王麗娟,楊揚(yáng)?,鄭娟娟,劉瑛娜,郭乾坤,王大安,劉寶元
(1.北京師范大學(xué)地表過(guò)程與資源生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,地理學(xué)與遙感科學(xué)學(xué)院,100875,北京; 2.中國(guó)水利水電科學(xué)研究院,100048,北京)
施肥對(duì)北京山區(qū)農(nóng)田地表氮磷流失的影響
——以密云水庫(kù)流域?yàn)槔?/p>
王麗娟1,楊揚(yáng)1?,鄭娟娟1,劉瑛娜1,郭乾坤2,王大安1,劉寶元1
(1.北京師范大學(xué)地表過(guò)程與資源生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,地理學(xué)與遙感科學(xué)學(xué)院,100875,北京; 2.中國(guó)水利水電科學(xué)研究院,100048,北京)
農(nóng)田非點(diǎn)源污染是最普遍的非點(diǎn)源污染類(lèi)型之一,直接威脅北京市密云水庫(kù)的水質(zhì)狀況;施用化肥是農(nóng)田非點(diǎn)源污染物的主要來(lái)源。以北京市山區(qū)的農(nóng)田化肥施用現(xiàn)狀為基礎(chǔ),緊鄰密云水庫(kù)布設(shè)徑流試驗(yàn)小區(qū),種植當(dāng)?shù)氐闹饕魑铩挠衩?設(shè)置常規(guī)(施肥)和對(duì)照(不施肥)2種處理,分析天然降雨條件下,施肥對(duì)農(nóng)田地表氮和磷流失的影響。結(jié)果表明:施肥顯著提高地表徑流中氨態(tài)氮的濃度,但對(duì)徑流硝態(tài)氮、總氮、可溶磷和總磷的影響有限;附著于泥沙上的顆粒態(tài)磷質(zhì)量分?jǐn)?shù)因施肥顯著增加,但顆粒態(tài)氮質(zhì)量分?jǐn)?shù)僅在底肥施用后的首次產(chǎn)流中,表現(xiàn)出較大差異;泥沙是地表徑流中氮和磷流失的主要載體,試驗(yàn)期間常規(guī)和對(duì)照小區(qū),氮隨泥沙流失負(fù)荷分別占氮流失總量的58.6%和53.6%,磷隨泥沙流失負(fù)荷占比分別為97.2%和96.5%。研究結(jié)果可為密云水庫(kù)流域農(nóng)業(yè)生產(chǎn)管理和非點(diǎn)源污染治理提供參考。
施肥;農(nóng)田;地表徑流;氮;磷;天然降雨;密云水庫(kù)
農(nóng)業(yè)非點(diǎn)源污染已成為水體污染的主要來(lái)源。根據(jù)全國(guó)第1次污染源普查公報(bào)[1],農(nóng)業(yè)源占普查各污染源氮、磷排放總量的57.2%和67.4%。大量研究表明,施用化肥是造成農(nóng)田非點(diǎn)源污染的主要原因之一[2],直接影響農(nóng)田地表徑流中的氮和磷流失。化肥施用量越大,氮、磷流失量往往越大[3-5]。隨地表徑流流失的溶解態(tài)氮和磷以無(wú)機(jī)形式為主,可被水生生物直接吸收和利用,是長(zhǎng)期以來(lái)地表河流和湖泊監(jiān)測(cè)的重點(diǎn)所在[6]。事實(shí)上,在降雨徑流過(guò)程中,除了以溶解態(tài)的形式隨徑流流失,氮、磷還可吸附于侵蝕泥沙,并隨之進(jìn)入地表水體。A.N. Sharpley等[7]分析美國(guó)20個(gè)典型農(nóng)業(yè)流域的地表徑流氮、磷流失負(fù)荷,發(fā)現(xiàn)侵蝕泥沙是氮、磷流失的主要載體,平均64%的氮和72%的磷流失負(fù)荷來(lái)自于泥沙。在國(guó)內(nèi),陳皓等[8]、張展羽等[9]分別利用人工模擬降雨試驗(yàn)和天然降雨試驗(yàn),分析地表徑流中的氮、磷流失情況,結(jié)果表明氮、磷均主要隨泥沙流失。侵蝕泥沙是地表養(yǎng)分流失的主要載體,并且吸附其上的有機(jī)態(tài)氮和磷,在一定條件下,可轉(zhuǎn)化為無(wú)機(jī)態(tài),從而被水生生物利用;因此,研究氮、磷隨侵蝕泥沙的流失,同樣具有重要意義。
密云水庫(kù)是北京市最大的地表飲用水源,其水質(zhì)狀況直接影響北京市人民的生活和健康。近些年來(lái),北京市對(duì)密云水庫(kù)流域的點(diǎn)源污染采取嚴(yán)格管控措施,非點(diǎn)源污染成為其污染物的主要來(lái)源[10],包括山區(qū)水土流失、農(nóng)田化肥農(nóng)藥流失、畜禽糞便流失和水產(chǎn)養(yǎng)殖等。對(duì)水庫(kù)周邊地區(qū)地表水監(jiān)測(cè)分析表明,農(nóng)田化肥農(nóng)藥流失占地表水污染來(lái)源的50%~70%[11],已成為影響密云水庫(kù)水質(zhì)的主要原因[10,12]。筆者通過(guò)對(duì)照試驗(yàn)的方法,在水庫(kù)周邊布設(shè)徑流試驗(yàn)小區(qū),比較常規(guī)(施肥)和對(duì)照(不施肥)試驗(yàn)條件下,地表徑流中不同形態(tài)的氮、磷流失規(guī)律及其差異,理清氮、磷隨徑流和泥沙流失的典型特征,探討施肥對(duì)農(nóng)田非點(diǎn)源污染的影響,以期為當(dāng)?shù)剞r(nóng)業(yè)生產(chǎn)實(shí)踐和非點(diǎn)源污染調(diào)控提供參考。
密云水庫(kù)位于北京市密云縣(E 116°07'~117° 30',N 40°14'~41°05'),流域面積15 788 km2,總庫(kù)容43.75億m3,是北京市主要的地表水飲用水源。流域地貌以山地和丘陵為主,土壤類(lèi)型為淋溶褐土和棕壤。流域內(nèi)多年平均降雨量654 mm,主要集中在6—8月,且多以暴雨形式出現(xiàn)。根據(jù)TM影像, 2008年密云水庫(kù)流域,包括水田和旱地在內(nèi)的耕地面積為2 332.96 km2,占流域總面積的14.8%[13]。主要農(nóng)作物為玉米(Zea mays)、花生(Arachis hypogaea)、冬小麥(Triticum aestivum)、谷子(Pennisetum glaucum)和大豆(Glycine max)等。
2.1 試驗(yàn)小區(qū)布設(shè)
試驗(yàn)地點(diǎn)位于北京市密云縣溪翁莊鎮(zhèn)原水泉村。2009年4月下旬—5月上旬,利用天然緩坡,緊鄰密云水庫(kù)布設(shè)6個(gè)5 m×2 m的小區(qū),坡度為4°。各小區(qū)坡底設(shè)置長(zhǎng)×寬×深度分別為1.2 m× 1.2 m×1.2 m的水泥徑流池,用以地表徑流的觀測(cè)和樣品采集。為減少對(duì)小區(qū)的擾動(dòng),在各小區(qū)四周設(shè)置保護(hù)帶。修建小區(qū)時(shí),盡量避免對(duì)小區(qū)內(nèi)部的踩踏,沿小區(qū)邊界開(kāi)挖寬10 cm、深15 cm的溝槽,插入水泥預(yù)制板,并在水泥板兩側(cè)填充之前挖出的小區(qū)原土。在種植作物前,按照當(dāng)?shù)厣a(chǎn)習(xí)慣對(duì)小區(qū)進(jìn)行翻耕。修建小區(qū)前為荒草地,其0~20和20~40 cm土層的主要土壤物理和化學(xué)性質(zhì)參數(shù)見(jiàn)表1。
表1 密云試驗(yàn)小區(qū)土壤基本參數(shù)Tab.1 Basic properties of the soil in experimental plots of Miyun
試驗(yàn)時(shí)間為2009年5月—9月。5月中旬,各小區(qū)種植當(dāng)?shù)氐闹饕魑铩挠衩?采用傳統(tǒng)的行播翻耕,分別設(shè)置常規(guī)和對(duì)照2種處理,各3個(gè)小區(qū)。其中對(duì)照小區(qū)不施用任何化肥和農(nóng)藥,常規(guī)小區(qū)的化肥和農(nóng)藥施用類(lèi)型、施用量、施用方法和施用時(shí)間,完全遵照當(dāng)?shù)剞r(nóng)民的生產(chǎn)習(xí)慣。于播種當(dāng)日(5月18日)采用穴施方式施入底肥,類(lèi)型為總養(yǎng)分質(zhì)量分?jǐn)?shù)為45%的硫酸鉀型復(fù)合肥(N∶P2O5∶K2O= 15∶15∶15),施用量450 kg/hm2;于拔節(jié)至小喇叭口期(7月21日)進(jìn)行中耕追肥,將尿素(CO(NH2)2)按照150 kg/hm2用量撒施于地表。農(nóng)藥采用地面噴灑方式,將阿特拉津(38%)、乙草胺(50%)和2,4, D-丁酯(72%)與適量水混合,于播種次日噴灑,施用量依次為4.5、2.3和0.75 kg/hm2。
2.2 樣品采集與分析
在玉米的生長(zhǎng)期內(nèi)(5月18日—9月30日),測(cè)定每次降雨產(chǎn)流后,各小區(qū)的徑流深;同時(shí),利用1 L的采樣瓶,采集2瓶徑流泥沙樣品。其中1瓶靜置、沉淀后,經(jīng)105℃烘干24 h,稱(chēng)量后測(cè)定含沙量,并據(jù)此計(jì)算侵蝕模數(shù);烘干稱(chēng)量后的泥沙密封保存,用以測(cè)定全N和全P質(zhì)量分?jǐn)?shù)。另1瓶沉淀、過(guò)濾后,冷凍保存上清液,用以測(cè)定總氮(TN)、硝態(tài)氮(NO3-N)、氨態(tài)氮(NH4-N)、總磷(TP)、可溶磷(DP)和高錳酸鹽指數(shù)(CODMn)。此外,在玉米播種前和收獲后,在各小區(qū)坡上、坡中和坡下,分別采集0~20和21~40 cm土壤樣品,測(cè)定其機(jī)械組成、全N和全P質(zhì)量分?jǐn)?shù)。
徑流、泥沙和土壤樣品主要參照《中國(guó)農(nóng)業(yè)化學(xué)分析方法》[14]進(jìn)行測(cè)定。徑流TN采用過(guò)硫酸鉀氧化-紫外分光光度法,NO3-N采用紫外分光光度法,NH4-N采用靛酚藍(lán)比色法,TP采用過(guò)硫酸鉀氧化-鉬酸銨分光光度法,DP采用鉬酸銨分光光度法,高錳酸鹽指數(shù)(CODMn)依照國(guó)標(biāo)利用高錳酸鉀氧化方法測(cè)定[15]。泥沙和土壤的全N質(zhì)量分?jǐn)?shù)采用半微量開(kāi)氏法,全P 采用酸溶-鉬銻抗比色法測(cè)定。土壤機(jī)械組成利用吸管法進(jìn)行測(cè)定[14]。
3.1 產(chǎn)流產(chǎn)沙特征
2009年5月—9月,6個(gè)小區(qū)各監(jiān)測(cè)到7次降雨產(chǎn)流,降雨量、平均降雨強(qiáng)度、常規(guī)和對(duì)照小區(qū)的平均徑流深和侵蝕模數(shù)見(jiàn)表2。比較小區(qū)歷次產(chǎn)流的徑流深,常規(guī)小區(qū)均大于對(duì)照小區(qū),t檢驗(yàn)結(jié)果表明,二者存在顯著差異(P<0.01)。這可能是因?yàn)槌R?guī)小區(qū)的處理按照當(dāng)?shù)氐纳a(chǎn)習(xí)慣,在播種次日噴灑了農(nóng)藥,使地表雜草得以有效去除,降低近地表的植被覆蓋度;因此,盡管施肥促進(jìn)玉米生長(zhǎng),常規(guī)小區(qū)的玉米覆蓋程度較對(duì)照小區(qū)高,其徑流量反而較大。與此類(lèi)似,常規(guī)小區(qū)的侵蝕模數(shù)也顯著高于對(duì)照小區(qū)(P<0.05)。分析小區(qū)產(chǎn)流產(chǎn)沙與降雨特征關(guān)系發(fā)現(xiàn),常規(guī)和對(duì)照小區(qū)的侵蝕模數(shù)均與平均降雨強(qiáng)度呈顯著的正相關(guān)關(guān)系(P<0.05),相關(guān)系數(shù)分別高達(dá)0.822和0.838。說(shuō)明雨強(qiáng)越大,降雨侵蝕力越高,相應(yīng)的土壤侵蝕強(qiáng)度越大。
表2 試驗(yàn)期間降雨及產(chǎn)流產(chǎn)沙特征Tab.2 Characteristics of rainfall and sediment during the experimental period_
3.2 N流失特征
3.2.1 N隨徑流流失特征將歷次徑流中的NO3-N、NH4-N和TN,按照常規(guī)和對(duì)照小區(qū)各自平均,如圖1所示。其中,常規(guī)和對(duì)照小區(qū)徑流中,NO3-N濃度無(wú)顯著差異。土壤膠體顆粒在通常情況下帶負(fù)電荷,同樣帶負(fù)電荷的極易隨降雨向下淋溶流失,對(duì)地表徑流的影響較小[16];因此,無(wú)論是施用底肥,還是追施尿素,對(duì)地表徑流中NO3-N濃度的影響都十分有限。從歷次徑流來(lái)看,常規(guī)小區(qū)和對(duì)照小區(qū)的NO3-N濃度在9月7日達(dá)到最高值,接近5 mg/L(圖1a),這可能與當(dāng)時(shí)的土壤含水量較小有關(guān)。此次降雨距上一場(chǎng)降雨間隔近1個(gè)月,土壤含水量較低,土壤孔隙中氧分壓相應(yīng)升高,有利于硝化細(xì)菌的有氧呼吸和硝化作用的發(fā)生[17]。土壤NO3-N質(zhì)量分?jǐn)?shù)由此增加,地表徑流中的NO3-N濃度也隨之升高。圖1b中,徑流NH4-N濃度的變化趨勢(shì),也證實(shí)了這一解釋,常規(guī)和對(duì)照小區(qū)的NH4-N濃度均在9月7日徑流中達(dá)到最低值,分別為0.34和0.31 mg/L。
圖1 常規(guī)和對(duì)照小區(qū)歷次徑流硝態(tài)氮、氨態(tài)氮和總氮平均濃度Fig.1 Mean concentrations of NO3-N,NH4-N and total N in each runoff event in NP and CK plots
相比之下,施肥顯著提高徑流中的NH4-N濃度(P<0.05),常規(guī)小區(qū)歷次徑流的平均NH4-N濃度為2.06 mg/L,對(duì)照小區(qū)僅為1.49 mg/L(圖1b)。特別是在7月31日,追施尿素后的首次產(chǎn)流,常規(guī)小區(qū)平均NH4-N濃度是對(duì)照小區(qū)的4.2倍。尿素在夏季的高溫條件下極易發(fā)生水解,生成NH3和CO2,從而提高常規(guī)小區(qū)徑流中的NH4-N濃度。除施肥外,徑流NH4-N濃度可能還受到硝化作用的影響,這一點(diǎn)可以從對(duì)照小區(qū)徑流NH4-N濃度隨CODMn的變化趨勢(shì)得以佐證(圖2),二者呈顯著正相關(guān)關(guān)系(P<0.05),相關(guān)系數(shù)高達(dá)0.774。CODMn在一定程度上反映了徑流中的溶解氧水平。當(dāng)CODMn較高時(shí),徑流中存在大量污染物尚未氧化,表明水中溶解氧質(zhì)量分?jǐn)?shù)較低,不利于硝化作用的發(fā)生,NH4-N濃度相應(yīng)較高;反之,當(dāng)CODMn較低時(shí),溶解氧水平較高,NH4-N被大量轉(zhuǎn)化為NO2-N和NO3-N,徑流中留存較少。
圖2 對(duì)照小區(qū)徑流氨態(tài)氮平均濃度隨高錳酸鹽指數(shù)的變化Fig.2 Changes of mean NH4-N concentration with CODMnin the runoffs of CK plots
與NO3-N類(lèi)似,常規(guī)和對(duì)照小區(qū)徑流TN濃度無(wú)顯著差異(圖1c);但在施用底肥和追肥后的首次降雨產(chǎn)流中,常規(guī)小區(qū)TN濃度明顯高于對(duì)照小區(qū),說(shuō)明施肥提高了TN濃度。特別是在追施尿素后的首次產(chǎn)流中,常規(guī)小區(qū)TN濃度是對(duì)照小區(qū)的2.1倍,而施用底肥后的這一數(shù)據(jù)僅為1.1倍。說(shuō)明地表徑流TN濃度受到施肥方式的影響。底肥施用方法為穴施,化肥被埋入10 cm左右的土層,有利于土壤顆粒對(duì)N素的吸附。而追肥采用表面撒施的方式,當(dāng)降雨發(fā)生時(shí),化肥中的N素可直接溶解于徑流,并隨之流失。
3.2.2 N隨泥沙流失特征常規(guī)和對(duì)照小區(qū)歷次降雨產(chǎn)流泥沙的全N平均質(zhì)量分?jǐn)?shù),如圖3所示。2種處理小區(qū)各次徑流的泥沙全N質(zhì)量分?jǐn)?shù),均遠(yuǎn)高于表層0~20 cm土壤的全N質(zhì)量分?jǐn)?shù)(表1),說(shuō)明試驗(yàn)期間,泥沙流失存在明顯的N富集現(xiàn)象。
圖3 常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流泥沙全氮平均質(zhì)量分?jǐn)?shù)Fig.3 Mean contents of sediment-bound total N in each runoff event in NP and CK plots
t檢驗(yàn)顯示,常規(guī)和對(duì)照小區(qū)的泥沙全N質(zhì)量分?jǐn)?shù)并無(wú)顯著差異;但從圖3不難看出,前2次產(chǎn)流時(shí),常規(guī)小區(qū)全N質(zhì)量分?jǐn)?shù)明顯高于對(duì)照小區(qū)。這可能是因?yàn)檠ㄊ┑追实靡耘c土壤充分混合,部分化肥N吸附于土壤顆粒上,在降雨產(chǎn)流時(shí)隨泥沙流失;但施肥對(duì)泥沙全N質(zhì)量分?jǐn)?shù)的影響有限,隨著時(shí)間的推移,2種處理小區(qū)的全N質(zhì)量分?jǐn)?shù)呈逐漸減小的趨勢(shì),二者的差異也隨之減小。相比之下,追肥后的首次產(chǎn)流中,2種處理小區(qū)的泥沙全N質(zhì)量分?jǐn)?shù)差異不大,主要是因?yàn)樽贩什捎帽砻嫒鍪┑姆绞?化肥N易溶解在水中隨徑流流失,對(duì)泥沙全N質(zhì)量分?jǐn)?shù)的影響較小。在最后一次(9月25日)產(chǎn)流中,常規(guī)和對(duì)照小區(qū)的全N質(zhì)量分?jǐn)?shù)都有所提高,這可能與當(dāng)次降雨徑流的侵蝕強(qiáng)度較小有關(guān)(表2)。盡管9月25日降雨量和平均雨強(qiáng),在監(jiān)測(cè)的7次降雨中并非最小,但其對(duì)應(yīng)的對(duì)照小區(qū)侵蝕模數(shù)為最低,常規(guī)小區(qū)侵蝕模數(shù)僅高于首次產(chǎn)流(表2)。大量研究表明,徑流泥沙的N富集系數(shù)與侵蝕模數(shù)呈負(fù)相關(guān)關(guān)系[18-19],侵蝕強(qiáng)度越小,侵蝕泥沙顆粒越細(xì),泥沙平均比表面積越大,吸附其上的N質(zhì)量分?jǐn)?shù)越高。
3.2.3 N流失負(fù)荷分析根據(jù)各小區(qū)歷次產(chǎn)流的徑流TN濃度和相應(yīng)徑流量,泥沙全N質(zhì)量分?jǐn)?shù)和輸沙量,分別計(jì)算常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流中,N隨徑流和泥沙的平均流失負(fù)荷結(jié)果見(jiàn)表3。雖然徑流TN濃度和泥沙全N質(zhì)量分?jǐn)?shù),在常規(guī)和對(duì)照小區(qū)間均無(wú)顯著差異,但泥沙N流失負(fù)荷在二者之間差異顯著(P<0.05),常規(guī)小區(qū)的徑流N流失負(fù)荷除最后一次產(chǎn)流外,均大于對(duì)照小區(qū)。由此可見(jiàn),2種處理,小區(qū)的N流失負(fù)荷差異主要來(lái)自于產(chǎn)流量和輸沙量的不同。統(tǒng)計(jì)歷次產(chǎn)流的N流失負(fù)荷發(fā)現(xiàn),N在地表徑流中主要隨泥沙流失,常規(guī)小區(qū)和對(duì)照小區(qū)在試驗(yàn)期間,隨泥沙流失的N占N流失總量的比例分別為58.6%和53.6%。這一結(jié)果與前人研究[8-9]相符。
表3 常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流N隨徑流和泥沙流失負(fù)荷Tab.3 N loss loads by runoff and sediment in each runoff event in NP and CK plots kg/hm2
分析歷次產(chǎn)流徑流N流失負(fù)荷占試驗(yàn)期間N流失負(fù)荷總量的比例,以及泥沙N流失負(fù)荷所占的比例發(fā)現(xiàn),常規(guī)和對(duì)照小區(qū)的泥沙N流失負(fù)荷,在各次產(chǎn)流中的分配比例相近(圖4),最高比例均出現(xiàn)在7月31日,占泥沙N流失總負(fù)荷的30%左右。
這主要是因?yàn)楫?dāng)次降雨雨強(qiáng)較大,輸沙量較多。相比之下,常規(guī)和對(duì)照小區(qū)在徑流N流失負(fù)荷分配比例方面,存在較大差異。各次產(chǎn)流對(duì)常規(guī)小區(qū)徑流N流失負(fù)荷總量的貢獻(xiàn)較為平均,7月13日、7月31日、9月7日和9月25日的貢獻(xiàn)比例均接近20%;而對(duì)照小區(qū)的徑流N流失負(fù)荷主要集中在9月25日的產(chǎn)流中,其對(duì)應(yīng)貢獻(xiàn)比例高達(dá)40.9%。
圖4 常規(guī)和對(duì)照小區(qū)歷次徑流和泥沙N流失負(fù)荷占全年流失總負(fù)荷比例Fig.4 Ratios of runoff and sediment N loss load of each runoff event to the respective year-round N loss load in NP and CK plots
3.3 P流失特征
3.3.1 P隨徑流流失特征將常規(guī)和對(duì)照小區(qū)歷次徑流中的DP和TP分別平均,并據(jù)此計(jì)算DP占TP的比例(DP/TP),如圖5所示。比較歷次降雨徑流的DP和TP濃度,常規(guī)和對(duì)照小區(qū)均無(wú)顯著差異;但在施用底肥后的首次降雨產(chǎn)流中,常規(guī)小區(qū)的DP和TP濃度明顯高于對(duì)照小區(qū),分別是對(duì)照小區(qū)的2.5和1.8倍,說(shuō)明施肥為常規(guī)小區(qū)提供大量P源,促進(jìn)徑流P,尤其是DP的流失。這一點(diǎn)也可以從DP/TP看出(圖5c)。常規(guī)和對(duì)照小區(qū)歷次徑流平均DP/TP分別為0.584和0.506,且常規(guī)小區(qū)顯著高于對(duì)照小區(qū)(P<0.05)??梢?jiàn),施肥顯著提高徑流中DP的比例,DP可以直接、快速地被植物吸收利用,施肥無(wú)疑增加地表水體P污染的風(fēng)險(xiǎn)。
3.3.2 P隨泥沙流失特征常規(guī)和對(duì)照小區(qū)歷次降雨產(chǎn)流的泥沙全P平均質(zhì)量分?jǐn)?shù)見(jiàn)圖6。2種處理小區(qū),各次產(chǎn)流的泥沙全P質(zhì)量分?jǐn)?shù)為對(duì)應(yīng)土壤全P質(zhì)量分?jǐn)?shù)的1.3~2.0倍(表1)。說(shuō)明泥沙流失存在P富集現(xiàn)象,但與N相比,其富集程度相對(duì)較低。
圖5 常規(guī)和對(duì)照小區(qū)歷次徑流可溶磷(DP)、總磷(TP)平均濃度和可溶磷/總磷(DP/TP)比例Fig.5 Mean concentrations of dissolved P(DP)and total P(TP),and DP/TP ratios in each runoff event in NP and CK plots
圖6 常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流泥沙全磷平均質(zhì)量分?jǐn)?shù)Fig.6 Mean contents of sediment-bound total P in each runoff event in NP and CK plots
試驗(yàn)期間,常規(guī)和對(duì)照小區(qū)的泥沙全P平均質(zhì)量分?jǐn)?shù)分別為0.85和0.76 g/kg,且常規(guī)小區(qū)顯著高于對(duì)照小區(qū)(P<0.01)(圖6)。與N相比,P極易吸附于土壤顆粒。當(dāng)常規(guī)小區(qū)施入底肥后,僅少部分離子態(tài)的正磷酸鹽被作物吸收,絕大部分被土壤有機(jī)質(zhì)和膠體吸附,產(chǎn)流后隨泥沙流失[20]。
3.3.3 P流失負(fù)荷分析與N類(lèi)似,分別計(jì)算常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流中,P隨徑流和泥沙的平均流失負(fù)荷,結(jié)果見(jiàn)表4。在各次產(chǎn)流中,常規(guī)小區(qū)隨泥沙流失的P負(fù)荷占P流失總負(fù)荷的89.2%~98.8%,對(duì)照小區(qū)泥沙P流失比例則介于79.2%~99.0%之間。顯然,P主要隨泥沙流失,且流失比例高于N,這一結(jié)果與前人一致[8,21]。
表4 常規(guī)和對(duì)照小區(qū)歷次產(chǎn)流P隨徑流和泥沙流失負(fù)荷Tab.4 P loss loads by runoff and sediment in each runoff event in NP and CK plots kg/hm2
分析歷次產(chǎn)流徑流和泥沙P流失負(fù)荷占對(duì)應(yīng)流失總量的比例(圖7)。結(jié)果表明,常規(guī)和對(duì)照小區(qū)泥沙P流失負(fù)荷,在各次產(chǎn)流中的分配比例相似,但在徑流P流失負(fù)荷比例分配方面差異較大。常規(guī)和對(duì)照小區(qū)的最大泥沙P流失負(fù)荷都出現(xiàn)在7月31日,對(duì)應(yīng)泥沙P流失負(fù)荷分別占流失總負(fù)荷的33.9%和32.8%;其次為7月13日產(chǎn)流,對(duì)應(yīng)比例分別為20.5%和19.7%。在徑流P分配方面,常規(guī)小區(qū)各次產(chǎn)流的貢獻(xiàn)較為平均;而對(duì)照小區(qū)30.3%的徑流P在9月25日產(chǎn)流中流失,其次為7月7日和7月13日,對(duì)應(yīng)貢獻(xiàn)比例均為22%左右。
圖7 常規(guī)和對(duì)照小區(qū)歷次徑流和泥沙P流失負(fù)荷占全年流失總負(fù)荷比Fig.7 Ratios of runoff and sediment P loads of each runoff event to the respective year-round P loss for NP and CK plots
筆者以密云水庫(kù)流域坡耕地為研究對(duì)象,通過(guò)對(duì)照試驗(yàn),分析天然降雨條件下,施肥對(duì)農(nóng)田地表徑流不同形態(tài)N、P流失的影響。研究發(fā)現(xiàn),施肥顯著提高地表徑流中NH4-N濃度,但對(duì)徑流TN濃度和泥沙全N質(zhì)量分?jǐn)?shù)的影響有限,且與施肥方式有關(guān)。采用表面撒施追肥,明顯提高徑流N的濃度,泥沙N受穴施底肥影響較大。施肥處理的常規(guī)小區(qū)N流失負(fù)荷明顯高于對(duì)照小區(qū),主要源于其高產(chǎn)流量和輸沙量。
在P流失方面,施肥顯著提高泥沙全P質(zhì)量分?jǐn)?shù),但對(duì)徑流DP和TP濃度影響不大,僅在底肥施入后的首次產(chǎn)流中,表現(xiàn)出較大差異。地表徑流中N、P流失的主要載體皆為泥沙,且P隨泥沙流失的比例高于N隨泥沙流失比例。
由此可見(jiàn),為保護(hù)密云水庫(kù)水質(zhì),減少農(nóng)業(yè)非點(diǎn)源污染,不僅應(yīng)加強(qiáng)農(nóng)田施肥管理,注意施肥量和施肥方式;還要采取適當(dāng)?shù)乃帘3执胧?減少農(nóng)田產(chǎn)流產(chǎn)沙,尤其是泥沙的流失。
[1] 中華人民共和國(guó)環(huán)境保護(hù)部,國(guó)家統(tǒng)計(jì)局,農(nóng)業(yè)部.第一次全國(guó)污染源普查公報(bào)[EB/OL].[2016- 07- 09]. http:∥cpsc.mep.gov.cn/gwgg/201002/ W020100225545523639910.pdf. Ministry of Environmental Protection,National Bureau of Statistics,Ministry of Agriculture of the People's Republic of China.First Chinapollution source census[EB/ OL].[2016- 07- 09].http:∥cpsc.mep.gov.cn/gwgg/ 201002/W020100225545523639910.pdf
[2] 賀纏生,傅伯杰,陳利頂.非點(diǎn)源污染的管理及控制[J].環(huán)境科學(xué),1998,19(5):87. HE Chansheng,FU Bojie,CHEN Liding.Non-point source pollution control and management[J].Environmental Science,1998,19(5):87.
[3] REKOLAIMEN S,GRONROOS J,BARLUND I,et al. Modeling the impacts of management practices on agricultural phosphorous losses to surface waters of Finland[J]. Water Science and Technology,1999,39(12):265.
[4] 黃滿湘,章申,張國(guó)梁,等.北京地區(qū)農(nóng)田氮素養(yǎng)分隨地表徑流流失機(jī)理[J].地理學(xué)報(bào),2003,58(1):147. HUANG Manxiang,ZHANG Shen,ZHANG Guoliang,et al.Losses of nitrogen nutrient in overland flow from farmland in Beijing under simulated rainfall conditions[J]. Acta Geographica Sinica,2003,58(1):147.
[5] 梁新強(qiáng),田光明,李華,等.天然降雨條件下水稻田氮磷徑流流失特征研究[J].水土保持學(xué)報(bào),2005,19 (1):59. LIANG Xinqiang,TIAN Guangming,LI Hua,et al. Study on characteristic of nitrogen and phosphorus loss from rice field by natural rainfall runoff[J].Journal of Soil and Water Conservation,2005,19(1):59.
[6] HEATHWAITE A L,JOHNES P J.Contribution of nitrogen species and phosphorous fractions to stream water quality in agricultural catchments[J].Hydrological Processes,1996,10(7):971.
[7] SHARPLEY A N,SMITH S J,NANEY J W.Environmental impact of agricultural nitrogen and phosphorous use[J].Journal of Agricultural and Food Chemistry, 1987,35(5):812.
[8] 陳皓,章申.黃土地區(qū)氮磷流失的模擬研究[J].地理科學(xué),1991,11(2):142. CHEN Hao,ZHANG Shen.Nitrogen and phosphorus movement from loess tillage under modelling the rainfallrunoff erosion processes[J].Scientia Geographica Sinica,1991,11(2):142.
[9] 張展羽,王超,楊潔,等.不同植被條件下紅壤坡地果園氮磷流失特征分析[J].河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,38(5):479. ZHANG Zhanyu,WANG Chao,YANG Jie,et al.Characteristics of nitrogen and phosphorus losses in garden of red soil slope land under different vegetation measures [J].Journal of Hohai University(Natural Sciences), 2010,38(5):479.
[10] 王曉燕,王曉峰,汪清平,等.北京密云水庫(kù)小流域非點(diǎn)源污染負(fù)荷估算[J].地理科學(xué),2004,24(2):227. WANG Xiaoyan,WANG Xiaofeng,WANG Qingping,et al.Loss of non-point source pollutants from Shixia small watershed,Miyun Reservoir,Beijing[J].Scientia Geographica Sinica,2004,24(2):227.
[11] 黃生斌,葉芝菡,劉寶元.密云水庫(kù)流域非點(diǎn)源污染研究概述[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2008,16(5): 1311. HUANG Shengbin,YE Zhihan,LIU Baoyuan.Review on non-point source pollution in Miyun Reservoir[J]. Chinese Journal of Eco-Agriculture,2008,16(5): 1311.
[12] 黃生斌,劉寶元,劉曉霞,等.密云水庫(kù)流域農(nóng)業(yè)非點(diǎn)源污染基本特征分析[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007, 26(4):1219. HUANG Shengbin,LIU Baoyuan,LIU Xiaoxia,et al. Characteristics of agricultural non-pointed source pollution in the watershed of Miyun Reservoir[J].Journal of Agro-Environment Science,2007,26(4):1219.
[13] 陳濤,牛瑞卿,李平湘,等.密云水庫(kù)流域植被覆蓋變化對(duì)輸沙量的影響[J].生態(tài)環(huán)境學(xué)報(bào),2010,19(1):152. CHEN Tao,NIU Ruiqing,LI Pingxiang,et al.Impact of vegetation coverage change on sediment loads in Miyun Reservoir Basin[J].Ecology and Environment Sciences,2010,19(1):152.
[14] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,2000:127. LU Rukun.Methods for soil agrochemistry analysis [M].Beijing:China Agricultural Science and Technology Press,2000:127.
[15] 國(guó)家環(huán)境保護(hù)局.水質(zhì)高錳酸鹽指數(shù)的測(cè)定:GB 11892—1989[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,1989:184. National Bureau of Environmental Protection Water quality-determination of permanganate index:GB 11892-1989[S].Beijing:Standards Press of China,1989: 184.
[16] JIA Haiyan,LEI Alin,LEI Junshan,et al.Effects of hydrological processes on nitrogen loss in purple soil [J].Agricultural water management,2007,89(1/2):89.
[17] 黃紹敏,皇甫湘榮,寶德俊,等.土壤中硝態(tài)氮含量的影響因素研究[J].農(nóng)業(yè)環(huán)境保護(hù),2001,20(5):351. HUANG Shaomin,HUANGFU Xiangrong,BAO Dejun, et al.Factors affecting content of nitrate-nitrate in soil [J].Agro-environmental Protection,2001,20(5): 351.
[18] MESSY H F,JACKSON M L.Selective erosion of soil fertility constituents[J].Soil Science Society of America Proceedings,1952,16(4):353.
[19] YANG Yang,YE Zhihan,LIU Baoyuan,et al.Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area[J].Environmental Monitoring and Assessment,2014,186(2):971.
[20] 楊淑靜.寧夏灌區(qū)農(nóng)業(yè)氮磷流失污染負(fù)荷估算研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,2009:33. YANG Shujing.Estimation on loads from nitrogen and phosphorus loss in agriculture in Ningxia irrigation district[D].Beijing:Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,2009:33.
[21] BURWELL R E,TIMMONS D R,HOLT R F.Nutrient transport in surface runoff as influenced by soil cover and seasonal periods[J].Soil Science Society of America Proceedings,1975,39(3):523.
Effects of fertilization on nitrogen and phosphorous losses from cropland in Beijing Mountainous Area: A case study on the Miyun Reservoir Watershed
WANG Lijuan1,YANG Yang1,ZHENG Juanjuan1,LIU Yingna1,GUO Qiankun2, WANG Da'an1,LIU Baoyuan1
(1.State Key Laboratory of Earth Surface Processes and Resource Ecology,School of Geography,Beijing Normal University,100875,Beijing,China; 2.China Institute of Water Resources and Hydropower Research,100048,Beijing,China)
[Background]Agricultural non-point source pollution is one of the most common non-point source pollution types,posing a great threat on the water quality of Miyun Reservoir in Beijing. Fertilization is the primary source of agricultural non-point source pollutants.The current study is aimed to analyze the impact of fertilization on nitrogen(N)and phosphorous(P)losses due to agricultural surface runoff and soil erosion.[Methods]Six 5×2 m runoff plots were established next to the Miyun Reservoir,on which summer corn was planted.Half of them received no fertilizer and the other half were fertilized according to the local customs,i.e.,applying compound fertilizer(N∶P2O5∶K2O=15∶15∶15) as the base fertilizer at the day of sawing and topdressing urea after the elongation stage.Runoff sampleswere collected and analyzed for the determination of different forms of N and P pollutants for seven natural rainfall events during the growing season of summer corn in 2009.[Results]According to the contrast experiment,fertilization,especially topdressing urea,significantly increased the concentration of ammonia-N in surface runoff,but exerted little impact on nitrate-N,total N,and dissolved P or total P. The contents of sediment-bound P were significantly higher in the runoff from the fertilized plots, compared to the ones without fertilization.In contrast,obvious difference in sediment-bound N was only observed in the first runoff event after the application of base fertilizer.It was apparent that N losses with surface runoff and soil erosion was not only influenced by fertilization,but also closely related to the method of fertilizer application.For instance,topdressing urea obviously increased runoff N;whereas, sediment-bound N was typically regulated by the application of base fertilizer.The more losses of N from the fertilized plots,compared to the non-fertilized ones,were mainly originated from their elevated runoff and erosion modulus.Both N and P were mainly transported with sediments.Sediment-bound N accounted for 58.6%and 53.6%of total N losses for the fertilized and unfertilized plots,respectively. The contributions of sediment-bound P were even higher,and the corresponding percentages were 97.2% and 96.5%for the fertilized and unfertilized plots,respectively.[Conclusions]These findings hold important implications for the agricultural management and non-point source pollution regulation in the Miyun Reservoir Watershed.Both the rate and method of fertilization are critical for the management of croplands there,thereby for the water quality of Miyun Reservoir.Furthermore,it is necessary to adopt appropriate soil and water conservation measures to reduce surface runoff and soil erosion,especially the latter,from the mountainous areas of the watershed.
fertilization;cropland;surface runoff;nitrogen;phosphorous;natural rainfall;Miyun Reservoir
S157
:A
:2096-2673(2017)01-0097-08
10.16843/j.sswc.2017.01.012
2016- 07- 11
2016- 11- 01
項(xiàng)目名稱(chēng):北京師范大學(xué)青年教師基金項(xiàng)目“坡面養(yǎng)分流失過(guò)程的室內(nèi)模擬試驗(yàn)研究”(2014NT04);國(guó)家自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目“地表過(guò)程模型與模擬”(41621061)
王麗娟(1993—),女,碩士研究生。主要研究方向:土壤侵蝕與水土保持。E-mail:201521170073@mail.bnu. edu.cn
?通信作者簡(jiǎn)介:楊揚(yáng)(1987—),女,博士,講師。主要研究方向:土壤侵蝕與非點(diǎn)源污染。E-mail:yang.yang@bnu.edu.cn