汪海濤,楊紅旗,羅龍龍,呂 明,吳曉雄
(1.中國人民解放軍總醫(yī)院第一附屬醫(yī)院血液科,北京 100048;2.中國人民解放軍總醫(yī)院老年血液科,北京100853;3.軍事醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所免疫學(xué)研究室,北京 100850)
GATA1轉(zhuǎn)錄因子調(diào)控巨核細(xì)胞分化機(jī)制的研究進(jìn)展
汪海濤1,2,3*,楊紅旗2*,羅龍龍3,呂 明3,吳曉雄1
(1.中國人民解放軍總醫(yī)院第一附屬醫(yī)院血液科,北京 100048;2.中國人民解放軍總醫(yī)院老年血液科,北京100853;3.軍事醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所免疫學(xué)研究室,北京 100850)
GATA1是一種含有2個(gè)鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子,參與紅細(xì)胞、巨核細(xì)胞、肥大細(xì)胞和嗜酸性粒細(xì)胞的正常生物學(xué)功能。研究發(fā)現(xiàn),GATA1轉(zhuǎn)錄因子在巨核細(xì)胞分化中起重要調(diào)控作用,其表達(dá)異常可能引起血小板減少癥、白血病和骨髓纖維化等血液系統(tǒng)疾病。本文就轉(zhuǎn)錄因子GATA1調(diào)控巨核細(xì)胞分化的機(jī)制、GATA1表達(dá)異常和血液系統(tǒng)疾病的關(guān)系及可能靶向轉(zhuǎn)錄因子GATA1藥物的研究進(jìn)展予以綜述。
GATA1轉(zhuǎn)錄因子;巨核細(xì)胞;細(xì)胞分化;血小板減少癥;白血病
巨核細(xì)胞是產(chǎn)生血小板的前體細(xì)胞,約占骨髓有核細(xì)胞的0.1%。巨核細(xì)胞由造血干細(xì)胞分化而來,此過程伴隨細(xì)胞形態(tài)學(xué)、表面分子、胞質(zhì)特異性顆粒生成及DNA倍體的變化,這些均需要轉(zhuǎn)錄因子精確調(diào)控相關(guān)基因的表達(dá),比較重要的轉(zhuǎn)錄因子有GATA1,F(xiàn)li-1,NF-E2,Ets-1和FOG-1等[1-4]。GATA1轉(zhuǎn)錄因子是巨核細(xì)胞分化過程中研究較為深入的轉(zhuǎn)錄因子之一。本文就近年來GATA1轉(zhuǎn)錄因子調(diào)控巨核細(xì)胞分化的相關(guān)研究予以綜述。
GATA家族是一族含鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子,包含GATA1~GATA6等6個(gè)成員,它們在人和哺乳動物細(xì)胞中廣泛表達(dá)。根據(jù)組織分布部位不同,GATA家族成員的功能也各有差異。GATA1是GATA家族最早被發(fā)現(xiàn)的成員,相對分子質(zhì)量42 000。人的GATA1轉(zhuǎn)錄因子由413個(gè)氨基酸殘基組成,包含2個(gè)高度保守的鋅指結(jié)構(gòu)域,能與GATA基因的基元(motif)區(qū)結(jié)合,對造血細(xì)胞的發(fā)育具有重要作用。雖然GATA1轉(zhuǎn)錄因子分子中2個(gè)鋅指結(jié)構(gòu)相同,均為Cys-X2-Cys,但二者作用卻不同:C端鋅指結(jié)構(gòu)專司與DNA結(jié)合,N端鋅指結(jié)構(gòu)能增強(qiáng)C端結(jié)合的穩(wěn)定性,二者具有協(xié)同作用[5-6]。GATA1轉(zhuǎn)錄因子在紅細(xì)胞、巨核細(xì)胞、肥大細(xì)胞、嗜酸性粒細(xì)胞和嗜堿性粒細(xì)胞中高水平表達(dá),在造血干細(xì)胞中表達(dá)較低。因此,GATA1轉(zhuǎn)錄因子被認(rèn)為是紅系/巨核系分化中起重要調(diào)節(jié)作用的轉(zhuǎn)錄因子[7-11]。但也有文獻(xiàn)報(bào)道,GATA1轉(zhuǎn)錄因子在促進(jìn)巨核細(xì)胞系分化時(shí),其蛋白表達(dá)水平并不升高,而通過增加入核促進(jìn)細(xì)胞分化,這可能與GATA1轉(zhuǎn)錄因子的磷酸化有關(guān)[2]。
2.1 GATA1轉(zhuǎn)錄因子調(diào)控巨核細(xì)胞分化的機(jī)制
巨核細(xì)胞的分化成熟是一個(gè)連續(xù)的過程,根據(jù)細(xì)胞的增殖能力、細(xì)胞形態(tài)及成熟程度,可人為地分為造血干細(xì)胞、紅系/巨核祖細(xì)胞、巨核系祖細(xì)胞、原始巨核細(xì)胞、幼巨核細(xì)胞、顆粒型巨核細(xì)胞和產(chǎn)板型巨核細(xì)胞等7個(gè)階段[12]。隨著巨核細(xì)胞逐漸成熟,細(xì)胞呈現(xiàn)體積增大、胞漿產(chǎn)生特異性顆粒和DNA倍體增多等特點(diǎn),GATA1轉(zhuǎn)錄因子參與了巨核細(xì)胞分化的整個(gè)過程,其異常表達(dá)將引起上述特征的變化。
2.1.1 GATA1基因敲除對小鼠巨核細(xì)胞的影響
Vyas等[13]采用基因敲除小鼠從整體水平研究了GATA1轉(zhuǎn)錄因子對巨核細(xì)胞及血小板的影響。他們發(fā)現(xiàn),GATA1缺陷小鼠骨髓巨核細(xì)胞體積減小,并出現(xiàn)核分葉偏少、胞漿不足和膜發(fā)育不良等形態(tài)改變;PCR檢測巨核細(xì)胞血小板糖蛋白Ⅰb-α(platelet glycoproteinⅠb-α,GPⅠb-α)、GPⅠb-β、血小板因子4和血小板生成素受體等mRNA水平均有不同程度降低。后續(xù)研究發(fā)現(xiàn),GATA1缺陷不僅影響了血小板的數(shù)量,還導(dǎo)致了血小板功能障礙。正常血小板為圓盤狀,而GATA1缺陷小鼠的血小板為均勻的球形,胞質(zhì)粗面內(nèi)質(zhì)網(wǎng)、核糖體過多,不能產(chǎn)生血小板特異性顆粒,也不能被凝血酶或ADP、腎上腺素誘導(dǎo)成為活化血小板[7]。
2.1.2 GATA1基因敲除對巨核細(xì)胞表面分子的影響
GPⅡb是造血干細(xì)胞向巨核細(xì)胞分化的早期標(biāo)志之一。Uzan等[14]發(fā)現(xiàn)GATA1轉(zhuǎn)錄因子能結(jié)合到小鼠GPⅡb基因-643 bp的啟動子上,使小鼠胚胎干細(xì)胞定向向巨核細(xì)胞分化。這說明GATA參與了干細(xì)胞的譜系分化,包括紅系/巨核祖細(xì)胞的早期分化。GATA1轉(zhuǎn)錄因子還通過影響血栓烷A2(thromboxane A2,TXA2)受體的表達(dá)影響血小板的聚集功能。人類TXA2受體α受啟動子Prm1的調(diào)控轉(zhuǎn)錄。Gannon等[15]通過電泳遷移率變動分析和染色質(zhì)免疫共沉淀方法發(fā)現(xiàn),GATA1轉(zhuǎn)錄因子能結(jié)合到TXA2受體DNA的-7962 bp至-7717 bp,從而激活Prm1并促進(jìn)TXA2受體α轉(zhuǎn)錄,進(jìn)而影響血小板聚集和血管收縮。
2.1.3 GATA1基因點(diǎn)突變對巨核細(xì)胞分化的影響
編碼GATA1轉(zhuǎn)錄因子的基因定位在X染色體的短臂(Xp11.23)上[16]。在某些情況下,GATA1點(diǎn)突變可能引起GATA1蛋白的結(jié)構(gòu)異常,也會導(dǎo)致巨核細(xì)胞分化障礙[17]。Freson等[18]研究發(fā)現(xiàn),GATA1的D218G點(diǎn)突變雖不影響GATA1轉(zhuǎn)錄因子與DNA的結(jié)合,但卻降低GATA1和轉(zhuǎn)錄因子FOG-1的結(jié)合能力,導(dǎo)致巨核細(xì)胞成熟障礙。此類患者血小板完全不成熟,缺乏GPⅠb,GPⅢa,GPⅨ和GPⅤ等幾乎所有的糖蛋白,但D218G點(diǎn)突變患者紅細(xì)胞卻不受影響。后續(xù)研究又發(fā)現(xiàn),GATA1存在多種形式的突變,對GATA1轉(zhuǎn)錄因子功能的影響及點(diǎn)突變患者的臨床表現(xiàn)[18-22](表1)。
2.2 GATA1轉(zhuǎn)錄因子和miRNA共調(diào)控巨核細(xì)胞分化
微RNA(microRNA,miRNA)是一類內(nèi)生的、長度20~24個(gè)核苷酸的非編碼單鏈RNA,它可以通過干擾mRNA的穩(wěn)定性及翻譯過程來調(diào)控基因的表達(dá)。研究發(fā)現(xiàn),miRNA水平的失調(diào)可能導(dǎo)致白血病并影響巨核細(xì)胞的分化,目前已發(fā)現(xiàn)大約200余種miRNA參與了巨核細(xì)胞的分化[23-24]。近年研究發(fā)現(xiàn),miRNA和轉(zhuǎn)錄因子共同參與了巨核細(xì)胞分化調(diào)控,且相互影響組成復(fù)雜的調(diào)控網(wǎng)絡(luò)[25-28]。Zhai等[25]應(yīng)用丙二醇甲醚醋酸酯誘導(dǎo)K562細(xì)胞向巨核細(xì)胞定向分化,發(fā)現(xiàn)細(xì)胞內(nèi)miR-146b及轉(zhuǎn)錄因子GATA1的水平均升高,而沉默miR-146b可使細(xì)胞內(nèi)GATA1轉(zhuǎn)錄因子水平降低,導(dǎo)致K562細(xì)胞停止向巨核細(xì)胞分化;與之對應(yīng),轉(zhuǎn)染miR-146b的類似物能使GATA1轉(zhuǎn)錄因子水平升高并促進(jìn)K562細(xì)胞向巨核細(xì)胞分化。這說明miR-146b通過影響轉(zhuǎn)錄因子GATA1的水平,共調(diào)控K562細(xì)胞向巨核細(xì)胞分化。GATA1基因缺失小鼠G1E細(xì)胞系,是研究GATA1功能的細(xì)胞模型。Dore等[26]通過轉(zhuǎn)染技術(shù)重建G1E細(xì)胞GATA1的功能,并用miRNA芯片篩選出11個(gè)差異性表達(dá)的miRNA,通過染色質(zhì)免疫共沉淀檢測發(fā)現(xiàn),GATA1轉(zhuǎn)錄因子結(jié)合到miRNA144/451基因-2.8 kb的啟動子上,并招募RNA聚合酶Ⅱ增加miRNA144/451的轉(zhuǎn)錄。這說明轉(zhuǎn)錄因子GATA1調(diào)控著miRNA的轉(zhuǎn)錄水平。研究還發(fā)現(xiàn),在紅細(xì)胞分化過程中也存在著轉(zhuǎn)錄因子GATA1和眾多miRNA的相互調(diào)控作用,這說明轉(zhuǎn)錄因子和miRNA共同參與造血細(xì)胞的分化,組成了復(fù)雜的調(diào)控網(wǎng)絡(luò)[29-32]。目前有關(guān)轉(zhuǎn)錄因子和miRNA共調(diào)控巨核細(xì)胞分化的研究較少,將來可能成為巨核細(xì)胞分化領(lǐng)域研究的熱點(diǎn)之一。
由于GATA1轉(zhuǎn)錄因子能影響紅細(xì)胞、巨核細(xì)胞、肥大細(xì)胞和嗜堿性粒細(xì)胞等多種細(xì)胞的分化和功能,GATA-l的突變或表達(dá)水平異常,可能引起多種造血系統(tǒng)疾病。
表1 GATA1錯義突變引起的紅系/巨核造血異常
3.1 GATA1轉(zhuǎn)錄因子與血小板減少癥
美國學(xué)者Nichols等[33]在2000年首次報(bào)道了GATA1突變引起的疾病。同一家族中2位表兄弟均表現(xiàn)為外周血紅細(xì)胞形態(tài)異常,血小板減少,骨髓出現(xiàn)體積增大的多核紅細(xì)胞及小巨核細(xì)胞,而家系中女性完全正常。DNA測序發(fā)現(xiàn),GATA1的205位氨基酸由纈氨酸突變?yōu)榧琢虬彼幔╒205M),這也符合GATA1基因是X連鎖的遺傳規(guī)律。由于敲除GATA1基因小鼠均在胚胎期死亡,只能采取基因嵌入技術(shù)制造GATA1突變模型來研究其功能。Chang等[20]向小鼠嵌入GATA1(V205M)基因,建立GATA1(V205M)雜合子突變小鼠模型,發(fā)現(xiàn)大部分雄性小鼠因嚴(yán)重貧血死于11.5 d胚胎期,小部分GATA1(V205M)突變的小鼠出生,但因GATA1功能低下引起嚴(yán)重貧血和血小板減少,也在出生后不久死亡。值得注意的是,GATA1轉(zhuǎn)錄因子過高同樣會引起血小板減少。Wei等[34]通過腹腔內(nèi)注射豚鼠抗小鼠血小板抗體的方法,建立免疫性血小板減少性紫癲的BALB/c小鼠模型,q-PCR檢測模型小鼠脾GATA1的mRNA水平,發(fā)現(xiàn)模型小鼠脾GATA1 mRNA水平較對照組升高6倍??傊?,GATA1轉(zhuǎn)錄因子對紅細(xì)胞和巨核細(xì)胞的分化具有至關(guān)重要的作用,有關(guān)GATA1的突變可能是致死性的。
3.2 GATA1轉(zhuǎn)錄因子與白血病
唐氏綜合征(Down syndrome,DS)是由21號染色體增多導(dǎo)致的疾病,患者合并急性巨核細(xì)胞白血?。╝cute megakaryocyte leukemia,AMKL)的發(fā)病率是正常人的500倍,中位發(fā)病年齡是2歲。研究發(fā)現(xiàn),幾乎所有的DS相關(guān)AMKL患者均存在GATA1突變,而其他類型的白血病則無突變[35-36],說明DS相關(guān)AMKL與GATA1突變有關(guān)。研究發(fā)現(xiàn),轉(zhuǎn)錄因子PU.1表達(dá)增多能引起小鼠紅白血?。╩ouse erythroleukemia,MEL),GATA1轉(zhuǎn)錄因子能抑制轉(zhuǎn)錄因子PU.1的表達(dá)。Papetti等[37]通過細(xì)胞轉(zhuǎn)染技術(shù)使MEL細(xì)胞過表達(dá)GATA1,結(jié)果細(xì)胞內(nèi)PU.1水平降低,且MEL細(xì)胞向成熟紅細(xì)胞分化。GATA1的表達(dá)水平異常不僅能導(dǎo)致白血病的發(fā)生,還能影響白血病的預(yù)后。Shimamoto等[38]通過逆轉(zhuǎn)錄PCR檢測了110例白血病患者GATA1的mRNA表達(dá)水平。發(fā)現(xiàn)GATA1表達(dá)異常影響急性粒細(xì)胞白血病(acute myeloid leukemia,AML)患者的預(yù)后,GATA1陽性AML患者完全緩解率只有64%,而GATA1陰性患者為86%,同時(shí)GATA1陽性患者預(yù)期生存較差。
3.3 GATA1轉(zhuǎn)錄因子與骨髓纖維化
Vannucchi等[39]發(fā)現(xiàn),GATA1基因缺陷小鼠除巨核細(xì)胞生成障礙,骨髓轉(zhuǎn)化生長因子β1、血小板源性生長因子和血管內(nèi)皮生長因子等細(xì)胞因子水平升高,最終會發(fā)展成骨髓纖維化。其另一項(xiàng)研究發(fā)現(xiàn),存在TPO(high)和GATA1(low)基因突變的小鼠在疾病后期均會出現(xiàn)骨髓纖維化,且病理學(xué)特點(diǎn)類似。檢測TPO(high)小鼠血漿GATA1轉(zhuǎn)錄因子水平偏低,而GATA1(low)小鼠血漿血小板生成素水平則正常,給予外源性血小板生成素,GATA1(low)小鼠巨核細(xì)胞GATA1蛋白水平恢復(fù)正常,且骨髓纖維化逆轉(zhuǎn),因此推測血小板生成素和GATA1具有上下游關(guān)系,二者共同參與了小鼠骨髓纖維化的形成[40]。
有關(guān)GATA1缺陷能否引起人骨髓纖維化,Vannucchi等[41]以12例骨髓纖維化患者和8例正常人為對象,分別從骨髓提取了CD34+干細(xì)胞和CD61+巨核細(xì)胞,發(fā)現(xiàn)2組患者CD34+干細(xì)胞GATA1轉(zhuǎn)錄因子水平無明顯差異,而骨髓纖維化患者CD61+細(xì)胞的GATA1轉(zhuǎn)錄因子水平明顯低于正常人。進(jìn)一步骨髓活檢免疫組化發(fā)現(xiàn),特發(fā)性骨髓纖維化患者45%的巨核細(xì)胞GATA1轉(zhuǎn)錄因子呈陰性,而正常人只有2%陰性。說明GATA1轉(zhuǎn)錄因子在人體也參與骨髓纖維化病理生理過程。
目前仍無針對GATA1轉(zhuǎn)錄因子靶點(diǎn)的藥物,但文獻(xiàn)報(bào)道祖國傳統(tǒng)醫(yī)學(xué)中皂苷、黃酮和白蘆藜醇等可能通過影響GATA1轉(zhuǎn)錄因子相關(guān)的分子通路來治療疾?。?2-46]。Wen等[42]用人參二醇皂苷分別誘導(dǎo)巨核細(xì)胞白血病細(xì)胞系Meg-01和CHRF-288,發(fā)現(xiàn)它們的GATA1在mRNA和蛋白水平均有升高,且向成熟巨核細(xì)胞分化。Sun等[43]等發(fā)現(xiàn),三七總皂苷誘導(dǎo)Meg-01和CHRF-288細(xì)胞系向成熟巨核細(xì)胞分化可能和促分裂原活化的蛋白激酶信號通路有關(guān),且GATA1轉(zhuǎn)錄因子是此過程中的關(guān)鍵分子。另有研究發(fā)現(xiàn),黃芩黃酮可能通過GATA1轉(zhuǎn)錄因子起到抗白血病作用[44-45]。Yang等[44]發(fā)現(xiàn),黃芩黃酮對慢性粒細(xì)胞白血病(chronic myeloid leukemia,CML)K562細(xì)胞系具有雙重作用,一方面能誘導(dǎo)K562細(xì)胞系向紅系分化,另一方面能將K562細(xì)胞的細(xì)胞周期阻滯在G0/G1期,抑制其增殖,并對耐伊馬替尼的CML同樣具有治療作用,為耐伊馬替尼的CML患者帶來了希望。趙燕娜等[46]發(fā)現(xiàn),白蘆藜醇也能通過上調(diào)GATA1表達(dá)誘導(dǎo)K562細(xì)胞分化,并抑制其增殖??傊?,GATA1轉(zhuǎn)錄因子促進(jìn)巨核細(xì)胞分化的機(jī)制仍不明確,所以尚無靶向GATA1轉(zhuǎn)錄因子的藥物,還需進(jìn)一步探索。
轉(zhuǎn)錄因子GATA1是造血細(xì)胞分化的重要調(diào)控因子,對維持巨核系、紅系和嗜酸性粒細(xì)胞的正常生物學(xué)功能有不可或缺的作用。GATA1基因突變或異常表達(dá)可能會引起血液系統(tǒng)疾病,如血小板減少癥、白血病和骨髓纖維化等。在過去的15年,有關(guān)GATA1轉(zhuǎn)錄因子和造血系統(tǒng)疾病的關(guān)系已有深入研究,但GATA1轉(zhuǎn)錄因子調(diào)控有關(guān)巨核細(xì)胞分化的關(guān)鍵基因尚不明確,GATA1轉(zhuǎn)錄因子及其輔助因子與miRNA相互作用的模式還不清楚,針對GATA1轉(zhuǎn)錄因子靶點(diǎn)的藥物研究也相對較少。進(jìn)一步研究解決這些問題,有可能會開創(chuàng)一個(gè)新領(lǐng)域。
[1]Zang C,Luyten A,Chen J,Liu XS,Shivdasani RA. NF-E2,F(xiàn)LI1 And RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes[J].Sci Rep,2016,6:30255.
[2]Wang HT,Yang B,Hu B,Chi XH,Luo LL,Yang HQ,et al.The effect of amifostine on differ?entiation of the human megakaryoblastic Dami cell line[J].Cancer Med,2016,5(8):2012-2021.
[3]Pimkin M,Kossenkov AV,Mishra T,Morrissey CS,Wu W,Keller CA,et al.Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis[J].Genome Res,2014,24(12):1932-1944.
[4]Chen L,Kostadima M,Martens JH,Canu G,Garcia SP,Turro E,et al.Transcriptional diversity during lineage commitmentofhuman blood progenitors[J].Science,2014,345(6204):1251033.
[5]Pevny L,Simon MC,Robertson E,Klein WH,Tsai SF,D′Agati V,et al.Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factorGATA-1[J].Nature,1991,349(6306):257-260.
[6]ShivdasaniRA.Molecularand transcriptional regulation ofmegakaryocyte differentiation[J].Stem Cells,2001,19(5):397-407.
[7]Matsumura I,Kanakura Y.Molecular control of megakaryopoiesis and thrombopoiesis[J].Int J Hematol,2002,75(5):473-483.
[8]García P,Berlanga O,Vegiopoulos A,Vyas P,F(xiàn)rampton J.c-Myb and GATA-1 alternate domi?nant roles during megakaryocyte differentiation[J].J Thromb Haemost,2011,9(8):1572-1581.
[9]Nei Y,Obata-Ninomiya K,Tsutsui H,Ishiwata K,Miyasaka M,Matsumoto K,et al.GATA-1 Regu?lates the generation and function of basophils[J].Proc Natl Acad Sci USA,2013,110(46):18620-18625.
[10] Wolff L,Humeniuk R.Concise review:erythroidversusmyeloid lineage commitment:regulating the master regulators[J].Stem Cells,2013,31(7):1237-1244.
[11]Du C,Xu Y,Yang K,Chen S,Wang X,Wang S,et al.Estrogen promotes megakaryocyte polyploidi?zation via estrogen receptor beta-mediated transcription of GATA1[J].Leukemia,2017,31(4):945-956.
[12]Kaushansky K,Lichtman M A,Beutler E,Kipps T J,Prchal J T,Seligsohn U,et al.Williams Hematology[M].8th ed.New York:McGraw-Hill Education,2010:1721-1722.
[13] VyasP,AultK,JacksonCW,OrkinSH,Shivdasani RA.Consequences of GATA-1 deficiency in megakaryocytes and platelets[J].Blood,1999,93(9):2867-2875.
[14]Uzan G,Prandini MH,Berthier R.Regulation of gene transcription during the differentiation of megakaryocytes[J].Thromb Haemost,1995,74(1):210-212.
[15] Gannon AM,Kinsella BT.Regulation of the human thromboxane A2 receptor gene by Sp1,Egr1,NF-E2,GATA-1,and Ets-1 in megakaryocytes[J].J Lipid Res,2008,49(12):2590-2604.
[16]Kumar R,Kahr WH.Congenital thrombocytopenia:clinical manifestations,laboratory abnormalities,and molecular defects of a heterogeneous group of conditions[J].Hematol Oncol Clin North Am,2013,27(3):465-494.
[17]Daly ME.Transcription factordefects causing platelet disorders[J].Blood Rev,2017,31(1):1-10.
[18]Freson K,Devriendt K,Matthijs G,Van Hoof A,De Vos R,Thys C,et al.Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation[J].Blood,2001,98(1):85-92.
[19]Mehaffey MG,Newton AL,Gandhi MJ,Crossley M,Drachman JG.X-linked thrombocytopenia caused by a novel mutation of GATA-1[J].Blood,2001,98(9):2681-2688.
[20]Chang AN,Cantor AB,F(xiàn)ujiwara Y,Lodish MB,Droho S,Crispino JD,et al.GATA-Factor depen?dence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis[J].Proc Natl Acad Sci USA,2002,99(14):9237-9242.
[21]Freson K, Matthijs G, Thys C, Mari?n P,Hoylaerts MF,Vermylen J,et al.Different substitu?tions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are asso?ciated with variable skewed X inactivation[J].Hum Mol Genet,2002,11(2):147-152.
[22]Balduini CL,Pecci A,Loffredo G,Izzo P,Noris P,Grosso M,et al.Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis[J].Thromb Haemost,2004,91(1):129-140.
[23]Edelstein LC,McKenzie SE,Shaw C,Holinstat MA,Kunapuli SP,Bray PF.MicroRNAs in platelet pro?duction and activation[J].J Thromb Haemost,2013,11(Suppl 1):340-350.
[24]Starczynowski DT,Kuchenbauer F,Argiropoulos B,Sung S,Morin R,Muranyi A,et al.Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J].Nat Med,2010,16(1):49-58.
[25]Zhai PF,Wang F,Su R,Lin HS,Jiang CL,Yang GH,et al.The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α(PDGFRA)in erythropoiesis and mega?karyocytopoiesis[J].J Biol Chem,2014,289(33):22600-22613.
[26]Dore LC,Amigo JD,Dos Santos CO,Zhang Z,Gai X,Tobias JW,et al.A GATA-1-regulated microRNA locus essential for erythropoiesis[J].Proc Natl Acad Sci USA,2008,105(9):3333-3338.
[27]Lindsay CR,Edelstein LC.MicroRNAs in platelet physiology and function[J].Semin Thromb Hemost,2016,42(3):215-222.
[28]Trécul A,Morceau F,Gaigneaux A,Schnekenburger M,Dicato M,Diederich M.Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks[J].Biochem Pharmacol,2014,92(2):299-311.
[29]Wang F,Zhu Y,Guo L,Dong L,Liu H,Yin H,et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis[J].Nucleic Acids Res,2014,42(1):442-457.
[30]Kouhkan F,Hafizi M,Mobarra N,Mossahebi-Mohammadi M,Mohammadi S,Behmanesh M,et al.miRNAs:A new method for erythroid differen?tiation of hematopoietic stem cells without the pres?ence of growth factors[J].Appl Biochem Biotechnol,2014,172(4):2055-2069.
[31]Zhu Y,Wang D,Wang F,Li T,Dong L,Liu H,et al. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis[J].Nucleic Acids Res,2013,41(7):4129-4143.
[32]Li Y,Bai H,Zhang Z,Li W,Dong L,Wei X,et al. The up-regulation of miR-199b-5p in erythroid differen?tiation is associated with GATA-1 and NF-E2[J].Mol Cells,2014,37(3):213-219.
[33]Nichols KE,Crispino JD,Poncz M,White JG,Orkin SH,Maris JM,et al.Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1[J].Nat Genet,2000,24(3):266-270.
[34]Wei H,Ding X,Ren J,Liu K,Tan P,Li D,et al. A murine model for human immune thrombocytopenic purpura and comparative analysis of multiple gene?expression in bone marrow and spleen[J].J Genet Genomics,2008,35(11):665-671.
[35]Hitzler JK,Cheung J,Li Y,Scherer SW,Zipursky A. GATA1 Mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome[J].Blood,2003,101(11):4301-4304.
[36]Groet J,McElwaine S,Spinelli M,Rinaldi A,Burtscher I,Mulligan C,et al.Acquired mutations in GATA1 in neonates with Down′s syndrome with transient myeloid disorder[J].Lancet,2003,361(9369):1617-1620.
[37]Papetti M,Skoultchi AI.Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1[J].Mol Cancer Res,2007,5(10):1053-1062.
[38]Shimamoto T, Ohyashiki K, Ohyashiki JH,Kawakubo K,F(xiàn)ujimura T,Iwama H,et al.The expression pattern of erythrocyte/megakaryocyterelated transcription factors GATA-1 and the stem cell leukemia gene correlates with hematopoietic differ?entiation and is associated with outcome of acutemyeloid leukemia[J].Blood,1995,86(8):3173-3180.
[39] Vannucchi AM,Bianchi L,Cellai C,Paoletti F,Rana RA,Lorenzini R,et al.Development of myelofibrosis in mice genetically impaired for GATA-1 expression〔GATA-1(low)mice〕[J].Blood,2002,100(4):1123-1132.
[40]Vannucchi AM,Bianchi L,Paoletti F,Pancrazzi A,Torre E,Nishikawa M,et al.A pathobiologic pathway linking thrombopoietin,GATA-1,and TGF-beta1 in the development of myelofibrosis[J].Blood,2005,105(9):3493-3501.
[41] Vannucchi AM,Pancrazzi A,Guglielmelli P,Di Lollo S,Bogani C,Baroni G,et al.Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis[J].Am J Pathol,2005,167(3):849-858.
[42]Wen WW,Sun X,Zhuang HF,Lin XJ,Zheng ZY,Gao RL,et al.Effects of panaxadiol saponins compo?nent as a new Chinese patent medicine on prolifer?ation,differentiation and corresponding gene expression profile of megakaryocytes[J].Chin J Integr Med,2016,22(1):28-35.
[43]Sun X,Gao RL,Lin XJ,Xu WH,Chen XH.Panax notoginsengsaponins induced up-regulation,phos?phorylation and binding activity of MEK,ERK,AKT,PI-3K protein kinases and GATA transcrip?tion factors in hematopoietic cells[J].Chin J Integr Med,2013,19(2):112-118.
[44]Yang H,Hui H,Wang Q,Li H,Zhao K,Zhou Y,et al.Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells[J].Oncotarget,2014,5(18):8188-8201.
[45]Li H,Hui H,Xu J,Yang H,Zhang X,Liu X,et al. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells[J].Arch Toxicol,2016,90(6):1507-1522.
[46]Zhao YN,Gao RL,Wang LP,Yu XL,Yin LM.Effect of resveratrol on proliferation and differentiation in K562 cells[J].Chin Pharmacol Bull(中國藥理學(xué)通報(bào)),2014,30(6):853-856.
Mechanism of GATA1 transcription factor in regulation of megakaryocytes differentiation:recent advances
WANG Hai-tao1,2,3*,YANG Hong-qi2*,LUO Long-long3,LYU Ming3,WU Xiao-xiong1
(1.Department of Hematology,First Affiliated Hospital of Chinese PLA General Hospital,Beijing 100048,China;2.Department of Geriatric Hematology,Chinese PLA General Hospital, Beijing 100853,China;3.Institute of Basic Medical Sciences,Academy of Military Medical Sciences,Beijing 100850,China)
GATA1 is a transcription factor containing two zinc finger structures and is expressed in red blood cells,megakaryocytes,mast cells,and eosinophils,and it is important to the normal biological func?tion.It was found that GATA1 transcription factor plays an important role in megakaryocyte differentia?tion,and abnormal expressions may cause blood diseases,such as thrombocytopenia,leukemia and idiopathic myelofibrosis.This article aimed to review research progress in the mechanism of GATA1 regu?lating megakaryocytes differentiation,the relationship between GATA1 abnormal expression and blood system diseases,and possible drugs targeting GATA1 transcription factor.
GATA1 transcription factor;megakaryocytes;cell differentiation;thrombocytopenia;leukemia
The project supported by National Natural Science Foundation of China(81273597);Innovation and Nursery Foundation of Chinese PLA General Hospital(15KMM28);and Military Health Care Foundation(13BJ247)
WU Xiao-xiong,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;LYU Ming,E-mail: lm62033@163.com,Tel:(010)66931325
R966
:A
:1000-3002-(2017)05-0439-06
10.3867/j.issn.1000-3002.2017.05.009
2016-10-27 接受日期:2017-03-16)
(本文編輯:喬 虹)
國家自然科學(xué)基金(81273597);解放軍總醫(yī)院科技創(chuàng)新苗圃基金(15KMM28);全軍保健基金(13BJ247)
汪海濤,男,碩士,主要從事血液病的基礎(chǔ)與臨床研究,E-mail:ws_ht@126.com;楊紅旗,女,學(xué)士,主要從事血液病的護(hù)理研究,E-mail:549131561@qq.com
吳曉雄,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;呂 明,E-mail:lm62033@163.com,Tel:(0 10)66931325
*共同第一作者。
*Co-first author.