国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

WRKY轉(zhuǎn)錄因子在植物抗逆生理中的研究進展

2017-05-30 09:56文鋒吳小祝廖亮劉新圣李鵬
廣西植物 2017年1期

文鋒 吳小祝 廖亮 劉新圣 李鵬

摘要: 轉(zhuǎn)錄因子是一類在生物生命活動過程中起到調(diào)控作用的重要因子,參與了各種信號轉(zhuǎn)導(dǎo)和調(diào)控過程,可以直接或間接結(jié)合在順式作用元件上,實現(xiàn)調(diào)控目標基因轉(zhuǎn)錄效率的抑制或增強,從而使植物在應(yīng)對逆境脅迫下做出反應(yīng)。WRKY轉(zhuǎn)錄因子在大多數(shù)植物體內(nèi)都有分布,是一類進化非常保守的轉(zhuǎn)錄因子家族,參與植物生長發(fā)育以及響應(yīng)逆境脅迫的生理過程。眾多研究表明,WRKY轉(zhuǎn)錄因子在植物中能夠應(yīng)答各種生物脅迫,如細菌、病毒和真菌等;多種非生物脅迫,包括高溫、冷害、高光和高鹽等;以及在各種植物激素,包括茉莉酸(JA)、水楊酸(SA)、脫落酸(ABA)和赤霉素(GA)等,在其信號傳遞途徑中都起著重要作用。WRKY轉(zhuǎn)錄因子家族蛋白至少含有一段60個氨基酸左右的高度保守序列,被稱為WRKY結(jié)構(gòu)域,其中WRKYGQK多肽序列是最為保守的,因此而得名。該轉(zhuǎn)錄因子的WRKY結(jié)構(gòu)域能與目標基因啟動子中的順式作用元件Wbox(TTGAC序列)特異結(jié)合,從而調(diào)節(jié)目標基因的表達,其調(diào)控基因表達主要受病原菌、蟲咬、機械損傷、外界脅迫壓力和信號分子的誘導(dǎo)。該文介紹了植物WRKY轉(zhuǎn)錄因子在植物應(yīng)對冷害、干旱、高鹽等非生物脅迫與病菌、蟲害等生物脅迫反應(yīng)中的重要調(diào)控功能,并總結(jié)了WRKY轉(zhuǎn)錄因子在調(diào)控這些逆境脅迫反應(yīng)過程中的主要生理機制。

關(guān)鍵詞: WRKY轉(zhuǎn)錄因子, 抗逆, 生物脅迫, 非生物脅迫

中圖分類號: Q945

文獻標識碼: A

文章編號: 10003142(2017)01006912

Abstract: Transcription factor, also called sequence specific DNA binding factor, is a protein which can bind to specific DNA sequences, and then controlling the rate of transcription from DNA to messenger RNA. By binding to either enhancer or promoter regions of DNA adjacent to the genes, transcription factors can control the transcription level of the adjacent gene either up or down regulated. In plants, transcription factors use a variety of mechanisms for the regulation of gene expression, when plants are in response to environmental stimuli, especially to biotic or abiotic stresses. WRKY transcription factors are conserved in evolutional history throughout the Plant Kingdom, which play essential roles in various physiological processes. Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. Previous studies have demonstrated that WRKY transcription factors play essential roles in various physiological processes, including senescence, root development, sugar signaling, and germination. Furthermore, WRKY transcription factors have been shown to be involved in responses to various biotic stresses caused by viruses, bacterial pathogens, fungi, abiotic stresses including drought, heat, cold, and so on, and some signaling substances such as salicylic acid (SA)/benzothiadiazole, jasmonic acid, gibberellin and ABA. All members of this family contain at least one conserved DNAbinding domain with a highly conserved WRKYGQK heptapeptide sequence. These conserved sequences have been designated as the WRKY domains, and function in Wbox DNA motif (C/T)TGAC(C/T) binding activation, to regulate stressresponse gene expression, which were induced by pathogen, wound external stimuli and signal molecule. Here, this present review concentrates on the recent report about function study of WRKY transcription factors, including abiotic stresses (cold,drought,salinity) and various biotic stresses (viruses, bacterial pathogens, fungi), intent to elucidate how these WRKY proteins regulate the plant defense and how they interact with each other will be hot topics for future studies.

Key words: WRKY transcription factors, stress resistance, biotic stress, abiotic stress

植物是固定在土壤中生存的生物,大多數(shù)植物不能自主移動,為了適應(yīng)外界不斷變化的環(huán)境,在長期進化的過程中,植物發(fā)展了一系列針對內(nèi)外環(huán)境變化而做出相應(yīng)反應(yīng)的復(fù)雜機制(Glazebrook, 2001; Lawlor, 2011)。在病蟲害、高溫、干旱等脅迫下,植物依賴這種復(fù)雜的生理機制維持其生命活動(Rushton & Somssich, 1998)。隨著分子生物學(xué)的發(fā)展以及科學(xué)家對植物基因組研究的深入研究,人們在基因調(diào)控水平上對植物應(yīng)答逆境生理活動的了解正在逐步加深。植物基因組中有一部分基因在應(yīng)對外界環(huán)境變化的信號轉(zhuǎn)導(dǎo)或者基因轉(zhuǎn)錄水平調(diào)控過程中起著重要的作用,并且往往是以基因家族的形式出現(xiàn)(Riechmann et al, 2000)。轉(zhuǎn)錄因子是參與此類外界環(huán)境脅迫的信號轉(zhuǎn)導(dǎo)和基因表達水平調(diào)控過程中的重要基因之一。轉(zhuǎn)錄因子可以直接或者間接地結(jié)合在順式作用元件上,來實現(xiàn)調(diào)控目標基因的轉(zhuǎn)錄效率的抑制或增強的目的,從而使植物應(yīng)對外界逆境脅迫做出相應(yīng)的反應(yīng)。轉(zhuǎn)錄因子大多都具有特異的DNA識別位點和DNA結(jié)合活性,通常由幾個相對獨立的功能域組成,包括轉(zhuǎn)錄調(diào)控區(qū)、核定位信號區(qū)、DNA結(jié)合域和寡聚化位點等。根據(jù)DNA結(jié)合域的特征,轉(zhuǎn)錄因子主要分為以下幾大類:bZIP(堿性亮氨酸拉鏈)、bHLH(堿性環(huán)-螺旋-環(huán))、WRKY、MYB、ERF(乙烯響應(yīng)因子)、Zinc finger(鋅指蛋白)、HSF(熱激轉(zhuǎn)錄因子)等(Riechmann et al, 2000; Yamasaki et al, 2008)。其中,WRKY轉(zhuǎn)錄因子在植物界中分布較廣泛,并且是植物所特有的一類成員較多的轉(zhuǎn)錄因子家族(圖1)。

Ishiguro & Nakamura (1994)首次從甘薯(Ipomoea batatas)中分離出第一個編碼與順式作用元件Wbox(TTGAC序列)相結(jié)合的蛋白的cDNA(SPF1)以來,人們相繼從擬南芥(de Pater et al, 1996; Wang et al, 2011; Wu et al, 2005)、野燕麥(Rushton et al, 1995)、水稻(Berri et al, 2009; Wu et al, 2005)和二穗短柄草(Wen et al, 2014)等植物中分離出WRKY轉(zhuǎn)錄因子,例如在擬南芥中分離出了74個WRKY轉(zhuǎn)錄因子,在水稻中則含有126個(Berri et al, 2009)。根據(jù)已有的文獻報道,WRKY轉(zhuǎn)錄因子參與了植物生長發(fā)育中的許多重要生理過程,其中包括種子的形成發(fā)育和萌發(fā)、根的發(fā)育、糖分的運輸以及植物器官的衰老等過程(Eulgem et al, 2000)。同時,WRKY轉(zhuǎn)錄因子在植物生長過程中響應(yīng)各種生物脅迫,如細菌、病毒、蟲害和真菌等,以及多種非生物脅迫,包括冷害、高溫、高鹽和強光等,以及在各種植物激素(茉莉酸、水楊酸、赤霉素和脫落酸等)的信號傳遞途徑中都起著重要作用(Chen et al, 2012; Jiang & Deyholos, 2006; Li et al, 2009; Park et al, 2006; Qiu et al, 2007; Rushton et al, 2010; Xie et al, 2006; Xu et al, 2006)。

1WRKY轉(zhuǎn)錄因子的結(jié)構(gòu)特征和功能特性

通過分析WRKY轉(zhuǎn)錄因子的蛋白序列,發(fā)現(xiàn)其最主要的結(jié)構(gòu)特征是各個成員的DNA結(jié)合域中都含有一個或兩個WRKY結(jié)構(gòu)域。WRKY結(jié)構(gòu)域由一段大約包含60個氨基酸的保守序列組成,包含四個β折疊,并有由一對半胱氨酸殘基(Cys)與一對組氨酸(His)殘基組成的鋅離子結(jié)合功能結(jié)構(gòu)(圖2)。其保守結(jié)構(gòu)域N端含有7個絕對保守的氨基酸殘基WRKYGQK,它是WRKY轉(zhuǎn)錄因子的標志,是WRKY結(jié)構(gòu)域中的核心序列,主要控制WRKY結(jié)構(gòu)域與DNA之間的結(jié)合活性。實驗表明,WRKYGQK殘基在WRKY結(jié)構(gòu)域中有極高的保守性,其變異往往導(dǎo)致轉(zhuǎn)錄因子與DNA 結(jié)合的活性減弱或者甚至喪失(Maeo et al, 2001; Wu et al, 2005)。例如,在擬南芥和水稻中,一些WRKY家族成員的WRKY結(jié)構(gòu)域中的甘氨酸、精氨酸、賴氨酸和谷氨酰胺發(fā)生了變異,常見的例如谷氨酰胺突變?yōu)楣劝彼峄蛘哔嚢彼?,最終導(dǎo)致WRKY轉(zhuǎn)錄因子與DNA的結(jié)合力下降(Maeo et al, 2001; Wu et al, 2005)。WRKY結(jié)構(gòu)域的C端通常含有兩種類型的由半胱氨酸和組氨酸殘基組成的鋅指結(jié)構(gòu),其組成分別為:C2H2(CX45CX2223HX1H)和C2HC(CX7CX23HX1C)。鋅指結(jié)構(gòu)的分類,在植物的進化中可能起到重要的作用(Xie et al, 2005; Zhang & Wang, 2005)。

根據(jù)WRKY結(jié)構(gòu)域的數(shù)目和C端鋅指的結(jié)構(gòu)特征,一般可以將WRKY轉(zhuǎn)錄因子分為三大類:Ⅰ類、Ⅱ類和Ⅲ類(圖3)。其中第Ⅰ類WRKY轉(zhuǎn)錄因子有2個保守WRKY結(jié)構(gòu)域,鋅指結(jié)構(gòu)域為C2H2型,主要包括最早被發(fā)現(xiàn)的NtWRKY1、IbSPF1、PcWRKY1、AtZAP1和CsSE71等。進一步的研究表明,C端的WRKY結(jié)構(gòu)域在第Ⅰ類WRKY與DNA結(jié)合過程中起主導(dǎo)作用,而N端WRKY結(jié)構(gòu)域的功能目前還不清楚,可能與WRKY轉(zhuǎn)錄因子與DNA特異序列的親和力和結(jié)合特異性有關(guān),通過提高其親和力和特異性從而參與該家族轉(zhuǎn)錄因子與DNA相互結(jié)合的過程(Eulgem et al, 1999; Maeo et al, 2001)。第Ⅱ和第Ⅲ類WRKY轉(zhuǎn)錄因子都只含一個保守的WRKY結(jié)構(gòu)域,兩者的主要區(qū)別在于,第Ⅱ類轉(zhuǎn)錄因子的鋅指結(jié)構(gòu)為C2H2,然而第Ⅲ類轉(zhuǎn)錄因子的鋅指結(jié)構(gòu)為C2HC(Eulgem et al, 2000)。其中,第Ⅱ類WRKY轉(zhuǎn)錄因子在WRKY家族中所占比例最高,通常分為5個亞類(Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe)。序列比對結(jié)果表明,第Ⅱ類轉(zhuǎn)錄因子的WRKY結(jié)構(gòu)域與第Ⅰ類轉(zhuǎn)錄因子C端WRKY結(jié)構(gòu)域序列相似程度更大,而與N端的相似性更低,這同樣也說明了第Ⅰ類WRKY轉(zhuǎn)錄因子與目標DNA序列相互結(jié)合的過程中起到主導(dǎo)作用的是C端WRKY結(jié)構(gòu)域(Eulgem et al, 2000)。第Ⅲ類WRKY轉(zhuǎn)錄因子只含一個WRKY結(jié)構(gòu)域,其C端的鋅指結(jié)構(gòu)是C2HC型,如AtWRKY38,、AtWRKY54、OsWRKY7、PcWRKY5和NtWRKY5等。研究表明,第Ⅲ類WRKY轉(zhuǎn)錄因子在進化上最為活躍,并且通常只在高等植物中存在,而在一些較低等的植物如苔蘚植物中不存在。同時,高等植物中幾乎全部的第Ⅲ類WRKY轉(zhuǎn)錄因子都參與了生物脅迫應(yīng)答反應(yīng),這說明第Ⅲ類WRKY轉(zhuǎn)錄因子的產(chǎn)生可能是由植物適應(yīng)外界環(huán)境脅迫所引起的(Eulgem et al, 2000; Wu et al, 2005; Xie et al, 2005; Zhang & Wang, 2005)2WRKY轉(zhuǎn)錄因子與非生物脅迫

植物在固著生長的過程中,外界的環(huán)境在不斷的變化,使得植物需要不斷的適應(yīng)變化的環(huán)境。在惡劣的外界環(huán)境下,植物的生理生化過程會發(fā)生相應(yīng)的改變,其中WRKY轉(zhuǎn)錄因子在此過程中起了一定的調(diào)控作用。雖然WRKY轉(zhuǎn)錄因子最早是被發(fā)現(xiàn)參與了植物在病原菌侵染過程中的對病原菌的應(yīng)答反應(yīng),但最近的研究表明,許多WRKY轉(zhuǎn)錄因子同樣也參與了干旱、高溫、低溫、損傷等非生物逆境的應(yīng)答反應(yīng)(Chen et al, 2012)。筆者總結(jié)了部分已報道的與非生物脅迫相關(guān)的WRKY轉(zhuǎn)錄因子(表1)。隨著高通量測序技術(shù)和分子生物學(xué)的發(fā)展,越來越多的物種的基因組序列已經(jīng)漸漸變?yōu)橐阎?。建立在此基礎(chǔ)上的全基因組分析、轉(zhuǎn)錄組分析、基因芯片分析和轉(zhuǎn)錄譜的綜合性分析等方法,為研究含有較多成員的轉(zhuǎn)錄因子大家族的功能提供了非常好的方法和手段。通過基因組的表達水平和基因芯片分析,現(xiàn)已經(jīng)報道了許多WRKY轉(zhuǎn)錄因子參與了植物響應(yīng)非生物脅迫的過程,例如,研究發(fā)現(xiàn)100個楊樹WRKY轉(zhuǎn)錄因子中有61個轉(zhuǎn)錄因子參與了植株響應(yīng)非生物脅迫,41個蕪菁WRKY轉(zhuǎn)錄因子提高或降低了植株對冷害、干旱和鹽害等脅迫的抗性,15個葡萄WRKY轉(zhuǎn)錄因子參與了葡萄應(yīng)答冷害脅迫的過程(Jiang et al, 2014; Kayum et al, 2014; Wang et al, 2014)。轉(zhuǎn)錄組分析結(jié)果表明TaWRKY16、TaWRKY24、TaWRKY59和TaWRKY61的表達水平在小麥面對干旱脅迫時迅速上升(Okay et al, 2014)。Ramamoorthy et al(2008)對水稻103個WRKY轉(zhuǎn)錄因子在不同非生物脅迫(包括冷害、鹽害、干旱)下的表達譜分析,結(jié)果發(fā)現(xiàn)54個WRKY轉(zhuǎn)錄因子在上述非生物脅迫下會誘導(dǎo)表達。同時發(fā)現(xiàn),這些WRKY轉(zhuǎn)錄因子的表達量,有的會上調(diào),有的會下調(diào),說明了WRKY轉(zhuǎn)錄因子對于植物的非生物脅迫反應(yīng)有正調(diào)控和負調(diào)控之分。另外,他們還發(fā)現(xiàn)有的WRKY轉(zhuǎn)錄因子只受一種脅迫因子的誘導(dǎo),而有的同時受幾種脅迫因子的誘導(dǎo),說明這些WRKY轉(zhuǎn)錄因子在響應(yīng)不同非生物脅迫的調(diào)控過程中具有一定的特異性。

除了利用全基因組的表達譜和基因芯片分析,科學(xué)家通過將目標物種的WRKY轉(zhuǎn)錄因子過量表達到擬南芥或煙草等模式植物中,研究其在提高植株對非生物脅迫抗性過程中的分子機制。Zhou et al(2008)把大豆GmWRKY13、GmWRKY21和GmWRKY54過量表達到擬南芥中,發(fā)現(xiàn)過量表達GmWRKY21可以提高植株對冷害的抗性,過量表達GmWRKY54提高了植株對干旱和鹽害的忍耐力,然而過量表達GmWRKY13的植株對鹽害和甘露醇脅迫的抗性下降,降低了植株對ABA的敏感。過表達小麥WRKY轉(zhuǎn)錄因子TaWRKY2到擬南芥中,發(fā)現(xiàn)TaWRKY2可以通過上調(diào)STZ和RD29B的表達從而提高植株對鹽害和干旱的抗性,TaWRKY19可以通過上調(diào)DREB2A、RD29A和RD29B提高植株耐鹽、抗寒和抗寒能力(Niu et al, 2012)。將棉花中的GhWRKY391轉(zhuǎn)入本氏煙中可以提高植株的抗鹽和抗氧化脅迫的能力(Shi et al, 2014)。同樣,通過轉(zhuǎn)基因技術(shù),人們可以從在極端條件下生長的物種中分離和克隆出對非生物脅迫具有特定抗性的WRKY轉(zhuǎn)錄因子。例如,人們從重金屬超富集植物天藍遏藍菜中的TcWRKY53過量表達到煙草中,發(fā)現(xiàn)TcWRKY53是一個滲透脅迫反應(yīng)的負調(diào)控因子(Wei et al, 2008)。Zheng et al(2013)研究發(fā)現(xiàn)從耐鹽堿的剛毛檉柳中分離得到ThWRKY4轉(zhuǎn)錄因子,并發(fā)現(xiàn)其可以通過調(diào)節(jié)超氧岐化酶(SOD)和過氧化物酶的表達,從而清除植株體內(nèi)的超氧陰離子和過氧化氫,最終提高植株的耐鹽和抗旱性。

3WRKY轉(zhuǎn)錄因子與病原菌

植物在病原菌侵染的過程中,病原菌能夠誘導(dǎo)植物表達大量的抗病相關(guān)基因,包括了對病原菌響應(yīng)的細胞表面受體蛋白、MAPK級聯(lián)相關(guān)蛋白、抗病相關(guān)轉(zhuǎn)錄因子以及下游的病程相關(guān)蛋白等。其中,WRKY轉(zhuǎn)錄因子在植物防衛(wèi)反應(yīng)過程中起了非常重要的調(diào)控作用。許多基因芯片的數(shù)據(jù)表明,病原菌侵染植物后,植物體內(nèi)的一些WRKY轉(zhuǎn)錄因子的表達水平會發(fā)生改變(Ryu et al, 2006; Zhao et al, 2007)。例如,病原菌誘導(dǎo)的水稻W(wǎng)RKY轉(zhuǎn)錄因子家族基因的表達分析結(jié)果表明,15個水稻W(wǎng)RKY轉(zhuǎn)錄因子可以被稻瘟病病菌Magnaporthe grisea誘導(dǎo)表達,有12個WRKY基因同時能夠被細菌Xanthomonas oryzae pv. oryzae誘導(dǎo)表達(Ryu et al, 2006)。研究發(fā)現(xiàn)在很多與植物防衛(wèi)反應(yīng)相關(guān)的抗病基因啟動子中都有順式作用元件Wbox的存在,例如,許多已被研究清楚的病程相關(guān)蛋白基因,甘藍中的SFR2、歐芹中的PcPR11、煙草中的CHN50和擬南芥中的NPR1等基因的啟動子都含有不同形式的Wbox。WRKY結(jié)構(gòu)域能夠保守地和Wbox相互作用,因此,WRKY轉(zhuǎn)錄因子可以通過與抗病相關(guān)蛋白基因啟動子的Wbox結(jié)合,激活下游抗病基因的表達,從而開啟植物的抗病防衛(wèi)系統(tǒng)(Rocher et al, 2005; Turck et al, 2004; Yang et al, 1999; Yu et al, 2001)。隨著多個物種全基因組的測序完成,在許多物種中都發(fā)現(xiàn)了經(jīng)病原菌侵染誘導(dǎo)表達升高的WRKY轉(zhuǎn)錄因子。該類表達升高的WRKY轉(zhuǎn)錄因子與下游基因啟動子結(jié)合,導(dǎo)致其下游與抗病相關(guān)的基因表達水平升高,從而提高植株對病原菌的免疫力。通過全基因組的WRKY轉(zhuǎn)錄因子表達譜分析,在受黑斑病菌侵染的埃塞俄比亞芥中發(fā)現(xiàn)部分WRKY轉(zhuǎn)錄因子的表達模式與抗病相關(guān)基因如PR1、PAL和PDF1.2等的相關(guān)性高,從而可以推測這些WRKY轉(zhuǎn)錄因子參與了植株抗病過程(Chavan & Kamble, 2013)。Kayum et al(2014)發(fā)現(xiàn)至少有8個蕪菁WRKY轉(zhuǎn)錄因子提高了植株對軟腐果膠桿菌和鐮孢菌的抗性。Jiang et al(2014)對楊樹WRKY基因表達譜分析發(fā)現(xiàn)大量的WRKY轉(zhuǎn)錄因子表達水平在黑斑病菌感染后升高,同時將其中的一個基因PtrWRKY89在白楊中過表達,發(fā)現(xiàn)其過表達可以提高白楊植株對黑斑病菌的抗性。

在篩選和克隆到與植物抗病相關(guān)的WRKY轉(zhuǎn)錄因子后,科學(xué)家可以通過TDNA插入、基因沉默和轉(zhuǎn)基因等技術(shù)進一步地研究其提高植株抗病性的分子機制,發(fā)現(xiàn)WRKY轉(zhuǎn)錄因子在植物抗病過程中起著多種調(diào)控功能,包括調(diào)控植物抗毒素、植物病程相關(guān)蛋白和超敏反應(yīng)相關(guān)基因等的表達,另外,研究發(fā)現(xiàn)還有不少的WRKY轉(zhuǎn)錄因子的植物抗病過程中起到負調(diào)控的作用(Eulgem & Somssich, 2007; Pandey & Somssich, 2009)。利用缺少突變和過表達植株,Abbruscato et al(2012)發(fā)現(xiàn)水稻OsWRKY22突變后使得植株對稻瘟病菌易感,相反在水稻植株過表達OsWRKY22基因很大程度地提高了其對稻瘟病菌的抗性,說明OsWRKY22轉(zhuǎn)錄因子在水稻抗稻瘟病的機制中起著關(guān)鍵的作用。Mao et al(2011)研究發(fā)現(xiàn),AtWRKY33在被MAPK3和MAPK6磷酸化激活后,調(diào)控了植物抗毒素camalexin的表達,從而提高擬南芥對葡萄孢菌的抗性。而利用基因沉默技術(shù)將辣椒CaWRKYd基因表達沉默后,發(fā)現(xiàn)植株病程相關(guān)蛋白基因和超敏反應(yīng)相關(guān)基因的表達水平都下降了,說明CaWRKYd能夠通過調(diào)控抗病相關(guān)基因表達從而提高植株的抗病性(Huh et al, 2012)。除了對植株抗病的正向調(diào)節(jié)外,植物體內(nèi)還有相當多的一部分WRKY轉(zhuǎn)錄因子在植株對病原菌的應(yīng)答過程中起負調(diào)控的作用,例如通過全基因組的分析大麥WRKY轉(zhuǎn)錄因子的表達譜,發(fā)現(xiàn)大麥HvWRKY1和2通過抑制類萌發(fā)素抗病相關(guān)蛋白HvGER4c的表達,從而負調(diào)控大麥對白粉菌的抗性(Liu et al, 2014b)。Wang et al(2013b)將辣椒CaWRKY58過表達到煙草植株后,反而煙草中抗病相關(guān)基因和超敏反應(yīng)標記基因的表達都受到了抑制,說明CaWRKY58在植株受雷爾氏菌的侵染過程中起到負調(diào)控的作用。最后,筆者總結(jié)了部分新報道的與植物抗病相關(guān)的WRKY轉(zhuǎn)錄因子(表2)。

4WRKY轉(zhuǎn)錄因子與植食性昆蟲

到目前為止,與植食性昆蟲相關(guān)的WRKY轉(zhuǎn)錄因子的報道相對還比較少,但隨著基因組測序技術(shù)和基因芯片技術(shù)的發(fā)展,基因表達譜的結(jié)果顯示植物被植食性昆蟲取食之后,WRKY轉(zhuǎn)錄因子的表達水平會發(fā)生變化。例如,在煙草中,表達譜數(shù)據(jù)顯示煙草天蛾的取食可以強烈的誘導(dǎo)NtWRKY2、NtWRKY3和NtWRKY6的表達(Hui et al, 2003; Izaguirre et al, 2003; Skibbe et al, 2008),同樣的,Lu et al(2011)發(fā)現(xiàn)剝離螟蟲取食可以誘導(dǎo)水稻中OsWRKY53和OsWRKY70的表達,說明WRKY轉(zhuǎn)錄因子家族某些成員可能參與植物應(yīng)答植食性昆蟲取食的防衛(wèi)反應(yīng)過程。Atamian et al(2012)人發(fā)現(xiàn)西紅柿中的SlWRKY70在土豆蚜蟲取食后被誘導(dǎo)表達,進一步沉默SlWRKY70基因后,發(fā)現(xiàn)在沉默植株wrky70中,Mi1所誘導(dǎo)的抗蟲害性減弱,說明Mi1所誘導(dǎo)的抗蟲性需要SlWRKY70基因的參與。同樣的,Skibbe et al(2008)也構(gòu)建了沉默植株irwrky3和irwrky6研究NaWRKY3和NaWRKY6的功能,研究發(fā)現(xiàn)在沉默植株中,煙草天蛾的生長速率明顯強于野生植株,并且蛋白酶抑制劑的含量也明顯低于野生植株,說明NaWRKY3和NaWRKY6在煙草對煙草天蛾的抗性生理過程中起正向調(diào)控作用。進一步研究表明,在沉默植株中,茉莉酸的含量以及茉莉酸合成關(guān)鍵基因LOX2的表達量下降,并且外源的茉莉酸可以恢復(fù)NaWRKY3和NaWRKY6基因沉默所減弱的抗蟲性,說明NaWRKY3和NaWRKY6轉(zhuǎn)錄因子通過調(diào)控茉莉酸的合成,從而參與到茉莉酸介導(dǎo)的煙草抗蟲害的防衛(wèi)反應(yīng)中來(Skibbe et al, 2008)。目前,在水稻中,暫時也發(fā)現(xiàn)了一個直接與抗蟲害相關(guān)的WRKY轉(zhuǎn)錄因子,經(jīng)研究發(fā)現(xiàn),過表達OsWRKY89提高了水稻對灰稻飛虱的抗性(Wang et al, 2007)。最后,筆者總結(jié)了部分與植食性昆蟲相關(guān)的WRKY轉(zhuǎn)錄因子的報道(表3)。

5展望

WRKY轉(zhuǎn)錄因子作為植物所特有的、并與植物生長發(fā)育和抗性有密切關(guān)系的重要轉(zhuǎn)錄因子,已經(jīng)引起人們的關(guān)注,近年來關(guān)于WRKY轉(zhuǎn)錄因子的研究也層出不窮。近年來,利用基因組學(xué)、轉(zhuǎn)錄譜、生物信息學(xué)、基因工程等方法,人們對WRKY轉(zhuǎn)錄因子功能的了解逐步加深,發(fā)現(xiàn)其不僅參與了植物生長發(fā)育過程,更是調(diào)控了植物對外界脅迫的響應(yīng)過程。研究發(fā)現(xiàn),WRKY轉(zhuǎn)錄因子與MAPK級聯(lián)和SA、JA等抗病相關(guān)激素有著密切的關(guān)系,同時還能調(diào)控下游的抗性相關(guān)蛋白轉(zhuǎn)錄和表達。WRKY轉(zhuǎn)錄因子在大多數(shù)植物中是一個比較大的基因家族,植物體內(nèi)存在很多WRKY轉(zhuǎn)錄因子。那么,是否眾多的WRKY轉(zhuǎn)錄因子都存在其生理作用,其功能是否存在著重復(fù),以及WRKY轉(zhuǎn)錄因子家族基因之間的相互協(xié)作調(diào)節(jié)關(guān)系是如何,目前尚未研究清楚。因此,進一步的研究WRKY轉(zhuǎn)錄因子之間的相互調(diào)控網(wǎng)絡(luò),以及進一步闡明WRKY轉(zhuǎn)錄因子在植物調(diào)控網(wǎng)絡(luò)機制中的作用,將是今后研究的一個重要方向,同時利用WRKY轉(zhuǎn)錄因子篩選抗逆植株品種和提高植株抗逆性具有遠大的應(yīng)用前景。

參考文獻:

ABBRUSCATOP, NEPUSZ T, MIZZI L, et al, 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast [J]. Mol Plant Pathol, 13: 828-841.

ATAMIANHS, EULGEM T, KALOSHIAN I, 2012. SlWRKY70 is required for Mi1mediated resistance to aphids and nematodes in tomato [J]. Planta, 235: 299-309.

BERRIS, ABBRUSCATO P, FAIVRERAMPANT O, et al, 2009. Characterization of WRKY coregulatory networks in rice and Arabidopsis [J]. BMC plant biology, 9: 120.

CHAVANV, KAMBLE A, 2013. Betaaminobutyric acid primed expression of WRKY and defence genes in Brassica carinata against alternaria blight [J]. J Phytopathol, 161: 859-865.

CHEN L, SONG Y, LI S, et al, 2012. The role of WRKY transcription factors in plant abiotic stresses [J]. BBAGene Regul Mech, 1819: 120-128.

CHEN L, ZHANG L, YU D, 2010. Woundinginduced WRKY8 is involved in basal defense in Arabidopsis [J]. Mol Plant Microbe Interaction, 23: 558-565.

CHEN L, YANG Y, LIU C, et al, 2015. Characterization of Wrky transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment [J]. Biochem Biophys Res Comm, 464(3): 962-968.

CHEN YF, LI LQ, XU Q, et al, 2009. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis [J]. Plant Cell, 21: 3554-3566.

CHU X, WANG C, CHEN X, et al, 2015. The cotton Wrky gene Ghwrky41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana [J]. PLoS ONE, 10(11): e0143022.

CHUJO T, SUGIOKA N, MASUDA Y, et al, 2009. Promoter analysis of the elicitorinduced WRKY gene OsWRKY53, which is involved in defense responses in rice [J]. Biosci Biotechnol Biochem, 73: 1901-1904.

DANG F, WANG Y, SHE J, et al, 2014. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection [J]. Physiol Plant, 150: 397-411.

DANG FF, WANG YN, YU L, et al, 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection [J]. Plant Cell Environ, 36: 757-774.

DAI X, WANG Y, ZHANG WH, 2016. Oswrky74, a Wrky transcription factor, modulates tolerance to phosphate starvation in rice [J]. J Exp Bot, 67(3): 947-960.

DE PATERS, GRECO V, PHAM K, et al, 1996. Characterization of a zincdependent transcriptional activator from Arabidopsis [J]. Nucl Acid Res, 24: 4624-4631.

DEVAIAH BN, KARTHIKEYAN AS, RAGHOTHAMA KG, 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol, 143: 1789-1801.

DUAN Y, JIANG Y, YE S, et al, 2015. Ptrwrky73, a Salicylic AcidInducible Poplar Wrky transcription factor, is involved in disease resistance in Arabidopsis thaliana [J]. Plant Cell Rep, 34(5): 831-841.

EULGEM T, RUSHTON PJ, ROBATZEK S, et al, 2000. The WRKY superfamily of plant transcription factors [J]. Trends Plant Sci, 5: 199-206.

EULGEM T, RUSHTON PJ, SCHMELZER E, et al, 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors [J]. EMBO J, 18: 4689-4699.

EULGEM T, SOMSSICH IE, 2007. Networks of WRKY transcription factors in defense signaling [J]. Curr Opin Plant Biol, 10: 366-371.

FAN X, GUO Q, XU P, et al, 2015. Transcriptomewide identification of saltresponsive members of the Wrky gene family in Gossypium aridum [J]. PLoS ONE, 10(5): e0126148.

GLAZEBROOKJ. 2001. Genes controlling expression of defense responses in Arabidopsis--2001 status [J]. Curr Opin Plant Biol, 4: 301-308.

GONG X, ZHANG J, HU J, et al, 2015. Fcwrky70, a Wrky protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine Decarboxylase gene [J]. Plant Cell Environ, 38(11): 2248-2262.

HUANG T, DUMAN JG, 2002. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNAbinding activity from winter bittersweet nightshade, Solanum dulcamara [J]. Plant Mol Biol, 48: 339-350.

HUH SU, CHOI LM, LEE GJ, et al, 2012. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection [J]. Plant Sci, 197: 50-58.

HUI D, IQBAL J, LEHMANN K, et al, 2003. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of largescale changes in herbivoreinduced mRNAs [J]. Plant Physiol, 131: 1877-1893.

ISHIGURO S, NAKAMURA K, 1994. Characterization of a cDNA encoding a novel DNAbinding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and betaamylase from sweet potato [J]. Mol Gen Genet, 244: 563-571.

IZAGUIRRE MM, SCOPEL AL, BALDWIN IT, et al, 2003. Convergent responses to stress. Solar ultravioletB radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in fieldgrown plants of Nicotiana longiflora [J]. Plant Physiol, 132: 1755-1767.

JIANG Y, DEYHOLOS MK, 2006. Comprehensive transcriptional profiling of NaClstressed Arabidopsis roots reveals novel classes of responsive genes [J]. BMC Plant Biol, 6: 25.

JIANG Y, DEYHOLOS MK, 2009. Functional characterization of Arabidopsis NaClinducible WRKY25 and WRKY33 transcription factors in abiotic stresses [J]. Plant Mol Biol, 69: 91-105.

JIANG Y, DUAN Y, YIN J, et al, 2014. Genomewide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses [J]. J Exp Bot, 65: 6629-6644.

JIANG Y, LIANG G, YU D, 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis [J]. Mol Plant, 5: 1375-1388.

KARIM A, JIANG Y, GUO L, et al, 2015. Isolation and characterization of a subgroup Iia Wrky transcription factor Ptrwrky40 from Populus trichocarpa [J]. Tree Physiol, 35(10): 1129-1139.

KAYUM MA, JUNG HJ, PARK JI, et al, 2014. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa [J]. Mol Gen Genet.

KUSNIERCZYK A, WINGE P, JORSTAD TS, et al, 2008. Towards global understanding of plant defence against aphidstiming and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack [J]. Plant Cell Environ, 31: 1097-1115.

LAWLOR D, 2011. Abiotic Stress Adaptation in Plants. Physiological, Molecular and Genomic Foundation [J]. Ann Bot, 107: vii-ix.

LI P, SONG A, GAO C, et al, 2015. Chrysanthemum Wrky gene Cmwrky 17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants [J]. Plant Cell Rep, 34(8): 1365-1378.

LI S, FU Q, CHEN L, et al, 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance [J]. Planta, 233: 1237-1252.

LI S, FU Q, HUANG W, et al, 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress [J]. Plant Cell Rep, 28: 683-693.

LIPPOK B, BIRKENBIHL RP, RIVORY G, et al, 2007. Expression of AtWRKY33 encoding a pathogen or PAMPresponsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements [J]. Mol Plant Micr Inter, 20: 420-429.

LIU B, HONG YB, ZHANG YF, et al, 2014a. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress [J]. Plant Sci, 227: 145-156.

LIU D, LEIB K, ZHAO P, et al, 2014b. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogeninducible gene HvGER4c [J]. Mol Gen Genom, 289: 1331-1345.

LU J, JU H, ZHOU G, et al, 2011. An EARmotifcontaining ERF transcription factor affects herbivoreinduced signaling, defense and resistance in rice [J]. Plant J, 68: 583-596.

LIU X, SONG Y, XING F, et al, 2015. Ghwrky25, a Group I Wrky gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana [J]. Protoplasma.

LUO X, BAI X, SUN X, et al, 2013. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling [J]. J Exp Bot, 64: 2155-2169.

MAEO K, HAYASHI S, KOJIMASUZUKI H, et al, 2001. Role of conserved residues of the WRKY domain in the DNAbinding of tobacco WRKY family proteins [J]. Biosci Biotechnol Biochem, 65: 2428-2436.

MAO G, MENG X, LIU Y, et al, 2011. Phosphorylation of a WRKY transcription factor by two pathogenresponsive MAPKs drives phytoalexin biosynthesis in Arabidopsis [J]. Plant Cell, 23: 1639-1653.

NIU CF, WEI W, ZHOU QY, et al, 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants [J]. Plant Cell Environ, 35: 1156-1170.

NURUZZAMAN M, CAO H, XIU H, et al, 2016. Transcriptomicsbased identification of wrky genes and characterization of a salt and hormoneresponsive Pgwrky1 gene in Panax ginseng [J]. Acta Biochim Biophys Sin (Shanghai), 48(2): 117-131.

OH SK, BAEK KH, PARK JM, et al, 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense [J]. New Phytol, 177: 977-989.

OKAY S, DERELLI E, UNVER T, 2014. Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress [J]. Mol Genet Genom, 289: 765-781.

PANDEY SP, SOMSSICH IE, 2009. The role of WRKY transcription factors in plant immunity [J]. Plant Physiol, 150: 1648-1655.

PARK CJ, SHIN YC, LEE BJ, et al, 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris [J]. Planta, 223: 168-179.

QIN Y, TIAN Y, LIU X, 2015. A wheat salinityinduced Wrky transcription factor Tawrky93 confers multiple abiotic stress tolerance in Arabidopsis thaliana [J]. Biochem Biophys Res Comm, 464(2): 428-433.

QIU D, XIAO J, DING X, et al, 2007. OsWRKY13 mediates rice disease resistance by regulating defenserelated genes in salicylate and jasmonatedependent signaling [J]. Mol Plant Micr Inter, 20: 492-499.

QIU YP, YU DQ, 2009. Overexpression of the stressinduced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis [J]. Environ Exp Bot, 65: 35-47.

RAMAMOORTHY R, JIANG SY, KUMAR N, et al, 2008. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments [J]. Plant Cell Physiol, 49: 865-879.

REN X, CHEN Z, LIU Y, et al, 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis [J]. Plant J, 63: 417-429.

RICACHENEVSKY FK, SPEROTTO RA, MENGUER PK, et al, 2010. Identification of Feexcessinduced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence [J]. Mol Biol Rep, 37: 3735-3745.

RIECHMANN JL, HEARD J, MARTIN G, et al, 2000. Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes [J]. Science, 290: 2105-2110.

ROCHER A, DUMAS C, COCK JM, 2005. A Wbox is required for full expression of the SAresponsive gene SFR2 [J]. Gene, 344: 181-192.

RUSHTON PJ, MACDONALD H, HUTTLY AK, et al, 1995. Members of a new family of DNAbinding proteins bind to a conserved ciselement in the promoters of alphaAmy2 genes [J]. Plant Mol Biol, 29: 691-702.

RUSHTON PJ, SOMSSICH IE, 1998. Transcriptional control of plant genes responsive to pathogens [J]. Curr Opin Plant Biol, 1: 311-315.

RUSHTON PJ, SOMSSICH IE, RINGLER P, et al, 2010. WRKY transcription factors [J]. Trends Plant Sci, 15: 247-258.

RYU HS, HAN M, LEE SK, et al, 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response [J]. Plant Cell Rep, 25: 836-847.

SHEKHAWAT UK, GANAPATHI TR, SRINIVAS L, 2011. Cloning and characterization of a novel stressresponsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale monthan (ABB group) using transformed banana cells [J]. Mol Biol Rep, 38: 4023-4035.

SHI W, HAO L, LI J, et al, 2014. The Gossypium hirsutum WRKY gene GhWRKY391 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana [J]. Plant Cell Rep, 33: 483-498.

SKIBBE M, QU N, GALIS I, et al, 2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory [J]. The Plant Cell, 20: 1984-2000.

SUZUKI N, RIZHSKY L, LIANG H, et al, 2005. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c [J]. Plant Physiol, 139: 1313-1322.

TURCK F, ZHOU A, SOMSSICH IE, 2004. Stimulusdependent, promoterspecific binding of transcription factor WRKY1 to Its native promoter and the defenserelated gene PcPR11 in Parsley [J]. Plant Cell, 16: 2573-2585.

WAN GC, DENG P, CHEN L, et al, 2013a. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco [J]. PloS ONE, 8: e65120.

WANG HH, HAO JJ, CHEN XJ, et al, 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants [J]. Plant Mol Biol, 65: 799-815.

WANG L, ZHU W, FANG L, et al, 2014. Genomewide identification of WRKY family genes and their response to cold stress in Vitis vinifera [J]. BMC Plant Biol, 14: 103.

WANG Q, WANG M, ZHANG X, et al, 2011. WRKY gene family evolution in Arabidopsis thaliana [J]. Genetica, 139: 973-983.

WANG X, ZENG J, LI Y, et al, 2015. Expression of Tawrky44, a wheat Wrky gene, in transgenic tobacco confers multiple abiotic stress tolerances [J]. Front Plant Sci, 6: 615.

WANG Y, DANG F, LIU Z, et al, 2013b. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection [J]. Mol Plant Pathol, 14: 131-144.

WANG Z, ZHU Y, WANG L, et al, 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the Wbox elements of the galactinol synthase (BhGolS1) promoter [J]. Planta, 230: 1155-1166.

WEI W, ZHANG Y, HAN L, et al, 2008. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco [J]. Plant Cell Rep, 27: 795-803.

WEN F, ZHU H, LI P, et al, 2014. Genomewide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon [J]. DNA Res, 21: 327-339.

WU KL, GUO ZJ, WANG HH, et al, 2005. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Res, 12: 9-26.

WU X, SHIROTO Y, KISHITANI S, et al, 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter [J]. Plant Cell Rep, 28: 21-30.

WU ZJ, LI XH, LIU ZW, et al, 2016. Transcriptomewide identification of Camellia Sinensis Wrky transcription factors in response to temperature stress [J]. Mol Genet Genom, 291(1): 255-269.

XIE Z, ZHANG ZL, ZOU X, et al, 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiol, 137: 176-189.

XIE Z, ZHANG ZL, ZOU X, et al, 2006. Interactions of two abscisicacid induced WRKY genes in repressing gibberellin signaling in aleurone cells [J]. Plant J, 46: 231-242.

XIONG X, JAMES VA, ZHANG HN, et al, 2010. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge) [J]. Mol Breed, 25: 419-432.

XU X, CHEN C, FAN B, et al, 2006. Physical and functional interactions between pathogeninduced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. Plant Cell, 18: 1310-1326.

安国市| 龙门县| 修水县| 大安市| 古丈县| 澎湖县| 定远县| 南丰县| 镇雄县| 阿拉尔市| 扶余县| 乾安县| 孟津县| 上饶县| 阳城县| 文水县| 石河子市| 合水县| 周至县| 丰都县| 诸城市| 呼玛县| 温宿县| 福安市| 巴青县| 长宁区| 类乌齐县| 邻水| 嘉义市| 桑植县| 聂荣县| 灵寿县| 庄河市| 邹城市| 衡阳市| 潞西市| 深泽县| 庆城县| 桃源县| 临海市| 伊吾县|