易偲 李俊明
【摘要】糖尿病心肌?。―CM)是一種在糖尿病狀態(tài)下出現(xiàn)的心肌病變,即在微血管病變的基礎(chǔ)上出現(xiàn)心肌廣泛灶性壞死,并導(dǎo)致亞臨床的心功能異常,最終進(jìn)展為心律失常、心力衰竭及心源性休克等,重癥患者甚至可出現(xiàn)猝死。DCM的發(fā)展與絲裂原活化蛋白激酶(也被稱為胞外調(diào)節(jié)激酶,ERK)之間的相關(guān)性一直是學(xué)者們研究的熱點(diǎn)。目前已知ERK1/2參與調(diào)節(jié)心肌肥厚和心功能障礙,并可以預(yù)防缺血/再灌注和心肌梗死對DCM造成損傷。該文針對ERK1/2在DCM發(fā)展中的作用機(jī)制進(jìn)行了論述,主要包括ERK1/2在氧化應(yīng)激、細(xì)胞凋亡、心肌肥厚、心肌纖維化等過程中所起的作用。
【關(guān)鍵詞】糖尿病心肌?。话庹{(diào)節(jié)激酶1/2;心臟功能障礙;心臟重塑
Research progress on the role of ERK1/2 in the development of diabetic cardiomyopathyYi Cai,Li JunmingDepartment of Cardiology, Renmin Hospital of Three Gorges University(the First Peoples Hospital of Yichang),Yichang 443000, China
Corresponding author, Li Junming, Email:lijunming@medmailcomcn
【Abstract】Diabetic cardiomyopathy (DCM) is a type of cardiomyopathy that occurs in the state of diabetes mellitus, which causes extensive myocardial necrosis on the basis of microvascular disease and leads to subclinical cardiac dysfunction that eventually progress into arrhythmia, heart failure, cardiogenic shock and even sudden death The relationship between the development of DCM and mitogenactivated protein kinase (extracellular signal kinase,ERK) has been a hot topic for scholars ERK1/2 has been known to regulate cardiac hypertrophy and cardiac dysfunction and prevent the cardiac injury induced by ischemia/reperfusion and myocardial infarction in DCM patients In this article, the role of ERK1/2 in the development of DCM was reviewed, which was mainly involved with the role of ERK1/2 in oxidative stress, cellular apoptosis, cardiac hypertrophy and cardiac fibrosis, etc
【Key words】Diabetic cardiomyopathy; Extracellular signal kinase 1/2;
Cardiac dysfunction; Cardiac remodeling
糖尿病是目前最常見的代謝性疾病,2010年中國國家疾病預(yù)防控制中心對中國 18 周歲以上人群糖尿病的患病情況進(jìn)行了調(diào)查,若應(yīng)用WHO 1999年的診斷標(biāo)準(zhǔn),我國糖尿病的患病率為 97%,若同時(shí)以GHbA1c≥65%作為診斷標(biāo)準(zhǔn),則患病率高達(dá) 116%,遂證實(shí)我國目前已成為世界上糖尿病患病人數(shù)最多的國家[1]。1972年,Rubler首次提出了糖尿病心肌病(DCM)的概念,其是一種特異性心肌病,發(fā)病機(jī)制較為復(fù)雜,至今仍未完全闡明,所以目前診斷上主要采用排他性診斷的方法,治療上也存在一定困難[24]。最近有研究表明,絲裂原活化蛋白激酶(MAPK),也被稱為胞外調(diào)節(jié)激酶(ERK),其家族成員之一的ERK1/2在調(diào)節(jié)心肌細(xì)胞氧化應(yīng)激、細(xì)胞凋亡、心肌肥厚、心肌纖維化等過程中均發(fā)揮了作用,研究顯示這些過程均與DCM有關(guān)[5]。因此探討ERK1/2在DCM發(fā)展中的作用具有重要的現(xiàn)實(shí)意義,并可能為臨床上DCM的治療提供新方向。
一、DCM
DCM是一組在糖尿病狀態(tài)下出現(xiàn)的心肌病變,目前被認(rèn)為是糖尿病的一種獨(dú)立并發(fā)癥,并逐漸在臨床上引起廣泛關(guān)注。UCG提示糖尿病患者有限制性心肌改變,并伴有左心室肥大、左心室舒張末期容積減少及順應(yīng)性減低。有研究者認(rèn)為,糖尿病引起的高血糖和高血脂導(dǎo)致的心臟氧化應(yīng)激、內(nèi)皮功能障礙、線粒體功能障礙、代謝紊亂和細(xì)胞外基質(zhì)的重塑等均會(huì)加速DCM的發(fā)生和發(fā)展[5]。
二、MAPK信號(hào)通路
MAPK由胰島素激活,MAPK信號(hào)通路是真核生物細(xì)胞內(nèi)存在的一類可介導(dǎo)各種細(xì)胞反應(yīng)的信號(hào)傳導(dǎo)系統(tǒng),MAPK受生長因子、神經(jīng)遞質(zhì)、激素、細(xì)胞因子等刺激后發(fā)生磷酸化而活化,進(jìn)而參與細(xì)胞增殖、分化、遷移、凋亡等病理生理過程。人類MAPK有4個(gè)經(jīng)典亞科,即ERK1/2(MAPK 3/1)、p38(MAPKs 1114)、cJun N末端蛋白激酶(JNK)(MAPK 810)和ERK5(MAPK1或MAPK7)。MAPK可通過磷酸化多種蛋白激酶和轉(zhuǎn)錄因子調(diào)節(jié)細(xì)胞的發(fā)育、存活和凋亡,從而調(diào)節(jié)心臟的病理生理以及多種心血管疾病的進(jìn)程[67]。
三、ERK1/2信號(hào)通路
ERK1/2是MAPK家族中的主要成員,其激活級(jí)聯(lián)反應(yīng)已被廣泛研究。異源三聚體G蛋白R(shí)as的激活導(dǎo)致絲裂原活化的細(xì)胞外信號(hào)調(diào)節(jié)激酶(MEK)的Raf活化,其又磷酸化并激活MEK,而被激活的MEK則在蘇氨酸202和酪氨酸204處磷酸化ERK1和ERK2[8]。研究顯示ERK1和ERK2序列的相似度達(dá)84%,并且可互換使用,因而電泳凝膠磷酸ERK1(pERK1)和磷酸ERK2(pERK2)上的雙重條帶通常被合并使用,代表由許多刺激物觸發(fā)的總ERK活性[9]。ERK1/2的激活參與調(diào)節(jié)減數(shù)分裂、有絲分裂等功能,與細(xì)胞生長、增殖、分化、遷移和存活密切相關(guān)[10]。
四、ERK1/2在DCM進(jìn)展中的作用
DCM的發(fā)病機(jī)制尚未完全明確,目前研究者們認(rèn)為DCM與細(xì)胞凋亡、心肌肥厚以及心肌纖維化等有關(guān), ERK1/2可對氧化應(yīng)激、細(xì)胞凋亡、心肌肥厚、心肌纖維化等方面產(chǎn)生影響,從而在DCM的進(jìn)展中發(fā)揮作用。
1ERK1/2與氧化應(yīng)激
活性氧在DCM的發(fā)生發(fā)展中起著重要作用,一些研究者提出了關(guān)于活性氧和ERK1/2激活之間的聯(lián)系的假說。內(nèi)皮素1或去氧腎上腺素(PE)的刺激可使心臟中活性氧水平上升,同時(shí),刺激內(nèi)皮素1或PE也會(huì)增加ERK1/2活性。 因此,抗氧化治療可抑制心肌細(xì)胞中活性氧水平的升高并阻斷ERK1/2的活化,從而阻止由此引起的心臟肥大[11]。
高糖條件會(huì)導(dǎo)致H9C2細(xì)胞發(fā)生細(xì)胞毒性反應(yīng)、細(xì)胞凋亡、活性氧過度產(chǎn)生、線粒體膜電位(MMP)降低,并且上調(diào)磷酸化ERK1/2(pERK1/2)的表達(dá)。一些潛在的抗氧化劑,如啶蟲啉和硫化氫鈉能顯著降低pERK1/2的表達(dá)。ERK1/2抑制劑U0126也可通過增加細(xì)胞活力、減少凋亡細(xì)胞數(shù)量和活性氧產(chǎn)生等途徑緩解高糖誘導(dǎo)的心肌細(xì)胞損傷[12]。 這些結(jié)果表明,通過抑制ERK1/2途徑可以抑制活性氧的產(chǎn)生,從而緩解DCM的進(jìn)程[13]。
2 ERK1/2與細(xì)胞凋亡
多項(xiàng)研究表明,ERK1/2信號(hào)的激活在心肌細(xì)胞的氧化應(yīng)激、炎癥、重塑和凋亡過程中起促凋亡作用, 研究者們在高糖條件下將不同藥物用于抑制心臟和心肌細(xì)胞中的ERK1/2活化,最終達(dá)到預(yù)防DCM的目的,故認(rèn)為ERK1/2的抑制可以預(yù)防高糖刺激所致的心肌細(xì)胞凋亡[14]。
但是也有部分研究顯示ERK1/2具有抗凋亡作用,這提示ERK1/2對DCM也可能存在潛在的保護(hù)機(jī)制[1516]。據(jù)報(bào)道,激活ERK1/2可在缺血/藥物處理造成的缺血/再灌注時(shí)對心臟起保護(hù)作用[1718]。ERK1/2抑制劑U0126可阻斷缺血/再灌注損傷期間心臟中羥氯喹的保護(hù)作用[19]。另外,Lambert等[18]的研究顯示U0126可消除硫化鈉在治療心肌梗死時(shí)對心肌的保護(hù)作用。ERK1/2能通過增強(qiáng)ERK1/2的磷酸化對糖尿病中缺血/再灌注損傷起保護(hù)作用[20]。
3ERK1/2與心肌肥厚
心肌肥厚通常發(fā)生在糖尿病后期,最終導(dǎo)致心臟重塑、功能障礙甚至心力衰竭。建立高糖誘導(dǎo)的心肌細(xì)胞肥大模型是探討ERK1/2在DCM中作用的常用方法之一,研究顯示高糖可增加心肌細(xì)胞的體積和肥大基因的表達(dá),并且可上調(diào)ERK1/2的表達(dá),但不增加MAPK其他兩個(gè)亞科p38 MAPK和JNK的活性[21]。此外,加用ERK1/2抑制劑PD98059后,心肌細(xì)胞的肥大程度得到控制。在鏈脲佐霉素(STZ)誘導(dǎo)的糖尿病大鼠中也同樣觀察到ERK1/2表達(dá)的上調(diào)和心肌肥厚,研究結(jié)果提示糖尿病時(shí)ERK1/2的激活會(huì)導(dǎo)致心肌肥厚[1]。
4ERK1/2與心肌纖維化
心肌纖維化是DCM心功能障礙的另一個(gè)重要標(biāo)志。轉(zhuǎn)化生長因子β(TGFβ)可促進(jìn)成纖維細(xì)胞釋放膠原,引起心肌細(xì)胞纖維化。最近的一項(xiàng)研究顯示,在高糖條件下,TGFβ和pERK1/2表達(dá)上調(diào),而TGFβ的這種表達(dá)上調(diào)受U0126抑制,提示ERK1/2參與高糖誘導(dǎo)的TGFβ表達(dá)[22]。此外,高糖可增加心臟成纖維細(xì)胞中ERK1/2的活性,ERK1/2抑制劑PD98059或U0126可抑制高糖誘導(dǎo)的成纖維細(xì)胞的增殖和膠原表達(dá) [22]。這些研究表明阻斷ERK1/2信號(hào)可能對DCM起保護(hù)作用[23]。
5成纖維細(xì)胞生長因子21(FGF21)對ERK1/2信號(hào)通路的作用
目前認(rèn)為FGF21可特異性調(diào)節(jié)葡萄糖和脂質(zhì)代謝。心臟可能是FGF21的靶器官,但無論是在正常狀態(tài)還是糖尿病狀態(tài)下,研究者都沒能完全了解FGF21對心臟的作用[24]。但FGF21已被證明對DCM的發(fā)展、心肌缺血/再灌注損傷和異丙腎上腺素(ISO)誘發(fā)的心臟肥大起保護(hù)作用[2427]。FGF21可通過激活ERK1/2對糖尿病小鼠的心臟起保護(hù)作用[26]。ERK1/2抑制劑PD98059可完全消除FGF21對糖尿病誘導(dǎo)的心肌細(xì)胞凋亡的預(yù)防作用。同時(shí)用FGF21和PD98059處理STZ誘導(dǎo)的糖尿病小鼠,PD98059能阻斷FGF21對心臟重塑和功能障礙的保護(hù)作用[24]。我們應(yīng)對FGF21信號(hào)和ERK1/2激活的相互作用進(jìn)行研究,明確ERK1/2在FGF21信號(hào)傳導(dǎo)中的作用。
五、展望
ERK1/2涉及細(xì)胞的生長和凋亡,因此對其嚴(yán)格調(diào)控對于細(xì)胞的存活及生長至關(guān)重要?;钚匝跻约皣?yán)重的損傷、刺激導(dǎo)致的生理和病理疾病狀態(tài)會(huì)激活ERK。ERK1/2信號(hào)級(jí)聯(lián)的激活已被證實(shí)參與介導(dǎo)多數(shù)應(yīng)激刺激引起的心臟肥大,因此,抑制ERK1/2途徑的化合物如MEKERK抑制劑、PD98059和U0126可用于抑制心肌肥厚中心臟的過度生長。此外,F(xiàn)GF21通過ERK1/2的激活對DCM的發(fā)展、心肌缺血/再灌注損傷和ISO誘導(dǎo)的心臟肥大起保護(hù)作用。總之,ERK1/2在DCM病變過程中起著重要作用,但其復(fù)雜的病理生理機(jī)制尚需要經(jīng)過大量實(shí)驗(yàn)闡明,我們期待進(jìn)一步的研究能為DCM的治療提供新的靶點(diǎn)。
參考文獻(xiàn)
[1]中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì) 2013年中國2型糖尿病防治指南 中華糖尿病雜志, 2014, 6(7):447497
[2]Miki T,Yuda S,Kouzu H,Miura TDiabetic cardiomyopathy: pathophysiology and clinical features Heart Fail Rev, 2013, 18(2): 149166
[3]Wang S,Ding L,Ji H,Xu Z,Liu Q,Zheng YThe role of p38 MAPK in the development of diabetic cardiomyopathy Int J Mol Sci, 2016, 17(7):178189
[4]程明月,郭海,鄭宏 糖尿病心肌中線粒體膜通透性轉(zhuǎn)化孔變化的研究進(jìn)展 新醫(yī)學(xué), 2016, 47(2): 7375
[5]Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK The diagnosis and evaluation of dilated cardiomyopathy J Am Coll Cardiol,2016,67(25):29963010
[6]Gomita Y,Esumi S,Sugiyama N,Kitamura Y,Koike Y,Motoda H,Sendo T,Kano Y Intracranial selfstimulationreward induces neurite extension in PC12m3 cells and activation of the p38 MAPK pathway Neurosci Lett, 2017, 649:7884
[7]RodríguezCarballo E, Gámez B, Ventura F p38 MAPK signaling in osteoblast differentiation Front Cell Dev Biol, 2016, 4:40
[8]Huang X,He Y,Chen Y,Wu P,Gui D,Cai H,Chen A,Chen M,Dai C,Yao D,Wang LBaicalin attenuates bleomycininduced pulmonary fibrosis via adenosine A2a receptor related TGFbeta1induced ERK1/2 signaling pathway BMC Pulm Med, 2016, 16(1): 132
[9]Kurita H,Okuda R,Yokoo K,Inden M,Hozumi I Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation Biochem Biophys Res Commun, 2016, 479(4): 853859
[10]Mutlak M, Kehat I Extracellular signalregulated kinases 1/2 as regulators of cardiac hypertrophy Front Pharmacol, 2015,6:149
[11]Tanaka K, Honda M, Takabatake T Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte J Am Coll Cardiol,2001,37(2):676685
[12]Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G, Sun Y, Iwamoto Y, Tricot B, Khan OF, Dahlman JE, Borodovsky A, Fitzgerald K, Anderson DG, Weissleder R, Libby P, Swirski FK, Nahrendorf MProliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure Circ Res, 2016,119(7):853864
[13]Kim DE, Kim B, Shin HS, Kwon HJ, Park ES The protective effect of hispidin against hydrogen peroxideinduced apoptosis in H9c2 cardiomyoblast cells through Akt/GSK3beta and ERK1/2 signaling pathway Exp Cell Res,2014,327(2):264275
[14]Ni R, Cao T, Xiong S, Ma J, Fan GC, Lacefield JC, Lu Y, Le Tissier S, Peng T Therapeutic inhibition of mitochondrial reactive oxygen species with mitoTEMPO reduces diabetic cardiomyopathy Free Radic Biol Med, 2016, 90:1223
[15]Yao Y, Li R, Ma Y, Wang X, Li C, Zhang X, Ma R, Ding Z, Liu L αLipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidaseinduced injuryvia ROSdependent ERK1/2 activation Biochim Biophys Acta, 2012, 1823(4): 920929
[16]Wang WK, Lu QH, Zhang JN, Wang B, Liu XJ, An FS, Qin WD, Chen XY, Dong WQ, Zhang C, Zhang Y, Zhang MX HMGB1 mediates hyperglycaemiainduced cardiomyocyte apoptosis via ERK/Ets1 signallingpathway J Cell Mol Med, 2014, 18(11): 23112320
[17]Gross ER, Hsu AK, Gross GJ Diabetes abolishes morphineinduced cardioprotection via multiple pathways upstream of glycogen synthase kinase3beta Diabetes, 2007, 56(1): 127136
[18]Lambert JP, Nicholson CK, Amin H, Amin S, Calvert JW Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway Med Gas Res,2014,4(1):20
[19]Bourke L, McCormick J, Taylor V, Pericleous C, Blanchet B, CostedoatChalumeau N, Stuckey D, Lythgoe MF, Stephanou A, Ioannou Y Hydroxychloroquine protects against cardiac ischaemia/reperfusion injury in vivo via enhancement of ERK1/2 phosphorylation PloS one, 2015, 10(12): e0143771
[20]Filippone SM, Samidurai A, Roh SK, Cain CK, He J, Salloum FN, Kukreja RC, Das A Reperfusion therapy with rapamycin attenuates myocardial infarction through activation of AKT and ERK Oxid Med Cell Longev,2017,2017:4619720
[21]Dong B, Xue R, Sun Y, Dong Y, Liu C Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine viainhibiting ERK1/2 Mol Cell Biochem 2017 May 11 doi: 101007/s1101001730202 [Epub ahead of print]
[22]Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ, Wei ZH, Kang LN, Xu B Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGFβ/periostin pathway in STZinduced diabetic mice BMC Cardiovasc Disord,2016,16:5
[23]Song SE, Kim YW, Kim JY, Lee DH, Kim JR, Park SY IGFBP5 mediates high glucoseinduced cardiac fibroblast activation J Mol Endocrinol,2013,50(3):291303
[24]Zhang C, Huang Z, Gu J, Yan X, Lu X, Zhou S, Wang S, Shao M, Zhang F, Cheng P, Feng W, Tan Y, Li X Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model viaextracellular signalregulated kinase 1/2dependent signalling pathway Diabetologia,2015,58(8):19371948
[25]Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L, Cui T Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stressinduced insulinresistance in cardiac cells in vitro and in vivo Diabetes,2011,60(2):625633
[26]Yan X, Chen J, Zhang C, Zhou S, Zhang Z, Chen J, Feng W, Li X, Tan Y FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation J Cell Mol Med,2015,19(7):15571568
[27]Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt M, van Bilsen M, Villarroya F Fibroblast growth factor 21 protects against cardiac hypertrophy in mice Nat Commun,2013,4:2019
(收稿日期:20170825)
(本文編輯:洪悅民)