(huán)己烯,環(huán)己烯最后被氫化為環(huán)己烷,Ru/HZSM-5實現(xiàn)了從環(huán)己醇到環(huán)己烷的直接轉化(圖4)。Yati等[41]采用原位氧化鋁凝膠法制備Al2O3凝膠Ru納米顆粒(Ru@Al),并用于催化木質(zhì)素基香草醛制備高碳數(shù)的二聚脫氧烴類化合物。研究表明,該催化劑在香草醛液相加氫脫氧反應中表現(xiàn)出優(yōu)良的催化活性,特別是催化香草醛聚合及二聚體的氫化和氫解反應效果明顯。H2壓力4 MPa,270℃反應2 h,香草醛的轉化率達到100%,烴類化合物的產(chǎn)率達到51.4%,其中,1-環(huán)己基甲基-2-甲基-環(huán)己烷的產(chǎn)率為19.0%,1,1′-亞甲基雙(環(huán)己烷)的產(chǎn)率為7.1%。相比其他常規(guī)氧化鋁負載Ru催化劑,該催化劑催化轉化全脫氧化合物具有更高的得率。
圖4 Ru/HZSM-5催化苯酚加氫脫氧反應途徑[10]Fig. 4 Proposed reaction pathway for hydrodeoxygenation of phenol
貴金屬催化加氫脫氧烴類產(chǎn)物得率高且選擇性較好,但它們價格昂貴且反應過程中H2消耗量大,越來越多的研究人員開始把注意力轉移到價格相對低廉的過渡金屬上,包括鐵、鈷、鎳等金屬/金屬化合物都表現(xiàn)出了良好的催化活性。Wang等[42]把雷尼鎳(Raney Ni)催化苯酚制苯的反應(圖5)用于木質(zhì)素加氫脫氧制備芳烴,取得了良好的效果。溶劑木質(zhì)素、雷尼鎳、H-BEA-35沸石(Si/Al=17.6)、異丙醇及正戊烷加入高壓反應釜中,充入N2(0.1 MPa,室溫)后密封,160℃反應2 h后再在240℃反應2 h,生物油的得率為50%,其中71%為芳烴、25%為烷烴、3%為酚類化合物,表明該催化反應體系非常利于苯酚單元醚鍵的斷裂和脫甲氧基化。
圖5 雷尼鎳(Raney Ni)催化苯酚脫羥基反應途徑[42]Fig. 5 Reaction pathways for dehydroxylation of phenol
除了尋找高效的催化體系外,研究開發(fā)合適的溶劑體系也是促進木質(zhì)素高效轉化為烴類化合物的有效措施,但木質(zhì)素結構復雜,很難溶于一般溶劑,因此尋找和研究對木質(zhì)素具有良好溶解性的溶劑是有效利用木質(zhì)素的關鍵。為了實現(xiàn)廢棄木質(zhì)素的高值化利用特別是得到高得率的單體,研究人員嘗試在多種溶劑體系中進行木質(zhì)素的催化轉化,其中,木質(zhì)素在亞/超臨界流體及離子液體中的烴類轉化逐漸成為研究的熱點。
2.1 亞/超臨界溶劑體系
亞/超臨界環(huán)境中進行木質(zhì)素的解聚具有傳熱效率高、分散效果好、木質(zhì)素溶解性好及體系供氫能力強的特點[43]。Erdocia等[44]研究了不同溶劑木質(zhì)素(乙酸木素、甲酸木素和乙酸/甲酸木素)在不同超臨界流體(甲醇、乙醇和丙酮)中的轉化情況,發(fā)現(xiàn)在所有設定條件下木質(zhì)素的解聚情況良好且生物油的產(chǎn)率較高,其中超臨界丙酮中乙酸/甲酸木素轉化生物油的得率最高(38.04%)。為進一步提高生物油的得率,人們研究了超臨界流體中木質(zhì)素的催化轉化。Kim等[45]對超臨界狀態(tài)下木質(zhì)素轉化木質(zhì)素油(lignin-oil)進行了研究,他們比較了不同催化劑(Pt/C、Pd/C、Ru/C和Ni/C)在超臨界醇(甲醇、乙醇和異丙醇)中催化木質(zhì)素轉化木質(zhì)素油的效果,發(fā)現(xiàn)乙醇和Pt/C的組合可以得到最大產(chǎn)率的木質(zhì)素油(77.4%)和最少產(chǎn)率的生物炭(3.7%)。此外也有在超臨界正丁醇中Ru/C催化木質(zhì)素轉化的報道[46],這些工作都為下一步利用木質(zhì)素油催化重整制備烴類化合物奠定了良好基礎。另外,Yong等[47]還研究了亞臨界(300~370℃)和超臨界(390~450℃)環(huán)境中木質(zhì)素的水熱轉化情況,發(fā)現(xiàn)在溫度300℃、壓力25 MPa下反應10 s,芳烴(苯、甲苯和萘)的得率最高(20%)。他們還對木質(zhì)素的水熱轉化機理進行了探討,發(fā)現(xiàn)熱解過程產(chǎn)生芳烴主要是由于自由基反應,而亞/超臨界條件下芳烴的產(chǎn)生主要由于離子反應,且同時存在水解和熱解兩條平行的反應途徑。
2.2 離子液體溶劑體系
離子液體具有化學及熱穩(wěn)定性、不可燃性和極低的蒸汽壓,是一種可設計的溶劑,越來越受到人們的關注[48]。許多離子液體對木質(zhì)素具有很好的溶解性,在離子液體中降解木質(zhì)素可實現(xiàn)均相反應[49],因此研究者們開始關注離子液體作為反應介質(zhì)對木質(zhì)素的降解轉化。Liu等[50]研究了硫酸鹽木質(zhì)素在不同膽堿類離子液體[Ch][CFCO2]、[Ch][H2PO4]、[Ch][Ace]、[Ch][Lev]和[Ch][MeSO3]中的降解轉化,發(fā)現(xiàn)在強酸性的[Ch][MeSO3]中Pd/C催化,200℃反應5 h (H2壓力2 MPa),木質(zhì)素的轉化率達到20.3%,產(chǎn)物中單酚化合物超過50%(主要是苯酚和苯鄰二酚)。Muhammad等[48]利用離子液體對木質(zhì)素原料進行預處理以提高目標產(chǎn)物的得率,也獲得了理想的效果。他們發(fā)現(xiàn)竹粉經(jīng)1-丁基-3-甲基咪唑氯鹽(BmimCl)溶解后再分離,原料的熱值、碳含量及木質(zhì)素含量都有明顯提高;經(jīng)過離子液體溶解預處理后的竹粉再進行熱解,發(fā)現(xiàn)酚類、呋喃類、醇類及烴類化合物的產(chǎn)率都有不同程度的提高,而醛類和酮類化合物的產(chǎn)率都降低。Yan等[51]發(fā)現(xiàn)Rh、Ru和Pt納米顆粒在磺酸基功能化的Br?nsted酸性離子液體[bmim][BF4]和[bmim][TF2N]中可高效催化木質(zhì)素基酚類化合物加氫脫氧轉化烷烴化合物,如[bmim][TF2N]中Rh納米顆粒催化苯酚、苯甲醚、對甲基苯酚和對乙基苯酚加氫脫氧反應,H2壓力40 atm(1 atm=101.325 kPa),130℃反應4 h,原料轉化率都在98%以上,對應的主要產(chǎn)物如環(huán)己烷、甲基環(huán)己烷及乙基環(huán)己烷的選擇性都在70%以上。
在離子液體中研究關于木質(zhì)素的催化轉化特別是烴類物質(zhì)的轉化目前還不多,離子液體作為反應介質(zhì)也有其自身的局限性,如分離問題、成本問題等,導致這些處理過程的應用性仍舊不強。
目前生物質(zhì)催化熱解的烴類產(chǎn)物中,有30%~50%是經(jīng)濟價值較低的多環(huán)芳烴(如萘及其衍生物)[52],多環(huán)芳烴(PAHs)具有半揮發(fā)性且難降解,許多多環(huán)芳烴都具有毒性、致突變性、致癌性和生物累積性[53]。木質(zhì)素的熱解會比纖維素和半纖維素的熱解產(chǎn)生更多的多環(huán)芳烴[54],而多環(huán)芳烴屬于劣質(zhì)柴油餾分,通常需要把多環(huán)芳烴選擇性加氫飽和為單環(huán)芳烴(MAHs)后才能成為柴油組分[55]。為提高木質(zhì)素熱解產(chǎn)物中烴類化合物尤其是單環(huán)芳烴的產(chǎn)率和選擇性,人們也進行了許多研究,包括研究芳烴產(chǎn)生規(guī)律、控制反應條件、開發(fā)新型催化劑、對原料進行預處理等。
Zhou等[56]研究了不同反應條件下(溫度、加熱速率和反應氣氛)木質(zhì)素熱解/氣化過程中多環(huán)芳烴的形成過程,研究發(fā)現(xiàn),隨著熱解溫度增加(從800℃增加到900℃),多數(shù)多環(huán)芳烴(1-甲基萘和2-甲基萘除外)略有下降,但3-環(huán)和4-環(huán)芳烴增加,芳烴的總量變化符合二次函數(shù)曲線。研究還發(fā)現(xiàn)快速熱解比慢速熱解更有利于多環(huán)芳烴的形成,這是由于快速熱解過程中,苯及其衍生物通過脫羥基和脫甲氧基等二次反應生成多環(huán)芳烴,而慢速熱解過程抑制了這些二次反應的發(fā)生。研究也發(fā)現(xiàn),N2氛圍比空氣和CO2氛圍更有利于多環(huán)芳烴的生成。Shen等[57]通過對反應條件的控制,黑液木質(zhì)素催化裂化產(chǎn)物中單環(huán)芳烴(苯、甲苯、對二甲苯、乙苯、鄰二甲苯、1-乙基-3-甲基苯、1,2,4-三甲基苯)相對含量是多環(huán)芳烴(萘、1-甲基萘、1,7-二甲基萘、1,6,7-三甲基萘和2,3,6-三甲基萘)的2.41倍。Zheng等[25]以N2/H2混合氣體程序升溫還原(TPR)Al2O3負載MoO3前驅(qū)體制備Mo2N/γ-Al2O3催化劑,并用于催化堿木質(zhì)素快速熱解制備芳烴,研究發(fā)現(xiàn)該催化劑對于單環(huán)芳烴具有很高的催化選擇性,其中苯的選擇性隨溫度和催化劑用量的增加而增加,而甲苯隨之降低。850℃熱解[m(催化劑)/m(木質(zhì)素)=4],甲苯的得率達到最大值70.1%,芳烴產(chǎn)物中單環(huán)芳烴含量高于95%。除了開發(fā)新型的催化劑,人們還對木質(zhì)素原料進行預處理,以提高烴類的得率或選擇性。Zhao等[58]先對生物質(zhì)熱解油進行甘油分離[59],蒸餾后得到熱解木質(zhì)素(pyrolitic lignin)并用ZSM-5分子篩600℃催化熱解,芳烴碳得率為40%,其中苯、甲苯和乙苯的選擇性分別為9.20%,31.57%和7.21%,而萘和1-甲基萘的選擇性分別為13.04%和8.39%。烘焙處理(torrefaction)通常在200~300℃的惰性環(huán)境中進行,烘焙處理后原料的氧含量會降低,疏水性會增強[60-61]。Adhikari等[62]以經(jīng)過烘焙處理(225℃,30 min,氦氣流量20 mL/min)的溶劑木質(zhì)素為原料,m(SiO2)/m(Al2O3)為30的HZSM-5分子篩600℃催化熱解制備芳烴,芳烴的碳得率由未經(jīng)處理時的30%增加到35%,總碳得率也由40%增加46%。
與原油相比,木質(zhì)纖維素是一種“缺氫”的原料,熱解過程中不僅容易產(chǎn)生積碳,造成催化劑的快速失活,也難以獲得高品質(zhì)的產(chǎn)物。于是人們嘗試在催化熱解反應中加入“富氫”原料,以進一步提高木質(zhì)纖維素轉化烴類化合物的效率,如生物質(zhì)與煤的共熱解[63-64]、生物質(zhì)與廢棄塑料的共熱解[65-66]、堿木質(zhì)素與油頁巖的共熱解[67]等。Li等[68]研究了木質(zhì)素原料與廢棄塑料低密度聚乙烯(LDPE)共催化熱解制備烴類,木質(zhì)素與LDPE以 2∶1質(zhì)量比混合,HZSM-5分子篩催化快速熱解,芳烴、烯烴及烷烴的產(chǎn)率分別為14.1%,9.17%和16.1%,芳烴中苯、甲苯及二甲苯的選擇性分別為12.8%,33.6% 和19.8%。結果表明,木質(zhì)素和 LDPE 共催化熱解存在一定的協(xié)同作用,與單獨熱解的得率之和相比,共催化熱解后芳烴和烷烴的得率增加明顯。除了采用共熱解技術,人們還對木質(zhì)素進行改性并制成燃料助劑。Sun等[69]從造紙黑液中提取木質(zhì)素制備銨化木質(zhì)素,并運用微乳化技術將銨化木質(zhì)素與柴油乳化,形成了穩(wěn)定的銨化木質(zhì)素柴油體系。結果表明,銨化木質(zhì)素柴油在行駛情況下相較于柴油要節(jié)油,同時銨化木質(zhì)素柴油比市售柴油尾氣排放少且穩(wěn)定。
隨著全球化石資源供需矛盾的日益突出,生物質(zhì)資源的綜合利用得到了人們越來越廣泛的重視,將生物質(zhì)資源特別是木質(zhì)纖維素資源高效轉化為生物能源或生物基化學品是緩解能源危機的重要途徑之一。作為自然界中僅次于纖維素的第二大可再生資源,木質(zhì)素特別是工業(yè)木質(zhì)素常被燃燒處理以提供熱能,造成了資源的極大浪費,木質(zhì)素的高效開發(fā)利用顯得特別重要和必要。木質(zhì)素在適當條件下可降解為有商業(yè)價值的有機小分子,而利用其制備烴類化合物是木質(zhì)素高值化利用的有效方法之一。雖然目前利用木質(zhì)素制備烴類化合物取得了一定的研究成果,但催化轉化過程也存在反應條件苛刻、催化活性不高、產(chǎn)物組分復雜且難于分離等諸多問題,目前尚無法進行大規(guī)模生產(chǎn)。該過程要想實現(xiàn)工業(yè)化生產(chǎn)必須從各個環(huán)節(jié)都取得實質(zhì)性突破:
1)加強對木質(zhì)素轉化烴類化合物催化機理研究,并尋找到真正兼具催化活性、選擇性和抗失活性的催化劑;
2)進一步優(yōu)化不同來源木質(zhì)素轉化烴類化合物的反應條件,特別是對產(chǎn)物中芳烴化合物產(chǎn)率和選擇性的調(diào)控;
3)建立高效、低耗的產(chǎn)物分離方法,推進連續(xù)生產(chǎn)技術的規(guī)模化放大,為木質(zhì)素制備烴類化合物的工業(yè)化生產(chǎn)奠定基礎。
相信經(jīng)過不斷努力,這一領域的研究將會取得更大的突破和進步。
[1]JANG M S, PARK R S, LEE I G, et al. Catalytic upgrading of lignin derived bio-oil model compound using mesoporous solid catalysts [J]. Research on Chemical Intermediates, 2016, 42(1):3-17.
[2]HATAKEYAMA H, HATAKEYAMA T. Lignin structure, properties, and applications[J]. Advances in Polymer Science, 2010, 232:1-63.
[3]KIM J Y, LEE J H, PARK J, et al. Catalytic pyrolysis of lignin over HZSM-5 catalysts:effect of various parameters on the production of aromatic hydrocarbon[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114:273-280.
[4]SHEN D, LIU G, ZHAO J, et al. Thermo-chemical conversion of lignin to aromatic compounds:effect of lignin source and reaction temperature[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:56-65.
[5]王昶, 郝慶蘭, 盧定強, 等. 生物質(zhì)催化熱解制取輕質(zhì)芳烴[J]. 催化學報, 2008, 29(9):907-912. WANG C, HAO Q L, LU D Q, et al. Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis[J]. Chinese Journal of Catalysis, 2008, 29(9):907-912.
[6]BEHLING R, VALANGE S, CHATEL G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals:what results? what limitations? what trends?[J]. Green Chemistry, 2016, 18(22):1839-1854.
[7]鄭云武, 楊曉琴, 王霏, 等. 生物質(zhì)催化裂解制備芳烴化合物的研究進展[J]. 林產(chǎn)化學與工業(yè), 2015, 35(5):149-158. ZHENG Y W, YANG X Q, WANG F, et al. Research progress of aromatics production from catalytic pyrolysis of biomass[J]. Chemistry and Industry of Forest Products, 2015, 35(5):149-158.
[8]SAIDI M, SAMIMI F, KARIMIPOURFARD D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2014, 7(1):103-129.
[9]LI X, SU L, WANG Y, et al. Catalytic fast pyrolysis of kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons[J]. Frontiers of Environmental Science & Engineering, 2012, 6(3):295-303.
[10]ZHANG W, CHEN J, LIU R, et al. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4):683-691.
[11]THANGALAZHY-GOPAKUMAR S, ADHIKARI S, GUPTA R B, et al. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments[J]. Bioresource Technology, 2011, 102(12):6742-6749.
[12]CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of aβ-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15:125-136.
[13]MU W, BEN H, RAGAUSKAS A, et al. Lignin pyrolysis components and upgrading-technology review[J]. Bioenergy Research, 2013, 6:1183-1204.
[14]MELLIGAN F, HAYES M H B, KWAPINSKI W, et al. Hydro-pyrolysis of biomass and online catalytic vapor upgrading with Ni-ZSM-5 and Ni-MCM-4[J]. Energy & Fuels, 2012, 26:6080-6090.
[15]SHEN D, ZHAO J, XIAO R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst:effect of lignin sources and catalyst species[J]. Energy Conversion and Management, 2016, 124:61-72.
[16]MA Z, TROUSSARD E, BOKHOVEN J A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A:General, 2012, 423-424:130-136.
[17]WANG L, LEI H, BU Q, et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modied ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor[J]. Fuel, 2014, 129:78-85.
[18]MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modied HZSM-5 zeolites[J]. ACS Sustainable Chemistry & Engineering, 2015, 3:1623-1631.
[19]OLCESE R N, BETTAHAR M, PETITJEAN D, et al. Gas-phase hydrodeoxygenationof guaiacol over Fe/SiO2catalyst[J]. Applied Catalysis B:Environmental, 2012, 115/116:63-73.
[20]BUI V N, TOUSSAINT G, LAURENTI D, et al. Co-processing of pyrolysis bio oils and gas oil for new generation of bio-fuels:hydrodeoxygenation of guaiacol and SRGO mixed feed[J]. Catalysis Today, 2009, 143(1/2):172-178.
[21]BUI V N, LAURENTI D, AFANASIEV P, et al. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I:Promoting effect of cobalt on HDO selectivity and activity[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):239-245.
[22]ZHAO H Y, LI D, BUI P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Applied Catalysis A:General, 2011, 391(1/2):305-310.
[23]LAME,LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10):3393-3410.
[24]JONGERIUS A L, GOSSELINK R W, DIJKSTRA J, et al. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol[J]. Chemcatchem, 2013, 5(10):2964-2972.
[25]ZHENG Y, CHEN D, ZHU X. Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:514-520.
[26]LIU X, XU L, XU G, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@ NC catalysts under mild conditions[J]. ACS Catalysis, 2016, 6(11):7611-7620.
[27]HARISH S, MATHIYARASU J, PHANI K L N, et al. Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction[J]. Catalysis Letters, 2009, 128(1):197-202.
[28]DEPLANCHE K, BENNETT J A, MIKHEENKO I P, et al. Catalytic activity of biomass-supported Pd nanoparticles:Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals[J]. Applied Catalysis B:Environmental, 2014, 147:651-665.
[29] LU J, WANG M, ZHANG X, et al.β-O-4 bond cleavage mechanism for lignin model compounds over Pd catalysts identified by combination of first-principles calculations and experiments[J]. ACS Catalysis, 2016, 6:5589-5598.
[30]GAO F, WEBB J D, SOREK H, et al. Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen[J]. ACS Catalysis, 2016, 6:7385-7392.
[31]SUN J, KARIM A M, ZHANG H, et al. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2013, 306:47-57.
[32]ZHAO C, KOU Y, LEMONIDOU A A, et al. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angewandte Chemie, 2009, 121(22):4047-4050.
[33]ZHAO C, HE J, LEMONIDOU A A, et al. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. Journal of Catalysis, 2011, 280:8-16.
[34]GUTIERREZ A, KAILA R K, HONKELA M L, et al. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catalysis Today, 2009, 147:239-246.
[35]譚雪松, 莊新姝, 呂雙亮, 等. 鈀炭催化木質(zhì)素模型化合物愈創(chuàng)木酚加氫脫氧制備烷烴[J]. 農(nóng)業(yè)工程學報, 2012, 28(21):193-199. TAN X S, ZHUANG X S, LYU S L, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(21):193-199.
[36]YAN N, ZHAO C, DYSON P J, et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J]. Chemsuschem, 2008, 1(7):626-629.
[37]NIMMANWUDIPONG T, RUNNEBAUM R C, BLOCK D E, et al.Catalytic conversion of guaiacol catalyzed by platinum supported on alumina:reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25:3417-3427.
[38]BYKOVA M V, ERMAKOV D Y, KAICHEV V V, et al. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading:guaiacol hydrodeoxygenation study[J]. Applied Catalysis B:Environmental, 2012, 113/114:296-307.
[39]YAKOVLEV V A, KHROMOVA S A, SHERSTYUK O V, et al. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel[J]. Catalysis Today, 2009, 144(3/4):362-366.
[40]ZHAO C, LERCHER J A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts[J]. Chemcatchem, 2012, 4(1):64-68.
[41]YATI I, DWIATMOKO A A, YOON J S, et al.One-pot catalytic reaction to produce high-carbon-number dimeric deoxygenated hydrocarbons from lignin-derived monophenyl vanillin using Al2O3-cogelled Ru nanoparticles[J]. Applied Catalysis A:General, 2016, 524:243-250.
[42]WANG X, RINALDI R. A route for lignin and bio-oil conversion:dehydroxylation of phenols into arenes by catalytic tandem reactions[J]. Angewandte Chemie International Edition, 2013, 52(44):11499-11503.
[43]BRANDS D S, POELS E K, DIMIAN A C, et al. Solvent-based fatty alcohol synthesis using supercritical butane thermodynamic analysis[J]. Journal of the American Oil Chemists’ Society, 2002, 79(1):75-83.
[44]ERDOCIA X, PRADO R, FERNANDEZ-RODRGUEZ J, et al.Depolymerization of dierent organosolv lignins in supercritical methanol, ethanol, and acetone to produce phenolic monomers[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:1373-1380.
[45]KIM J Y, PARK J, KIM U J, et al. Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts[J]. Energy & Fuels, 2015, 29(8):5154-5163.
[46]XU X, ZHANG C, ZHAI Y, et al. Upgrading of bio-oil using supercritical 1-butanol over a Ru/C heterogeneous catalyst:role of the solvent[J]. Energy & Fuels, 2014, 28(7):4611-4621.
[47]YONG T L , MATSUMURA Y. Kinetic analysis of lignin hydrothermal conversion in sub-and supercritical water[J]. Industrial & Engineering Chemistry Research, 2013, 52(16):5626-5639.
[48]MUHAMMAD N, OMAR W N, MAN Z, et al. Effect of ionic liquid treatment on pyrolysis products from bamboo[J]. Industrial & Engineering Chemistry Research, 2012, 51(5):2280-2289.
[49]PU Y, JIANG N, RAGAUSKAS A J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology, 2007, 27(1):23-33.
[50]LIU F, LIU Q, WANG A, et al. Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7):3850-3856.
[51]YAN N, YUAN Y, DYKEMAN R, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Br?nsted acidic ionic liquids[J].Angewandte Chemie, 2010, 122(32):5681-5685.
[52]FOSTER A J, JAE J, CHENG Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Applied Catalysis A:General, 2012, 423/424:154-161.
[53]LIU X, ZHANG G, JONES K C, et al. Compositional fractionation of polycyclic aromatic hydrocarbons(PAHs) in mosses(HypnumplumaeformaeWILS.) from the northern slope of Nanling Mountains, South China[J]. Atmospheric Environment, 2005, 39(30):5490-5499.
[54]WU C, WANG Z, HUANG J, et al. Pyrolysis/gasication of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts[J]. Fuel, 2013, 106:697-706.
[55]葛泮珠, 任亮, 高曉冬. 催化裂化柴油中多環(huán)芳烴選擇性加氫飽和工藝研究[J]. 石油煉制與化工, 2015, 46(7):47-51. GE P Z, REN L, GAO X D. Research progress parameters for selective hydrogenation of polyaromatics in FCC LCO[J]. Petroleum Progressing and Petrochemicals, 2015, 46(7):47-51.
[56]ZHOU H, WU C, ONWUDILI J A, et al. Polycyclic aromatic hydrocarbon formation from the pyrolysis/gasication of lignin at different reaction conditions[J]. Energy & Fuels, 2014, 28(10):6371-6379.
[57]SHEN D, ZHAO J, XIAO R, et al. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111:47-54.
[58]ZHAO Y, DENG L, LIAO B, et al. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy & Fuels, 2010, 24(10):5735-5740.
[59]DENG L, YAN Z, FU Y, et al. Green solvent for flash pyrolysis oil separation[J]. Energy & Fuels, 2009, 23(6):3337-3338.
[60]CARTER C L, ABDOULMOUMINE N, KULKARNI A,et al. Physicochemical properties of thermally treated biomass and energy requirement for torrefaction[J]. Transactions of the Asabe, 2013, 56(3):1093-1100.
[61]ZHENG A, ZHAO Z, CHANG S, et al. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs[J]. Bioresource Technology, 2013, 128(1):370-377.
[62]ADHIKARI S, SRINIVASAN V, FASINA O.Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites[J]. Energy & Fuels, 2014, 28(7):4532-4538.
[63]HAYKIRI-ACMA H, YAMAN S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable Energy, 2010, 35(1):288-292.
[64]PARK D K, KIM S D, LEE S H, et al. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology, 2010, 101(15):6151-6156.
[65]DORADO C, MULLEN C A, BOATENG A A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2):301-311.
[66]ZHANG H, NIE J, XIAO R, et al. Catalytic co-pyrolysis of biomass and different plastics(polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy & Fuels, 2014, 28(3):1940-1947.
[67]柏靜儒, 邵佳曄, 李夢迪, 等. 堿木質(zhì)素與油頁巖共熱解特性及動力學分析[J]. 農(nóng)業(yè)工程學報, 2016, 32(7):187-193. BAI J R, SHAO J Y, LI M D, et al. Co-pyrolysis characteristic and dynamic analysis of alkali lignin and oil shale[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7):187-193.
[68]LI X, LI J, ZHOU G, et al. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Applied Catalysis A:General, 2014, 481:173-182.
[69]SUN X, ZHAO X, ZU Y, et al. Preparing, characterizing, and evaluating ammoniated lignin diesel from papermaking black liquor[J]. Energy & Fuels, 2014, 28(6):3957-3963.
Advances in production of hydrocarbon compounds from lignin
WANG Fei1, WU Zhen1,2, ZHANG Jun1, PAN Qingqing1, ZHANG Yu1, LI Xun1
(1. College of Chemical Engineering, Nanjing Forestry University, Jiangsu Provincial Key Lab. for Chemical Utilization ofAgro-forestry Biomass Resources, Jiangsu Key Lab. of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China;2. Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering,Huaiyin Normal University, Huaian 223300, Jiangsu, China)
Lignin is a highly cross-linked macromolecule which consists of various oxygen and carbon bridges between alkylated methoxyl-phenol rings. And it offers great possibilities for the production of high value-added renewable products such as hydrocarbon compounds. However, efficiently depolymerizing lignin is the bottleneck for its widely application. As one of the main methods for production of hydrocarbon compounds from lignin, catalytic pyrolysis has attracted increasingly attention. In this review, recent research achievements in this field are summarized, including catalyst and solvent systems for the conversion of lignin to hydrocarbon compounds, regulation of the yield and selectivity of hydrocarbon compounds, especially the selection of monocyclic aromatic hydrocarbons (MAHs), and other routes to convert lignin to hydrocarbon compounds. In addition, the catalytic pyrolysis of lignin was discussed in more details, including the catalytic cracking in which deoxygenation reactions take place between depolymerized lignin products in the presence of zeolite catalysts, and the catalytic hydrodeoxygenation that conducted under high temperature and high H2pressure or in the presence of hydrogen donator solvent. The latest achievements in the conversion of lignin to hydrocarbons in sub-and supercritical fluids and ionic liquids with excellent solubility for lignin are also summarized. The future research trends of preparation of hydrocarbon compounds from lignin are prospected for efficient utilization of biomass. Further efforts should be focused on finding a catalyst that should have both catalytic activity and selectivity as well as resistance to deactivation. The reaction conditions of preparation hydrocarbons from different types of lignin should be improved and optimized.
lignin;hydrocarbon compounds;catalytic cracking;catalytic hydrodeoxygenation;lignin degradtion
2016-12-10
2017-03-25
國家重點研發(fā)計劃(2016YFD0600801)。
王飛,男,教授,研究方向為生物資源的化學利用。E-mail:hgwf@njfu.edu.cn
TQ351
A
2096-1359(2017)03-0001-09