楊可薪,肖軍,王宇,寧霄洋
1.中國地質(zhì)大學(xué)資源學(xué)院海洋系,武漢 4300742.大慶油田有限責(zé)任公司試油試采分公司射孔大隊第五中隊,黑龍江大慶 1630003.大慶油田有限責(zé)任公司第四采油廠第一油礦杏一聯(lián)合站,黑龍江大慶 163000
松遼盆地北部青山口組致密油特征及聚集模式
楊可薪1,肖軍1,王宇2,寧霄洋3
1.中國地質(zhì)大學(xué)資源學(xué)院海洋系,武漢 4300742.大慶油田有限責(zé)任公司試油試采分公司射孔大隊第五中隊,黑龍江大慶 1630003.大慶油田有限責(zé)任公司第四采油廠第一油礦杏一聯(lián)合站,黑龍江大慶 163000
通過鉆井、測井、巖芯及實驗數(shù)據(jù)綜合分析,對松遼盆地北部青山口組致密油特征與聚集模式進行了深入研究。結(jié)果表明,松遼盆地北部青山口組致密油分布在三角洲前緣及湖相區(qū),儲集層屬于片狀濁流形成的致密儲層,孔隙度一般小于10%,局部可達到15%,滲透率普遍小于0.1×10-3m2。儲集空間為粒間孔、粒內(nèi)溶孔、鑄???、微裂縫等,孔隙直徑分布在5~200 μm,孔喉半徑小于0.5 μm。烴源巖是青山口組一段和二段湖相泥巖,具有廣覆式分布特點,干酪根為Ⅰ型或Ⅱ1型,平均有機碳含量(TOC)為1%~3%,熱成熟度(Ro)為0.9%~1.1%,屬優(yōu)質(zhì)成熟烴源巖。聚集模式為儲層平面上大面積連續(xù)分布,無明顯邊界,縱向上儲層與源巖交互疊置形成千層餅狀,具有緊密接觸的源儲共生型成藏組合。因此,致密油聚集宏觀上受成熟烴源巖控制,其次取決于致密儲層分布。致密油儲層普遍超壓,含油級別為油斑和油跡,不存在油浸和富含油,原油屬于低黏度輕質(zhì)原油,單井無自然產(chǎn)能,采取水平鉆井并進行大規(guī)模分段體積壓裂才能獲得工業(yè)產(chǎn)能。對其沉積及聚集模式的認識為松遼盆地北部致密油勘探拓展了新的空間,具有實際指導(dǎo)意義。
聚集模式;致密油;青山口組;松遼盆地北部
致密儲層是致密油發(fā)育的地質(zhì)基礎(chǔ),儲層界限為孔隙度一般小于10%,地下滲透率小于0.1×10-3m2[1-2]。專家預(yù)測常規(guī)油氣將在未來10年內(nèi)達到產(chǎn)量高峰,之后將趨于平緩下降。因此,致密油在未來能源消費結(jié)構(gòu)中必將占據(jù)重要位置,盡管目前致密油勘探開發(fā)僅處于起步階段,但其資源量很大。據(jù)統(tǒng)計世界包括致密油在內(nèi)的非常規(guī)石油儲量超過5 000×108bbl,非常規(guī)天然氣證實儲量超過7 000 Tcf[1-2]。雖然致密油儲量巨大,但關(guān)于常規(guī)油氣的規(guī)律認識不能完全適用于致密油。因此,需要針對致密油發(fā)育特征及聚集模式開展詳細研究,進而深化致密油勘探開發(fā)地質(zhì)理論和技術(shù)。目前包括致密油在內(nèi)的非常規(guī)油氣主要分布在美國、加拿大、委內(nèi)瑞拉等地區(qū),并取得了突破性進展,在國外勘探實踐的帶動下,中國在致密油的勘探和開發(fā)正在快速推進,并在鄂爾多斯及松遼等盆地取得了初步成效。
半個世紀以來松遼盆地北部上白堊統(tǒng)油氣勘探一直圍繞大型三角洲及大型河流相儲層進行[1-10],但隨著勘探程度不斷提高,這類常規(guī)儲層勘探空間及剩余資源量越來越小。近年來隨著包括致密油在內(nèi)的非常規(guī)油氣勘探開發(fā)及理論研究不斷取得突破[11-21],也推動了松遼盆地致密油的深入研究。2010年以來利用已有的直井鉆探資料及測井、巖芯、實驗室分析化驗等資料,針對致密儲層進行細致的綜合研究,發(fā)現(xiàn)青山口組湖相區(qū)發(fā)育大面積以粉砂巖及泥質(zhì)粉砂巖為主與湖相泥巖呈薄互層分布的片狀濁積巖,并積極開展鉆探工作,利用水平鉆井及分段體積壓裂獲得了較好的工業(yè)產(chǎn)能,證實這類儲層具有工業(yè)開發(fā)價值,目前已經(jīng)成為松遼盆地北部致密油勘探重要領(lǐng)域。通過對青山口組片狀濁積巖分析和梳理,闡明了致密儲層的地質(zhì)特征和致密油聚集規(guī)律,進而指導(dǎo)勘探。
松遼盆地位于中國東北黑龍江、吉林、遼寧三省境內(nèi),長軸呈NNE向展布,長750 km,寬330~370 km,面積約26×104km2,屬中、新生代大型陸相坳陷盆地。沉積蓋層主要為白堊系,上覆新生代地層,總厚度超過10 000 m[22]。劃分6個一級構(gòu)造單元,31個二級構(gòu)造單元。盆地經(jīng)歷了斷陷、坳陷和反轉(zhuǎn)三個構(gòu)造演化階段,相應(yīng)形成了斷陷期、坳陷期及反轉(zhuǎn)期三套地層。斷陷期地層主要是火山巖、砂礫巖、粗砂巖及泥巖夾煤系地層,慶深氣田的天然氣藏就形成于該套地層中。反轉(zhuǎn)期地層主要是河流與淺水湖泊—三角洲形成的砂巖與泥巖交互組合,以形成淺層生物氣藏為主[23-24]。坳陷期地層主要是大型河流相、三角洲相砂巖與湖相泥巖及油頁巖交互疊置形成的巖性組合,松遼盆地油藏主要分布在該套地層中[25-27]。
松遼盆地青山口組是第一次湖泛期形成的大型湖泊—三角洲相地層(圖1),上覆姚家組一段淺水三角洲相地層,下伏泉頭組四段河流—淺水三角洲相地層[28]。青山口組一段沉積時期湖相面積達到了68 000 km2,沉積了盆地范圍內(nèi)廣泛分布的湖相暗色泥巖及油頁巖,三角洲相僅分布在湖盆周邊,地層最大沉積厚度150 m[4,29]。青山口組二段及三段沉積時期,湖區(qū)面積縮小到最大時的三分之一,西部三角洲向湖區(qū)推進了約20 km,北部三角州向湖區(qū)推進了約60 km,成為青山口組常規(guī)油藏的主體,聚集了坳陷層30%的石油儲量,地層厚度最大達到450 m。研究區(qū)位于松遼盆地北部,以中央坳陷區(qū)為主體(圖1),區(qū)內(nèi)主要發(fā)育西部和北部三角洲,南部、東部和中心區(qū)域為湖相,湖相泥巖連續(xù)沉積厚度最大達到550 m[30]。
2.1 儲層沉積類型與分布
松遼盆地北部青山口組致密儲層屬于一種片狀濁積巖,這是在波浪、湖流、洪水等外界條件或自身重力壓實沉陷作用下,來自陸源三角洲前緣斜坡帶的砂體在其前端附近發(fā)生砂泥混合液化現(xiàn)象形成的席狀濁流沉積[31-33]。片狀濁積巖與席狀砂的區(qū)別是粒度更細,縱向上與泥巖組合,表現(xiàn)為孤立的薄層砂體受大段湖相泥巖分隔,而席狀砂縱向上表現(xiàn)為砂泥互層,呈現(xiàn)各種沉積微相砂體頻繁接替的特征。2010年研究區(qū)內(nèi)鉆探QP1水平井(圖1ab),在青山口組一段至青山口組二段1 925~2 120 m處取芯,取芯長184.4 m。巖芯粒度分析表明概率累積曲線呈兩段式及S型三段式,懸浮總體比例明顯偏大,一般為70%~95%,C-M圖上處于濁流均勻懸浮區(qū)域(圖2)。儲層主要是灰黑色泥巖、粉砂質(zhì)泥巖與灰色泥質(zhì)粉砂巖、粉砂巖、棕灰色粉砂巖呈不等厚薄互層狀(圖2),單砂層厚度0.1~1.8 m,多數(shù)分布在0.3~0.8 m,砂地比(粉砂巖+泥質(zhì)粉砂巖/地層)最大不超過20%,一般小于10%。層理類型包括變形層理及波狀層理,發(fā)育攪混構(gòu)造??v向上表現(xiàn)為多期疊置現(xiàn)象,旋回性不明顯。自然伽馬曲線(GR)為中、高值不規(guī)則齒狀與尖峰狀、刺刀狀相間分布,自然電位曲線(SP)為明顯的薄層指狀特征(圖2)。通過QP1井巖芯實驗分析資料統(tǒng)計,孔隙度105個數(shù)據(jù),分布區(qū)間1.4%~15.5%,平均6.68%,滲透率62個數(shù)據(jù),分布區(qū)間(0.01~1.26)×10-3m2,平均0.131×10-3m2(圖3),受沉積環(huán)境、壓實和膠結(jié)作用影響,儲層總體上屬于致密性非常規(guī)儲層,物性隨深度增加而變差。這類儲層主要分布在中央坳陷區(qū)齊家—古龍凹陷、朝陽溝階地及長春嶺背斜的三角洲前緣及湖相區(qū),在三肇凹陷也有零星分布(圖1)。
圖1 松遼盆地北部青山口組沉積相圖等值線為粉砂巖與泥質(zhì)粉砂巖疊合厚度,a.青山口組一段,b.青山口組二段,c.青山口組三段Fig.1 Sedimentary facies of the Qingshankou Formation in northern Songliao Basin
圖2 松遼盆地QP1井青山口組致密儲層概率累計曲線及C-M圖Fig.2 Accumulated probability curve and C-M diagram of the QP1 in the Qingshankou Formation’s tight reservoir in Songliao Basin
圖3 QP1井青山口組致密儲層巖石礦物及物性綜合分析圖Fig.3 Comprehensive analysis of mineral and rock chart of the QP1 in the Qingshankou tight reservoir
2.2 儲層巖石礦物組成
儲層巖石類型為含鈣粉砂質(zhì)巖屑長石砂巖、含泥粉砂質(zhì)巖屑長石砂巖、含介屑鈣質(zhì)巖屑長石粉砂巖和介屑質(zhì)細粒巖屑長石砂巖及介殼灰?guī)r。顆粒磨圓度為次棱角狀,分選較好,顆粒接觸類型點—線—點。填隙物為方解石2%~49%,平均7%,泥質(zhì)1%~40%,平均24%,介殼灰?guī)r方解石膠結(jié)。儲層石英、斜長石、方解石等脆性礦物含量超過80%,威德福脆性指數(shù)49.4%~81.3%,平均值62.02%(表1)。鈣質(zhì)含量一般5%~20%,長英質(zhì)一般為40%~70%,黏土礦物為15%~50% ,其中伊利石含量50%以上,綠泥石含量超過30%。泥巖中石英、斜長石、方解石等脆性礦物含量超過70%,黏土礦物以伊利石為主,含量在70%以上,綠泥石約20%,其次為綠泥石和伊蒙混層。隨深度增加伊利石相對含量逐漸增加,綠泥石、伊蒙混層變化趨勢不明顯,但伊蒙混層中蒙皂石含量逐漸減少,高嶺石僅少量分布(圖3,4)。
表1 松遼盆地北部青山口組致密儲層脆性指數(shù)參數(shù)表
圖4 QP1井儲層微觀結(jié)構(gòu)圖片(A~J.鑄體薄片;K~P.掃描電鏡)A.介殼灰?guī)r,粒內(nèi)溶孔,1 938.79 m; B.含介屑砂巖,粒間孔,1 952.2 m;C.含砂介屑灰?guī)r,粒間溶孔,1 984.23 m;D.含介屑粉砂巖,粒間溶孔,1 985 m;E.含鈣砂巖,粒間孔,1 954.53 m;F.含鈣砂巖,鑄???,1 955 m;G.粒間孔、粒間溶孔,984.37 m;H.含泥粉砂巖,粒內(nèi)溶孔,2 044.14 m;I.泥質(zhì)粉砂巖,微裂縫,1 949.89 m;J.含泥含鈣粉砂巖,微裂隙,1 999.94 m;K.深灰色油跡泥質(zhì)粉砂巖,粒間孔隙,1 952.33 m;L.棕灰色油斑粉砂巖,粒間孔,1 953.27 m; M.油跡粉砂巖,粒間孔,1 984.23 m;N.油斑粉砂巖,粒間孔,1 997.64 m;O.油跡粉砂巖,長石粒內(nèi)溶孔,2 026.94 m;P.油跡粉砂巖,粒間孔,2 043.64 m。Fig.4 Reservoir microstructure pictures of QP1 Well (A~J. Casting thin-section; K~P. Scanning electron microscope)
2.3 儲層微觀特征
儲層儲集空間為粒間孔、粒內(nèi)溶孔、鑄???、微裂縫等多種類型,孔隙半徑一般5~200 μm(圖3,4)。目前,公認的致密儲層界限為孔隙度一般小于10%,地下滲透率小于0.1×10-3m2[11-15],根據(jù)QP1井儲層巖芯壓汞資料所具有特點,將儲層分為三種類型(圖5)。第一種類型儲層孔喉分選較好,略粗歪度,孔喉半徑相對較大,分布在0.106~0.424 μm,排驅(qū)壓力較低,分布在1.734~8.787 MPa,最大汞飽和度大于75%。儲層分布在青山口組二段上部,以粉砂巖為主,砂層較集中,單層較厚,孔隙度一般10%~15%,滲透率較高,一般在0.06~0.2×10-3m2。第二種類型儲層孔喉分選較差,細歪度,孔喉半徑很小,分布在0.027~0.058 μm,排驅(qū)壓力高,分布在12.698~20.642 MPa,最大汞飽和度一般低于50%。儲層分布在青山口組二段中部,以泥質(zhì)粉砂巖為主,砂層相對較密,孔隙度一般小于10%,滲透率低于第一種類型,一般在(0.01~0.1)×10-3m2。第三種類型儲層孔喉分選很差,細歪度,孔喉半徑更小,排驅(qū)壓力高,一般27 MPa左右,最大汞飽和度一般低于20%。儲層分布在青山口組二段下部并延伸到青山口組一段,以泥質(zhì)粉砂巖為主,泥巖隔層厚,砂層薄而分散,孔隙度一般小于5%,滲透率低于0.01×10-3m2(圖3)。
松遼盆地北部青山口組湖相泥巖最大厚度可達550 m,優(yōu)質(zhì)烴源巖厚度達到200 m,主要分布在青山口組一段和青山口組二段中下部,有機質(zhì)類型以I~II1型為主[34]。青山口組一段殘余有機碳含量(TOC)為0.73%~8.68%,平均2.13%;有機質(zhì)成熟度(Ro)0.4%~2.0%,在齊家—古龍及三肇凹陷均已超過0.8%,達到成熟和過成熟階段。青山口組三段烴源巖有機質(zhì)雖然也是Ⅰ型,但烴源巖殘余有機碳含量(TOC)為0.12%~ 6.56%,平均只有0.9%,有機質(zhì)成熟度(Ro)小于0.7%。青山口組二段各項指標介于一段和三段之間,下部生油能力好,上部生油能力較差[4-5]。
對QP1井青山口組烴源巖192個樣品做了全巖地球化學(xué)分析,其中包括有機質(zhì)成熟度(Ro)及殘余氯仿瀝青“A”含量分別做了7塊和10塊樣品。統(tǒng)計獲得青山口組一段烴源巖殘余有機碳含量為1.01%~3.14%,平均2.15%,有機質(zhì)成熟度(Ro)為1.06%~1.07%,平均1.067%,烴源巖殘余氯仿瀝青“A”含量為28%~68%,平均43.6%,烴源巖生烴潛量(S1+S2)8.36 mg/g(圖6a),烴源巖有機質(zhì)主要為II1型,少量為I型(圖6b)。青山口組二段烴源巖殘余有機碳含量0.6%~3.63%,平均1.76%,有機質(zhì)成熟度(Ro)0.93 %~1.01%,平均0.96%,烴源巖殘余氯仿瀝青“A”含量31%~68.2%,平均51.2%,烴源巖生烴潛量(S1+S2)8.10 mg/g,烴源巖有機質(zhì)類為I~II1型。油源對比共取了2個源巖樣品和1個油砂樣品,分析表明油砂(1 954.63 m)中的原油與下伏烴源巖(2 046.14 m)的特征比較相似,親緣關(guān)系更好,屬于近源運聚(圖6c)。
圖5 QP1井青山口組致密儲層毛細管壓力曲線及孔隙分布圖Fig.5 Mercury injection curves of the QP1 in the Qingshankou Formation’s tight reservoir
圖6 QP1井青山口組地球化學(xué)指標分析圖a.巖芯地球化學(xué)綜合剖面:m.泥巖,sm.粉砂質(zhì)泥巖,ps.泥質(zhì)粉砂巖,S.粉砂巖,fs.細砂巖;b. HI-Tmax有機質(zhì)類型劃分圖;C.生物標志化合物色譜質(zhì)譜對比圖。Fig.6 The geochemical index analysis chart of QP1 in the Qingshankou Formation
在齊家—古龍凹陷統(tǒng)計了青山口組73口井的油層壓力系實測數(shù)值,制作了壓力系數(shù)等值圖(圖7),經(jīng)分析表明三角洲相帶常規(guī)儲層壓力系數(shù)一般分布在0.9~1.1之間,湖相區(qū)致密儲層壓力系數(shù)一般大于1.1,最高可達1.6,超壓區(qū)集中在齊家—古龍凹陷南部片狀濁積巖分布的湖相區(qū)內(nèi),向北及西部三角洲相常規(guī)儲層分布區(qū)壓力系數(shù)趨于正常(圖7C)。在齊家—古龍凹陷統(tǒng)計了青山口組89個井點原油密度值,測試溫度為20℃,密度值分布區(qū)間為0.81~0.92 g/cm3,平均0.86 g/cm3,在齊家—古龍凹陷北部三角洲相帶原油密度值一般大于0.85 g/cm3,在齊家—古龍凹陷南部湖相帶致密儲層分布區(qū)原油密度值一般小于0.83 g/cm3(圖7A)。原油黏度總計取91個井點值,測試溫度為50℃,數(shù)據(jù)分布區(qū)間為1.8~313.3 mPa·s,平均32.32 mPa·s,在齊家—古龍凹陷北部三角洲相帶原油黏度一般大于20 mPa·s,在南部湖相區(qū)原油黏度一般小于15 mPa·s(圖7B),總體上分析致密儲層原油屬于低黏度輕質(zhì)原油。
致密油聚集主要受儲層分布及類型,源巖發(fā)育規(guī)模及成熟度,源巖與儲層的組合方式。上述研究表明,松遼盆地北部青山口組大面積片狀分布的致密儲層與廣覆式分布的腐泥型較高成熟度優(yōu)質(zhì)生油層呈緊密接觸的源儲共生關(guān)系,縱向上形成交互疊置千層餅狀自生自儲式成藏組合(圖8),構(gòu)造上位于盆地中央坳陷區(qū)齊家—古龍凹陷湖相環(huán)境內(nèi)(圖1,9)。儲層宏觀上無明顯圈閉邊界,屬于連續(xù)型,同時,脆性礦物的含量是決定儲層優(yōu)略的重要因素,儲集空間主體為微米級孔隙,局部發(fā)育毫米級孔隙,孔吼多為納米級,油氣以原位滯留及短距離運移為主,浮力作用受限,這一點與已有的研究成果具有共同的特征[14-17,35-38]。儲層具有下列油氣聚集特征,測井解釋無水夾層,巖芯資料分析表明總體含油級別較低,只有油跡和油斑,不存在油浸和富含油(圖3),油斑分布在第一種類型儲層中,第二種類型主要發(fā)育油跡,第三種類型發(fā)育少量的油跡。儲層原油具有低密度、低黏度和超壓的特點。巖芯掃描及熒光照片發(fā)現(xiàn)不論是儲層還是泥巖中都發(fā)育大量裂縫,而且泥巖中裂縫具有熒光(圖4),分析油氣通過溝通烴源巖和致密儲層裂縫做原地運移(表2)。因此,致密油聚集宏觀上受成熟烴源巖控制,其次取決于致密儲層分布。
圖7 松遼盆地北部大慶長垣以西地區(qū)青山口組致密油密度(A)、黏度(B)與壓力系數(shù)(C)分布圖Fig.7 The map in northern Songliao Basin in Daqing area of western Changyuan in Qingshankou Formation of dense oil density (A) and viscosity (B) and pressure coefficient (C)
圖8 松遼盆地北部青山口組致密油聚集剖面(剖面位置見圖1)Fig.8 The aggregation profile in the Qingshankou Formation’s unconventional reservoir in northern Songliao Basin
圖9 松遼盆地北部青山口組致密油聚集模式Fig.9 The tight oil accumulation model in the Qingshankou tight reservoir of the north Songliao Basin
表2 松遼盆地北部青山口組致密油聚集特征表
綜合分析致密儲層及烴源巖發(fā)育程度及其空間接觸關(guān)系,認為齊家—古龍凹陷南部是致密油聚集最為有利地區(qū),因為這里不僅源巖成熟度高,局部Ro最高達到了2.0%,平均在1.2%,而且儲層分布廣、厚度大,局部最大累計厚度33 m,平均厚度16 m。三肇凹陷為較有利地區(qū),雖然這里源巖成熟度相對較高,Ro值在1.2%~0.8%,但儲層不發(fā)育,只零星分布一些較薄的儲層。三肇凹陷東部周邊地區(qū)雖然儲層發(fā)育,但源巖成熟度較低,一般在0.7%一下,缺少油源供給,所以很難成藏(圖1)??v向上最有利層段分布在青山口組二段,該層位不論是源巖還是儲層都發(fā)育較好,青山口組一段雖然源巖條件好,但儲層較薄且規(guī)模較小,所以不如上覆青山口組二段有利,青山口組三段儲層雖然較厚,在成熟源巖范圍內(nèi)分布局限,而且源巖生烴能力遠不如下伏青山口組二段,成藏性較差,因此,齊家—古龍凹陷南部青山口組二段是致密油聚集最為有利的地區(qū)(圖1)。隨著近幾年國家非常規(guī)重大科技攻關(guān)課題的開展,在齊家—古龍凹陷的青山口組二段鉆探了6口水平井,投產(chǎn)的2口井都無自然產(chǎn)能,進行分段體積壓裂后初期產(chǎn)量均超過50 t/d,穩(wěn)定產(chǎn)量分別為10 t/d和31 t/d,取得了致密油勘探重大突破。
松遼盆地北部青山口組致密儲層屬于多期片狀濁流沉積的濁積巖,主要分布在齊家—古龍凹陷及朝陽溝階地和長春嶺背斜的三角洲前緣及湖相區(qū)。這類儲層宏觀上有一定的延展趨勢,但無明顯圈閉邊界,單層薄,層數(shù)多,孔隙度大多小于10%,地下滲透率小于0.1×10-3m2、孔喉半徑小于0.5 μm。儲層可分為三種類型,其中第一種類型最為有利。儲層縱向上與成熟優(yōu)質(zhì)烴源巖呈頻繁交互疊置,形成千層餅狀源儲共生式組合。宏觀上受成熟烴源巖控制,其次取決于致密儲層分布。致密油具有低黏度、儲層普遍超壓、含油級別較低、無自然產(chǎn)能的特點,需要鉆水平井并進行大規(guī)模分段體積壓裂才能獲得工業(yè)產(chǎn)能。有利區(qū)分析認為齊家—古龍凹陷是有利地區(qū),其次是三肇凹陷,這不僅為松遼盆地致密油勘探拓展了空間,同時也為剩余資源有效開發(fā)找到了新途徑。
References)
[1] 孫贊東,賈承造,李相方,等. 非常規(guī)油氣勘探與開發(fā)[M]. 北京:石油工業(yè)出版社,2011:3-111.[Sun Zandong, Jia Chengzao, Li Xiangfang, et al. Unconventional oil & gas exploration and development[M]. Beijing: Petroleum Industry Press, 2011: 3-111.]
[2] 鄒才能,陶士振,侯連華,等. 非常規(guī)油氣地質(zhì)學(xué)[M]. 2版. 北京:地質(zhì)出版社,2014:26-90. [Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional oil and gas geology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2014: 26-90.]
[3] 高瑞祺,蔡希源. 松遼盆地油氣田形成條件與分布規(guī)律[M]. 北京:石油工業(yè)出版社,1997:1-5.[Gao Ruiqi, Cai Xiyuan. Oil and gas fields formation conditions and the distribution regular in the Songliao Basin[M]. Beijing: Petroleum Industry Press, 1997: 1-5.]
[4] 侯啟軍,馮志強,馮子輝,等. 松遼盆地陸相石油地質(zhì)學(xué)[M]. 北京:石油工業(yè)出版社,2009:166-189. [Hou Qijun, Feng Zhiqiang, Feng Zihui, et al. Petroleum geology of terrestrial facies in Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009: 166-189.]
[5] 楊萬里. 松遼陸相盆地石油地質(zhì)特征[M]. 北京:石油工業(yè)出版社,1985:38-79. [Yang Wanli. The petroleum geology in the continental sedimentary basins of Songliao[M]. Beijing: Petroleum Industry Press, 1985: 38-79.]
[6] 高瑞祺. 松遼盆地白堊紀陸相沉積特征[J]. 地質(zhì)學(xué)報,1980(1),9-22. [Gao Ruiqi. Characteristics of the continental Cretaceous in the Songliao Basin[J]. Acta Geologica Sinica, 1980(1): 9-22.]
[7] 付志國,石成方,趙翰卿,等. 喇薩杏油田河道砂巖厚油層夾層分布特征[J]. 大慶石油地質(zhì)與開發(fā),2007,26(4):55-58. [Fu Zhiguo, Shi Chengfang, Zhao Hanqing, et al. The distribution characteristics of interlayer in thick channel sand oil reservoir in LaSaXing oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(4): 55-58.]
[8] 趙翰卿. 大慶油田河流—三角洲沉積的油層對比方法[J]. 大慶石油地質(zhì)與開發(fā),1988,7(4):25-31. [Zhao Hanqing. Formation correlation of fluvial-deltaic deposition in Daqing oil field[J]. Petroleum geology & Oilfield Development in Daqing, 1988, 7(4): 25-31.]
[9] 衛(wèi)平生,王建功,潘樹新,等. 河口壩、沿岸壩的形成及成藏機制——以松遼盆地西、南部沉積體系為例[J]. 新疆石油地質(zhì),2004,25(6):592-595. [Wei Pingsheng, Wang Jiangong, Pan Shuxin, et al. Formation of the Mouth Bar and Lakeshore Bar and their petroleum accumulation—An example of southern and western depositional systems in Songliao Basin[J]. Xinjiang Petroleum Geology, 2004, 25(6): 592-595.]
[10] 黃薇,張順,梁江平,等. 松遼盆地沉積地層與成藏響應(yīng)[J]. 大慶石油地質(zhì)與開發(fā),2009,28(5):18-22. [Huang Wei, Zhang Shun, Liang Jiangping, et al. Sedimentary strata and hydrocarbon accumulation response of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2009, 28(5): 18-22.]
[11] 趙政璋,杜金虎. 致密油氣[M]. 北京:石油工業(yè)出版社,2012:2-14. [Zhao Zhengzhang, Du Jinhu. Densified oil and gas[M]. Beijing: Petroleum Industry Press, 2012: 2-14.]
[12] 關(guān)德師,李建忠. 松遼盆地南部巖性油藏成藏要素及勘探方向[J]. 石油學(xué)報,2003,24(3):24-27. [Guan Deshi, Li Jianzhong. Factors for controlling lithologic oil pool formation and exploration prospects in southern Songliao Basin[J]. Acta Petrolei Sinica, 2003, 24(3): 24-27.]
[13] 關(guān)德師,牛嘉玉,郭麗娜,等. 中國非常規(guī)油氣地質(zhì)[M]. 北京:石油工業(yè)出版社,1995:75-79. [Guan Deshi, Niu Jiayu, Guo Li’na, et al. Unconventional oil and gas geology in China[M]. Beijing: Petroleum Industry Press, 1995: 75-79.]
[14] 鄒才能,朱如凱,吳松濤,等. 常規(guī)與非常規(guī)油氣聚集類型、特征、機理及展望——以中國致密油和致密氣為例[J]. 石油學(xué)報,2012,33(2):173-187. [Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.]
[15] 鄒才能,陶士振,袁選俊,等. 連續(xù)型油氣藏形成條件與分布特征[J]. 石油學(xué)報,2009,30(3):324-331. [Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. The formation conditions and distribution characteristics of continuous petroleum accumulations[J]. Acta Petrolei Sinica, 2009, 30(3): 324-331.]
[16] 鄒才能,陶士振,袁選俊,等. “連續(xù)型”油氣藏及其在全球的重要性:成藏、分布與評價[J]. 石油勘探與開發(fā),2009,36(6):669-682. [Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682.]
[17] 鄒才能,楊智,陶士振,等. 納米油氣與源儲共生型油氣聚集[J]. 石油勘探與開發(fā),2012,39(1):13-26. [Zou Caineng, Yang Zhi, Tao Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.]
[18] 趙靖舟,付金華,姚涇利,等. 鄂爾多斯盆地準連續(xù)型致密砂巖大氣田成藏模式[J]. 石油學(xué)報,2012,33(增刊1):37-52. [Zhao Jingzhou, Fu Jinhua, Yao Jingli, et al. Quasi-continuous accumulation model of large tight sandstone gas field in Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(Suppl.1): 37-52.]
[19] 曾聯(lián)波,高春宇,漆家福,等. 鄂爾多斯盆地隴東地區(qū)特低滲透砂巖儲層裂縫分布規(guī)律及其滲流作用[J]. 中國科學(xué)(D輯):地球科學(xué),2008,38(增刊1):41-47. [Zeng Lianbo, Gao Chunyu, Qi Jiafu, et al. The distribution rule and seepage effect of the fractures in the ultra-low permeability sandstone reservoir in east Gansu province, Ordos Basin[J]. Science China(Seri.D): Earth Sciences, 2008, 38(Suppl.1): 41-47.]
[20] 王瑞飛.特低滲透砂巖油藏儲層微觀特征——以鄂爾多斯盆地延長組為例[M]. 北京:石油工業(yè)出版社,2008:35-135. [Wang Ruifei. Microscopic feature in ultra-low permeability sandstone reservoir—Taking the Yanchang Formation of Ordos Basin as examples[M]. Beijing: Petroleum Industry Press, 2008: 35-135.]
[21] 郝蜀民,陳召佑,李良. 鄂爾多斯大牛地氣田致密砂巖氣成藏理論與勘探實踐[M]. 北京:石油工業(yè)出版社,2011:67-293. [Hao Shumin, Chen Zhaoyou, Li Liang. The reservoiring theory and exploration practice for tight sandstone gas in Daniudi gas field of Ordos Basin[M]. Beijing: Petroleum Industry Press, 2011: 67-293.]
[22] 張順,付秀麗,張晨晨. 松遼盆地泉頭組及青山口組沉積演化與成藏響應(yīng)[J]. 石油天然氣學(xué)報,2011,33(1):6-10. [Zhang Shun, Fu Xiuli, Zhang Chenchen. The sedimentary evolution and response to hydrocarbon accumulation of Quantou and Qingshankou formation in Songliao Basin[J]. Journal of Oil and Gas Technology, 2011, 33(1): 6-10.]
[23] Feng Zhiqiang, Jia Chengzao, Xie Xinong, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
[24] 王衡鑒,曹文富. 松遼湖盆白堊紀沉積相模式[J]. 石油與天然氣地質(zhì),1981,2(3):227-242. [Wang Hengjian, Cao Wenfu. A model of cretaceous sedimentary facies in Songliao Basin[J]. Oil & Gas Geology, 1981, 2(3), 227-242.]
[25] 馮志強,張順,付秀麗. 松遼盆地姚家組—嫩江組沉積演化與成藏響應(yīng)[J]. 地學(xué)前緣,2012,19(1):78-88. [Feng Zhiqiang, Zhang Shun, Fu Xiuli. Depositional evolution and accumulation response of Yaojia-Nenjiang Formation in Songliao Basin[J]. Earth Science Frontiers, 2012, 19(1): 78-88.]
[26] 黃薇,張順,張晨晨,等. 松遼盆地嫩江組層序構(gòu)型及其沉積演化[J]. 沉積學(xué)報,2013,31(5):920-927. [Huang Wei, Zhang Shun, Zhang Chenchen, et al. Sequence configuration and sedimentary evolution of Nenjiang Formation in the Songliao Basin[J]. Acta Sedimentologica Sinica, 2013, 31(5): 920-927.]
[27] 張順,安廣柱,趙波,等. 松遼盆地古龍凹陷嫩江組二、三段層序地層及油氣藏分布規(guī)律[J]. 石油學(xué)報,2006,27(增刊1):38-41. [Zhang Shun, An Guangzhu, Zhao Bo, et al. Sequence stratigraphy and distribution Law of oil-gas reservoirs of 2nd and 3rd members of Nenjiang Formation in Gulong sag, Songliao Basin[J]. Acta Petrolei Sinica, 2006, 27(Suppl.1): 38-41.]
[28] 劉招君,孫平昌,賈建亮,等. 陸相深水環(huán)境層序識別標志及成因解釋:以松遼盆地青山口組為例[J]. 地學(xué)前緣,2011,18(4):171-180. [Liu Zhaojun, Sun Pingchang, Jia Jianliang, et al. Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting: A case from Qingshankou Formation in Songliao Basin[J]. Earth Science Frontiers, 2011, 18(4): 171-180.]
[29] 高瑞祺,張瑩. 松遼盆地白堊紀石油地層[M]. 北京:石油工業(yè)出版社,1994:5-212. [Gao Ruiqi, Zhang Ying. Cretaceous oil and gas strata of Songliao Basin[M]. Beijing: Petroleum Industry Press, 1994: 5-212.]
[30] 曾洪流,朱筱敏,朱如凱,等. 陸相坳陷型盆地地震沉積學(xué)研究規(guī)范[J]. 石油勘探與開發(fā),2012,39(3):275-284. [Zeng Hongliu, Zhu Xiaomin, Zhu Rukai, et al. Guidelines for seismic sedimentologic study in non-marine postrift basins[J]. Petroleum Exploration and Development, 2012, 39(3): 275-284.]
[31] 趙寧,黃江琴,李棟明,等. 遠源緩坡型薄層細粒濁積巖沉積規(guī)律——以松南西斜坡大布蘇地區(qū)青一段地層為例[J]. 沉積學(xué)報,2013,31(2):291-301. [Zhao Ning, Huang Jiangqin, Li Dongming, et al. Sedimentary laws of thin-layer, fine-grain Turbidites of Distant-gentle slope: A case from the 1st member of Qingshankou Formation in Dabusu area of west slope, south Songliao Basin[J]. Acta Sedimentologica Sinica, 2013, 31(2): 291-301.]
[32] 姜在興,梁超,吳靖,等. 含油氣細粒沉積巖研究的幾個問題[J]. 石油學(xué)報,2013,34(6):1031-1039. [Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.]
[33] 蒲秀剛,周立宏,韓文中,等. 歧口凹陷沙一下亞段斜坡區(qū)重力流沉積與致密油勘探[J]. 石油勘探與開發(fā),2014,41(2):138-149. [Pu Xiugang, Zhou Lihong, Han Wenzhong, et al. Gravity flow sedimentation and tight oil exploration in lower first member of Shahejie Formation in slope area of Qikou sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(2): 138-149.]
[34] 黃振凱,陳建平,薛海濤,等. 松遼盆地白堊系青山口組泥頁巖孔隙結(jié)構(gòu)特征[J]. 石油勘探與開發(fā),2013,40(1):58-65. [Huang Zhenkai, Chen Jianping, Xue Haitao, et al. Microstructural characteristics of the cretaceous Qingshankou Formation shale, Songliao Basin[J]. Petroleum Exploration and Development, 2013, 40(1): 58-65.]
[35] 杜金虎,劉合,馬德勝,等. 試論中國陸相致密油有效開發(fā)技術(shù)[J]. 石油勘探與開發(fā),2014,41(2):198-205. [Du Jinhu, Liu He, Ma Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2): 198-205.]
[36] 張惠良,張榮虎,楊海軍,等. 超深層裂縫—孔隙型致密砂巖儲集層表征與評價——以庫車前陸盆地克拉蘇構(gòu)造帶白堊系巴什基奇克組為例[J]. 石油勘探與開發(fā),2014,41(2):158-167. [Zhang Huiliang, Zhang Ronghu, Yang Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167.]
[37] 劉明潔,劉震,劉靜靜,等. 砂巖儲集層致密與成藏耦合關(guān)系——以鄂爾多斯盆地西峰—安塞地區(qū)延長組為例[J]. 石油勘探與開發(fā),2014,41(2):168-175. [Liu Mingjie, Liu Zhen, Liu Jingjing, et al. Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation: A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(2): 168-175.]
[38] 張洪,張水昌,柳少波,等. 致密油充注孔喉下限的理論探討及實例分析[J]. 石油勘探與開發(fā),2014,41(3):367-374. [Zhang Hong, Zhang Shuichang, Liu Shaobo, et al. A theoretical discussion and case study on the oil-charging throat threshold for tight reservoirs[J]. Petroleum Exploration and Development, 2014, 41(3): 367-374.]
A Study on Qingshankou Formation’s Tight Oil Characteristics and Accumulation mode in the northern Songliao Basin
YANG KeXin1,XIAO Jun1,WANG Yu2, NING XiaoYang3
1. Department of Marine Resources, China University of Geosciences, Wuhan 430074, China2. No.5 Lochus, Perforating Service Brigade, Well Testing and Perforating Services of Daqing Oilfield Company Ltd., Daqing, Heilongjiang 163000, China3. Xing No.1 Oilfield Combination Station, No.1 Operation Zone, No.4 Oil Production Plant, Daqing Oilfield Company Ltd., Daqing, Heilongjiang 163000, China
Through a comprehensive analysis of drilling, well logging, cores and experimental data, an in-depth study on the Qingshankou Formation’s tight oil characteristics and accumulation mode in northern Songliao Basin was described and established. It is found that the unconventional reservoir is a densified reservoir which developed from platelike turbidity current in both deltaic front and lake facies region. The porosity of the reservoir is less than 10% in general, in some part the porosity could reach 15%, and the permeability is less than 0.1×10-3μm2in general. Reservoir spaces are intergranular pore, intragranular dissolved pore, mold pore, and microfracture. The diameters of pores range from 5~200 μm and the diameters of pore throat are less than 0.5 μm. The source rock is the lacustrine facies mudstone of the first and second Section in Qingshankou Formation, and that are typical of extensive distribution: kerogens are either type I or type II1, average TOC is 1%~3%, Ro is from 0.9%~1.1% and the rock attributes to mature high-quality source rock. Horizontally, the reservoir has some characteristics of facies belt and regional belt, but there is no obvious entrapment boundary. Vertically, the reservoir and the source rocks piled up alternatively and formed like flaky pastry, reservoir forming type is source-reserve impinge and mutualistic symbiosis. The oil bearing degrees of the reservoir are oil patch and oil stain. Oil immersion and oil-rich rocks do not exist, the crude oil belong to low viscosity and light crude. The reservoir does not have natural production, but a relatively high industrial capacity could be adopted in horizontal well by large-scale segmental bulk fracturing. Therefore, the study on platelike turbidite reservoir develops and accumulation mode develop new space for the tight oil exploration in Songliao Basin, and possess practical significance.
accumulation mode; tight Oil; Qingshankou Formation; Songliao Basin
1000-0550(2017)03-0600-11
10.14027/j.cnki.cjxb.2017.03.017
2016-02-23; 收修改稿日期: 2016-07-11
國家自然科學(xué)基金項目(40702023,41172123)[Foundation: National Natural Science Foundation of China, No. 40702023, 41172123]
楊可薪,女,1988年出生,碩士研究生,油氣沉積地質(zhì),E-mail: 1119181328@qq.com
肖軍,男,副教授,E-mail: xj0930@cug.edu.cn
P618.13
A