張廷山,杜翔,楊巍,陳曉慧
1.西南石油大學(xué)油氣藏地質(zhì)與開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610500 2.西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,成都 610500
米倉(cāng)山前緣早志留世軟沉積物變形構(gòu)造及其觸發(fā)機(jī)制
張廷山1,2,杜翔1,2,楊巍1,2,陳曉慧1,2
1.西南石油大學(xué)油氣藏地質(zhì)與開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610500 2.西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,成都 610500
地質(zhì)歷史時(shí)期軟沉積物變形構(gòu)造在不同時(shí)空沉積巖中均有分布,然而學(xué)術(shù)界對(duì)其變形過程、作用力及觸發(fā)機(jī)制等仍存在許多爭(zhēng)議。通過對(duì)米倉(cāng)山前緣野外露頭觀測(cè),早志留世砂巖、粉砂巖、頁(yè)巖地層中,發(fā)育有多套軟沉積物變形構(gòu)造,其層位分布穩(wěn)定,但不同層位的形態(tài)特征差異較大,包括波浪狀變形層構(gòu)造、包卷層理、枕狀(橢球狀)構(gòu)造、火焰構(gòu)造等,多與丘狀交錯(cuò)層理相伴生,可分為三種組合類型,均發(fā)育于中陸棚沉積環(huán)境中?;谠搮^(qū)軟沉積物變形構(gòu)造特征,結(jié)合碳同位素分析、古氣候、古板塊資料,并與現(xiàn)代颶風(fēng)研究成果對(duì)比,認(rèn)為研究區(qū)早志留世時(shí)大體上處于風(fēng)暴頻繁的炎熱環(huán)境,區(qū)內(nèi)軟沉積物變形構(gòu)造多為風(fēng)暴作用的結(jié)果,較強(qiáng)的風(fēng)暴觸及海底,使未固結(jié)成巖的沉積物的孔隙壓力增加,切變強(qiáng)度降低,使之液化,進(jìn)而發(fā)生變形。米倉(cāng)山前緣早志留世軟沉積物變形構(gòu)造的發(fā)現(xiàn)及其觸發(fā)機(jī)制的探討對(duì)區(qū)內(nèi)古地理、古氣候的恢復(fù),以及古揚(yáng)子板塊的演化具有重要的意義。
軟沉積物變形構(gòu)造;風(fēng)暴作用;早志留世;米倉(cāng)山前緣
軟沉積物變形是指由多種沉積條件形成并且具有眾多的形態(tài)特征[1],而且,在地質(zhì)歷史時(shí)期,不同沉積環(huán)境和具不同巖性的地層中都有分布[1-10]。但是,對(duì)于軟沉積物變形的變形過程、作用力以及觸發(fā)機(jī)制有多種解釋,如地震、風(fēng)暴浪作用的壓力變化,海嘯、破混、涌浪、重力流、沉積物的快速載荷、海平面變化等,其中,地震觸發(fā)機(jī)制被認(rèn)為是主要原因之一,并將變形構(gòu)造與地震事件相聯(lián)系起來,認(rèn)為變形構(gòu)造大都發(fā)育在地震帶附近,且具有可以液化的沉積物。通過模擬實(shí)驗(yàn),認(rèn)識(shí)到變形構(gòu)造與沉積物液化作用關(guān)系密切,在地層分布上,變形構(gòu)造層位穩(wěn)定,可以進(jìn)行大范圍對(duì)比[3,9,11-12]。但是,除變形構(gòu)造外,地震常常還會(huì)引發(fā)其他的一些地質(zhì)事件,如海嘯、重力流等[13],所以,確定軟沉積物變形機(jī)理很有意義。
米倉(cāng)山前緣早志留世砂巖—粉砂巖、頁(yè)巖地層中,發(fā)育有多套軟沉積物變形構(gòu)造,而且其不同層位的形態(tài)特征不同,層位分布穩(wěn)定,可作較大范圍對(duì)比。
研究區(qū)位于四川盆地西北部的廣元、旺蒼一帶,大地構(gòu)造上屬上揚(yáng)子區(qū)北緣的米倉(cāng)山隆起區(qū)(圖1)。早古生代該區(qū)構(gòu)造穩(wěn)定,主要受古隆起控制。早志留世時(shí),上揚(yáng)子區(qū)為一寬緩的陸表海,而在川西北地區(qū)西部(旺蒼以西)發(fā)育一向板塊內(nèi)部?jī)A斜的陸源碎屑—碳酸鹽巖沉積勻斜緩坡—盆地沉積環(huán)境[14-15],而其東部(旺蒼以東)碳酸鹽巖沉積不發(fā)育,總體上為陸棚環(huán)境。該區(qū)志留紀(jì)地層沿后龍門山大斷裂東側(cè)呈北東、南西向條帶狀分布,除局部地區(qū)可能有晚志留世地層外,主要出露早志留世地層,最大厚度達(dá)1 328 m。其底部除局部地區(qū)為整合接觸外,大部分地區(qū)超覆于中、上奧陶統(tǒng)的不同層位上,其上與二疊系呈假整合或低角度的不整合接觸。
圖1 研究區(qū)地理位置圖Fig.1 The geographical location map of the study area
研究區(qū)下志留統(tǒng)地層自下向上可劃分為龍馬溪組、小河壩組。早志留世龍馬溪期上揚(yáng)子北緣地區(qū)呈現(xiàn)出相對(duì)海平面上升,周緣隆起帶范圍縮小,總體為局限的寬緩陸架環(huán)境,沉積了一套厚度較大、含豐富筆石生物的黑色碳質(zhì)頁(yè)巖[16],往上逐漸變?yōu)榉凵百|(zhì)泥巖及泥質(zhì)粉砂巖,顏色由灰色逐漸變?yōu)榛揖G色,另可見包卷變形層理及丘狀交錯(cuò)層理等沉積構(gòu)造;早志留世小河壩期,以充填作用為主,由于沉積物加積,海平面出現(xiàn)相對(duì)下降,沉積環(huán)境逐漸變淺,先期的陸棚環(huán)境逐步被近濱環(huán)境所取代,自下而上由淺水陸棚、遠(yuǎn)濱向近濱過渡,沉積一套以粉—細(xì)砂巖、粉砂巖為主夾粉砂質(zhì)泥巖地層,向上砂質(zhì)含量增多,在其底部可見大量枕狀(橢球狀)構(gòu)造、火焰構(gòu)造等軟沉積變形構(gòu)造(圖2),總體來說,自下向上砂質(zhì)含量增多,泥質(zhì)含量減少,表現(xiàn)為水體變淺的過程。
圖2 研究區(qū)下志留統(tǒng)地層柱狀圖Fig.2 The stratigraphic column in Lower Silurian of the study area
米倉(cāng)山前緣軟沉積物變形構(gòu)造縱向上分布于Llandovery階龍馬溪組中上部及小河壩組底部,類型多樣。根據(jù)其形態(tài)特征及地層分布,主要可劃分出波浪狀變形層構(gòu)造、包卷層理、枕狀(橢球狀)構(gòu)造、火焰構(gòu)造等。它們大小不一,并多與丘狀交錯(cuò)層理相伴生(表1)。變形構(gòu)造的巖石類型主要為黃灰色、灰綠色粉砂巖、細(xì)砂巖及粉砂質(zhì)頁(yè)巖或泥巖。
(1) 波浪狀變形層構(gòu)造
波浪狀變形層構(gòu)造主要分布于龍馬溪組中上部,由黃灰色泥質(zhì)粉砂巖、粉砂巖組成,上、下巖層為中—薄層黃灰色粉砂巖、細(xì)砂巖。形態(tài)呈波浪狀彎曲變形,波峰和波谷都比較平緩。波浪狀變形層通常位于平行的上下巖層之間,上下巖層產(chǎn)狀不變,保持水平。研究區(qū)波浪狀變形層構(gòu)造一般厚約20 cm,長(zhǎng)約90 cm,有的可厚達(dá)50 cm,長(zhǎng)度超過2 m(圖3f1、f2)。這種變形構(gòu)造可能多為風(fēng)暴、波浪作用的結(jié)果。
表1 研究區(qū)變形構(gòu)造類型及地層分布
(2) 包卷層理
包卷層理又稱卷曲層理,是指在一個(gè)巖層內(nèi)所發(fā)生的沉積紋層包卷和扭曲現(xiàn)象[17]。該變形構(gòu)造主要分布在龍馬溪組中上部,巖性為黃灰色粉砂質(zhì)泥巖和黃灰色粉砂巖互層。其主要是由細(xì)粒沉積物在未固結(jié)或半固結(jié)而呈塑性狀態(tài)時(shí),由于風(fēng)暴波浪振蕩致沉積物液化引起原生層理的彎曲變形。研究區(qū)包卷層理一般限于一個(gè)層內(nèi)連續(xù)分布,它與上下巖層呈突變接觸,但巖性一致,并向頂部或底部消失,巖層產(chǎn)狀基本保持不變。包卷層理的大小不一,但普遍規(guī)模較大,形態(tài)不規(guī)則,小的只有10 cm左右,大的長(zhǎng)達(dá)290 cm,寬70 cm(圖3a,b)。
(3) 枕狀(橢球狀)構(gòu)造
枕狀(橢球狀)構(gòu)造是指砂巖層斷開并陷入泥巖中形成的許多緊密或稀疏排列的橢球狀或枕狀塊體[17]。該構(gòu)造主要分布在小河壩組底部,由灰—灰綠色粉砂巖、泥質(zhì)粉砂巖和粉砂質(zhì)泥巖組成。它是由上覆粉砂巖、泥質(zhì)粉砂巖層斷開并陷入粉砂質(zhì)泥巖中形成的橢球狀或球狀塊體,一般不具內(nèi)部構(gòu)造,部分團(tuán)塊可見清晰的圈層結(jié)構(gòu)。研究區(qū)小河壩底部大致可見3套枕狀(橢球狀)構(gòu)造,它們規(guī)模大小不一,團(tuán)塊直徑10~30 cm(圖3c1、c2,d1、d2,e1、e2)。
(4) 火焰構(gòu)造
火焰構(gòu)造一般與枕狀—橢球狀構(gòu)造相伴生,位于相應(yīng)的枕狀—橢球狀構(gòu)造之間。由于下伏的粉砂質(zhì)泥巖、泥巖發(fā)生液化后,由于上覆形成枕狀—橢球狀構(gòu)造的細(xì)粉砂巖的不均勻負(fù)載壓力,使得之下液化呈塑性狀態(tài)的粉砂質(zhì)泥巖擠入負(fù)載瘤體之間形成的,常呈薄的舌狀體(圖3c1、c2,d1、d2,e1、e2)。研究區(qū)火焰構(gòu)造主要分布在小河壩組底部,由灰綠色粉砂質(zhì)泥巖、泥巖組成。
另外,通過對(duì)研究區(qū)野外剖面系統(tǒng)的觀測(cè),筆者發(fā)現(xiàn)在下志留統(tǒng)龍馬溪組和小河壩組地層中,軟沉積變形構(gòu)造多與丘狀交錯(cuò)層理相伴生,其表現(xiàn)為在軟沉積變形構(gòu)造下部多為較大型的丘狀交錯(cuò)層理,其上部相對(duì)而言發(fā)育小型的丘狀交錯(cuò)層理(圖4)。
圖3 研究區(qū)軟沉積變形構(gòu)造野外特征a,b. 龍馬溪組上部包卷層理;c1、c2,d1、d2,e1、e2. 小河壩組底部球—枕構(gòu)造;f1,f2. 龍馬溪中上部波浪狀變形構(gòu)造。Fig.3 The outcrop characteristics of soft sediment deformation structures in the study area
圖4 研究區(qū)丘狀交錯(cuò)層理野外特征a.龍馬溪組波浪狀變形構(gòu)造下部丘狀交錯(cuò)層理;b.龍馬溪組波浪狀變形構(gòu)造上部丘狀交錯(cuò)層理;c.小河壩組球枕構(gòu)造下部丘狀交錯(cuò)層理;d.小河壩組球枕構(gòu)造上部丘狀交錯(cuò)層理;e1,e2.龍馬溪組包卷層理下部丘狀交錯(cuò)層理。Fig.4 The outcrop characteristics of hummocky cross bedding of the study area
根據(jù)本區(qū)軟沉積物變形構(gòu)造從下至上的縱向巖性特征及剖面結(jié)構(gòu)組合,總體上可分為三種類型(圖5、表2):1)具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,向上變?yōu)榫呋鹧鏄?gòu)造的粉砂質(zhì)泥巖、泥巖,具枕狀—橢球狀構(gòu)造的細(xì)粉砂巖、粉砂巖層,頂部為有時(shí)具小型丘狀交錯(cuò)層理的細(xì)粉砂巖層;2)具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,具包卷層理的細(xì)粉砂巖、粉砂巖層,頂部為粉砂巖層,具水平層理或小型丘狀交錯(cuò)層理;3)具波浪狀變形層構(gòu)造的黃灰色泥質(zhì)粉砂巖、粉砂巖組成,其上、下層為中薄層黃灰色粉砂巖、細(xì)砂巖層。
圖5 研究區(qū)早志留世軟沉積變形構(gòu)造剖面組合示意圖Fig.5 The schematic diagram soft sediment deformation structures in Early Silurian of the study area
結(jié)合前人研究資料,四川盆地西北部(米蒼山前緣)大部分地區(qū)都可見這類軟沉積變形構(gòu)造,如旺蒼縣鼓城鄉(xiāng)、檬子鄉(xiāng)、國(guó)華鎮(zhèn),楠木村,南江縣等。通過對(duì)比研究發(fā)現(xiàn),下志留統(tǒng)小河壩組底部均發(fā)育這種橢球狀、枕狀構(gòu)造,并且可大致作為劃分龍馬溪組與小河壩組的標(biāo)志。另外,在龍馬溪組中上部均可見其他類型軟沉積物變形構(gòu)造(圖6)。研究區(qū)軟沉積物變形構(gòu)造在區(qū)域上具普遍性,并且層位分布穩(wěn)定,具有一定的可對(duì)比性。
表2 研究區(qū)早志留世變形構(gòu)造剖面組合特征
圖6 研究區(qū)下志留統(tǒng)地層對(duì)比簡(jiǎn)圖Fig.6 The stratigraphic correlation diagram in Lower Silurian of the study area
研究區(qū)晚奧陶世—早志留世整體上為局限陸棚沉積環(huán)境。早志留世龍馬溪期構(gòu)造運(yùn)動(dòng)強(qiáng)烈,上揚(yáng)子板塊北緣呈現(xiàn)相對(duì)海平面上升,總體為局限的寬緩陸架環(huán)境。早志留世小河壩期以充填作用為主,海平面出現(xiàn)相對(duì)下降,沉積環(huán)境逐漸變淺,自下而上由陸棚、遠(yuǎn)濱向近濱過渡[15]。一般來說,在一個(gè)剖面上,風(fēng)暴巖垂向?qū)有蛲l(fā)育不全。風(fēng)暴作用隨水體深度的增加而減小,從內(nèi)陸棚到外陸棚,風(fēng)暴作用的影響逐漸減小。近源性風(fēng)暴巖相對(duì)較厚,粒粗,底部侵蝕構(gòu)造發(fā)育,形成于水體相對(duì)較淺的陸棚區(qū);遠(yuǎn)源性風(fēng)暴巖則相反,厚度小,以細(xì)粒沉積為主,侵蝕構(gòu)造等不發(fā)育,常形成于相對(duì)較深的陸棚區(qū)。從本區(qū)軟沉積物變型構(gòu)造的巖性特征、發(fā)育規(guī)模等來看,在軟沉積物變型構(gòu)造組合的底部,風(fēng)暴侵蝕不明顯,頂?shù)捉缑娑驾^平緩,丘狀層理規(guī)模不大,地層沉積厚度較薄,巖性以灰色、灰綠色泥質(zhì)粉砂巖、粉砂巖為主,間夾泥巖,表明當(dāng)這套巖層沉積時(shí),沉積水體相對(duì)較深,可能處于風(fēng)暴浪基面之下的中陸棚環(huán)境,只有當(dāng)較強(qiáng)的風(fēng)暴發(fā)生時(shí),才會(huì)作用到該區(qū)域,因此該區(qū)域風(fēng)暴作用的強(qiáng)度較小,并表現(xiàn)出具有不定期性。根據(jù)本區(qū)軟沉積物變型構(gòu)造剖面組合的巖性特征、剖面組合、發(fā)育規(guī)模等分析,軟沉積物變型構(gòu)造A、B組合的巖性以泥巖、泥質(zhì)粉砂巖、粉砂巖為主,發(fā)育規(guī)模不是很大,推測(cè)其沉積時(shí)水體相對(duì)較深,可能為中陸棚下部環(huán)境,而C組合的巖性以粉砂巖、細(xì)砂巖為主,推測(cè)其可能發(fā)育在中陸棚上部環(huán)境中(圖7)。
軟沉積物變形構(gòu)造的觸發(fā)機(jī)理前人已做過較為系統(tǒng)的研究[9],不外乎有如下幾種機(jī)理:1)具有軟沉積物變形潛在可能的沉積物;2)驅(qū)動(dòng)力及邊界條件,如反向密度梯度和重力剪切應(yīng)力;3)沉積物液化、黏性流動(dòng)等。這些觸發(fā)機(jī)理,主要包括地震活動(dòng)、滑坡、海嘯、風(fēng)暴浪等。但是,不同地區(qū)和不同時(shí)代的軟沉積物變形構(gòu)造的成因,一直爭(zhēng)論不斷[9,18-19]。實(shí)驗(yàn)證明,軟沉積物變形構(gòu)造的最終形態(tài)取決于沉積層的密度差、沉積物黏滯力大小、液化狀況及液化后的流動(dòng)過程[8,20-21],而這些參數(shù)又取決于沉積物沉積時(shí)的理化條件及其沉積后受變形時(shí)的物理?xiàng)l件?,F(xiàn)代濱、淺海因風(fēng)浪而引起粉砂層液化變形的現(xiàn)象非常普遍。在風(fēng)暴浪作用下,水動(dòng)力因素與粉砂沉積物相互作用過程中,沉積物孔隙水壓力扮演著重要的角色,波浪動(dòng)水壓力的作用在海底沉積物內(nèi)會(huì)產(chǎn)生相應(yīng)的應(yīng)力和孔隙水壓力。較強(qiáng)的動(dòng)水壓力在中等密度到疏松的沉積物內(nèi)將產(chǎn)生和累積超孔隙水壓力。在風(fēng)浪加載的周期之間,孔隙水壓力又會(huì)部分消散。隨著風(fēng)暴作用的周期性發(fā)生,孔隙水壓力將不斷地累加,直至超過上覆沉積物的自重應(yīng)力而破壞,或者也會(huì)在較強(qiáng)風(fēng)暴浪作用后由于孔隙水壓力較快的消散而停止累加[22]。楊少麗等[23]通過實(shí)驗(yàn)?zāi)M了在風(fēng)暴作用下水下沉積物液化變形的過程,風(fēng)暴開始作用時(shí),粉砂沉積物沒有液化,但當(dāng)風(fēng)暴達(dá)到600 s時(shí)0.9 m左右以上時(shí),粉砂沉積物已開始液化變形,隨著波浪的持續(xù)作用,粉砂沉積物液化深度漸增,若五十年一遇的強(qiáng)風(fēng)暴連續(xù)作用lh,則大約4 m以上的粉砂沉積物均有可能被液化破壞。許國(guó)輝等[24]對(duì)黃河三角洲黏質(zhì)粉砂土體底床進(jìn)行波浪水槽試驗(yàn)研究證實(shí),孔隙水壓力對(duì)波浪作用下沉積物的變形有重要影響,同時(shí)波浪對(duì)底床的周期性剪切力應(yīng)是沉積物變形以及使變形發(fā)展的主要因素之一。
圖7 研究區(qū)沉積環(huán)境及變形構(gòu)造組合模式圖A.具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,向上變?yōu)榫呋鹧鏄?gòu)造的粉砂質(zhì)泥巖、泥巖,具枕狀—橢球狀構(gòu)造的細(xì)粉砂巖、粉砂巖層,頂部為有時(shí)具小型丘狀交錯(cuò)層理的細(xì)粉砂巖層;B.具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,具包卷層理的細(xì)粉砂巖、粉砂巖層,頂部為粉砂巖層,具水平層理或小型丘狀交錯(cuò)層理;C.具波浪狀變形層構(gòu)造的黃灰色泥質(zhì)粉砂巖、粉砂巖組成,其上、下層為中薄層黃灰色粉砂巖、細(xì)砂巖層。Fig.7 The mode pattern of sedimentary environment and soft sediment deformation structures of the study area
對(duì)古代風(fēng)暴浪作用引起的砂質(zhì)沉積物的液化,特別是針對(duì)軟沉積物變形構(gòu)造與風(fēng)暴浪形成的循環(huán)作用之間關(guān)系的研究不多。Marteletal.[25]指出,加拿大泥盆紀(jì)—石炭紀(jì)湖相泥質(zhì)沉積物中粗碎屑?jí)Φ男纬膳c風(fēng)暴作用的循環(huán)載荷、微震動(dòng)以及超荷有關(guān)。Molinaetal.[26]研究了由風(fēng)暴浪所形成的淺海軟沉積物變形構(gòu)造。Okusa[27]認(rèn)為,沉積物中有效應(yīng)力及孔隙壓力受控于沉積物特征(密度、孔隙度、滲透率以及壓縮率)和波浪特征(周期、波長(zhǎng)、波高)。風(fēng)暴的循環(huán)效應(yīng)作用于海床,導(dǎo)致了海床沉積物的孔隙壓力增加,切變強(qiáng)度降低,使之液化發(fā)生變形。在風(fēng)暴循環(huán)應(yīng)力作用下,海床砂質(zhì)沉積物的液化作用是一個(gè)普遍過程[28-30],最易液化的條件是水深10~20 m,風(fēng)暴浪高大于6 m[31]。一般,枕狀—橢球狀重荷變形構(gòu)造多分布于碎屑巖中[31-32]。風(fēng)暴浪循環(huán)作用對(duì)海床沉積物的影響在現(xiàn)代海洋工程實(shí)踐及海洋地質(zhì)研究中受到廣泛的重視[27,33-36]。研究區(qū)早志留世發(fā)現(xiàn)各種軟沉積變形構(gòu)造,雖然目前有學(xué)者將其歸為由于地震因素的影響而形成,然而,通過研究區(qū)野外調(diào)查,該區(qū)并沒有發(fā)現(xiàn)震積巖等與地震作用相關(guān)的直接證據(jù),因此可以排除地震作用的影響。由于丘狀交錯(cuò)層理是典型的風(fēng)暴成因?qū)永?,因此風(fēng)暴作用導(dǎo)致該區(qū)軟沉積變形構(gòu)造發(fā)育的可能性更大。
Boucotetal.[37]根據(jù)顯生宙各時(shí)期敏感沉積物的數(shù)萬(wàn)個(gè)資料點(diǎn),再現(xiàn)了氣候敏感沉積物的分布規(guī)律,重建了自寒武紀(jì)至中新世共27幅全球古氣候帶分布圖(圖8),其中華南板塊晚奧陶世—早志留世位于赤道附近,屬于熱帶—干旱帶古氣候。晚奧陶世(460~450 Ma)(桑比期—?jiǎng)P迪期)華南板塊向北偏移,并且在早凱迪階橫跨赤道[37-39]。詹仁斌等[40]在研究華南地區(qū)寶塔組灰?guī)r時(shí)也證實(shí)了晚奧陶世華南板塊位于赤道附近,早志留世基本上與晚奧陶世大致相同。
現(xiàn)代赤道帶是世界生物多樣性的中心,如印尼的珊瑚礁(赤道附近10°)就明顯比澳大利亞大堡礁或者加勒比海珊瑚礁多樣化,也是強(qiáng)臺(tái)風(fēng)集中發(fā)育的區(qū)域[41-43]?,F(xiàn)代赤道帶的若干特點(diǎn),如缺乏季節(jié)性和颶風(fēng)可能會(huì)在巖石和化石中被記錄。美國(guó)國(guó)家海洋和大氣管理局對(duì)過去160年大西洋和東太平洋區(qū)域的颶風(fēng)記錄表明,在赤道南北附近10°區(qū)域,由于相當(dāng)弱的地球自轉(zhuǎn)偏向力,通常缺乏熱帶風(fēng)暴和颶風(fēng),相反,在赤道附近10°~30°區(qū)域有強(qiáng)烈颶風(fēng)發(fā)生[44](圖9)。杜遠(yuǎn)生等[45],楊寶忠等[46]也證實(shí)現(xiàn)代風(fēng)暴作用主要形成于赤道附近5°~20°的區(qū)域,影響范圍多在緯度5°~30°之間,少數(shù)達(dá)緯度40°。這說明研究區(qū)在早志留世為風(fēng)暴多發(fā)區(qū)。另外,研究區(qū)軟沉積變形構(gòu)造多與丘狀交錯(cuò)層理相伴生,而丘狀交錯(cuò)層理是風(fēng)暴浪作用形成的典型沉積構(gòu)造,間接地說明風(fēng)暴作用對(duì)本區(qū)軟沉積變形構(gòu)造的形成具有重要的貢獻(xiàn)。
通過對(duì)四川盆地南緣晚奧陶世—早志留世地層有機(jī)碳同位素研究,其觀音橋?qū)佑袡C(jī)碳同位素出現(xiàn)正漂移,主要因?yàn)楫?dāng)時(shí)處于冰期氣候變冷,大氣二氧化碳減少,這與奧陶紀(jì)末期生物滅絕事件相吻合。然而,其下志留統(tǒng)龍馬溪組下部地層中有機(jī)碳同位素存在明顯負(fù)漂移(圖10)。目前,顯生宙以來有機(jī)碳同位素的研究比較深入,通過δ13C變化可以指示地質(zhì)歷史過程中大氣CO2的變化[47-50]。四川盆地南緣早志留世有機(jī)碳同位素的負(fù)漂移表明當(dāng)時(shí)大氣二氧化碳含量增多,溫度升高,風(fēng)暴、干旱等極端氣候事件在赤道附近的地區(qū)時(shí)有發(fā)生,這為本區(qū)風(fēng)暴沉積及軟沉積變形構(gòu)造的發(fā)育提供可能性。另外,張廷山等[51]在川西北地區(qū)早志留世地層中發(fā)現(xiàn)了風(fēng)暴巖并討論了風(fēng)暴巖的類型及其發(fā)育的沉積環(huán)境;白志強(qiáng)等[52]在米倉(cāng)山南緣中志留世羅惹坪組頂部也發(fā)現(xiàn)了多套風(fēng)暴沉積。這也為研究區(qū)早志留世風(fēng)暴作用的存在提供了佐證。
圖8 晚奧陶世—早志留世華南板塊位置圖(據(jù)Boucot et al.[37])Fig.8 The south China plate location in Late Ordovician-Early Silurian(modified from Boucot, et al.[37])
圖9 現(xiàn)代颶風(fēng)頻率和強(qiáng)度圖(據(jù)靳吉鎖等[44])H1~H5. 颶風(fēng)等級(jí);TS.熱帶風(fēng)暴;TD.熱帶氣旋Fig.9 The frequency and intensity map of modern hurricane(modified from Jin et al.[44])
圖10 四川盆地南緣晚奧陶世—早志留世有機(jī)碳同位素特征Fig.10 The characteristics of the organic carbon isotopes on the southern margin of Sichuan Basin in Late Ordovician-Early Silurian
(1) 米倉(cāng)山前緣軟沉積物變形構(gòu)造縱向上分布于龍馬溪組中上部及小河壩組底部,類型多樣。根據(jù)其形態(tài)特征及地層分布,主要可劃分出波浪狀變形層構(gòu)造、包卷層理、枕狀(橢球狀)構(gòu)造、火焰構(gòu)造等。它們大小不一,并多與丘狀交錯(cuò)層理相伴。根據(jù)軟沉積變形構(gòu)造自下至上的縱向巖性及剖面結(jié)構(gòu)組合將其分為三種類型:A.具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,向上變?yōu)榫呋鹧鏄?gòu)造的粉砂質(zhì)泥巖、泥巖,具枕狀—橢球狀構(gòu)造的細(xì)粉砂巖、粉砂巖層,頂部為有時(shí)具小型丘狀交錯(cuò)層理的細(xì)粉砂巖層;B.具丘狀交錯(cuò)層理的細(xì)粉砂巖、粉砂巖層,具包卷層理的細(xì)粉砂巖、粉砂巖層,頂部為粉砂巖層,具水平層理或小型丘狀交錯(cuò)層理;C.具波浪狀變形層構(gòu)造的黃灰色泥質(zhì)粉砂巖、粉砂巖組成,其上、下層為中薄層黃灰色粉砂巖、細(xì)砂巖層。根據(jù)軟沉積變形構(gòu)造巖性特征,結(jié)合區(qū)域沉積背景推測(cè)當(dāng)時(shí)的沉積環(huán)境屬于中陸棚,其中A、B組合位于中陸棚下部環(huán)境,C組合位于中陸棚上部環(huán)境。
(2) 根據(jù)研究區(qū)古氣候、古板塊資料以及現(xiàn)代風(fēng)暴研究成果,結(jié)合四川盆地南緣晚奧陶世—早志留世地層有機(jī)碳同位素研究,說明了當(dāng)時(shí)研究區(qū)處于風(fēng)暴頻發(fā)的熱帶、干旱帶地區(qū),米倉(cāng)山前緣軟沉積物變形構(gòu)造為風(fēng)暴作用所影響。另外,該區(qū)軟沉積變形構(gòu)造的發(fā)現(xiàn)對(duì)早志留世古地理、古氣候的恢復(fù),古揚(yáng)子板塊的演化提供了材料。
References)
[1] Maltman A. On the term “soft-sediment deformation”[J]. Journal of Structural Geology, 1984, 6(5): 589-592.
[2] Goodman R E, Appuhn R A. Model experiments on the earthquake response of soil-filled basins[J]. Geological Society of America Bulletin, 1966, 77(11): 1315-1326.
[3] John D S. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments[J]. Tectonophysics, 1975, 29(1/2/3/4): 141-152.
[4] Lowe D R. Water escape structures in coarse-grained sediments[J]. Sedimentology, 1975, 22(2): 157-204.
[5] Allen J R L. Sedimentary Structures, Their Character and Physical Basis[M]. Amsterdam: Elsevier, 1982: 1-515.
[6] Maltman A. Deformation structures preserved in rocks[M]//Maltman A. The Geological Deformation of Sediments. Netherlands: Springer, 1994: 261-307.
[7] Owen G. Soft-sediment deformation in upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon, northwest Scotland[J]. Journal of Sedimentary Research, 1995, 65(3a): 495-504.
[8] Owen G. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples[J]. Sedimentology, 1996, 43(2): 279-293.
[9] Owen G, Moretti M, Alfaro P. Recognising triggers for soft-sediment deformation: current understanding and future directions[J]. Sedimentary Geology, 2011, 235(3/4): 133-140.
[10] Vanneste K, Meghraoui M, Camelbeeck T. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system[J]. Tectonophysics, 1999, 309(1/2/3/4): 57-79.
[11] Seilacher A. Fault-graded beds interpreted as seismites[J]. Sedimentology, 1969, 13(1/2): 155-159.
[12] Hempton M R, Dewey J F. Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey[J]. Tectonophysics, 1983, 98(3/4): T7-T14.
[13] Shiki T, Yamazaki T. Tsunami-induced conglomerates in Miocene upper bathyal deposits, Chita Peninsula, central Japan[J]. Sedimentary Geology, 1996, 104(1/2/3/4): 175-188.
[14] 陶洪祥,何恢亞,王全慶,等. 揚(yáng)子板塊北緣構(gòu)造演化史[M]. 西安:西北大學(xué)出版社,1993:1-78. [Tao Hongxiang, He Huiya, Wang Quanqing, et al. Historical Evolution of Tectonics in North Rim of Yangzi Plate[M]. Xi’an: Northwestern University Press, 1993: 1-78.]
[15] 余謙,牟傳龍,張海全,等. 上揚(yáng)子北緣震旦紀(jì)—早古生代沉積演化與儲(chǔ)層分布特征[J]. 巖石學(xué)報(bào),2011,27(3):672-680. [Yu Qian, Mu Chuanlong, Zhang Haiquan, et al. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic[J]. Acta Petrologica Sinica, 2011, 27(3): 672-680.]
[16] 張海全,許效松,余謙,等. 揚(yáng)子板塊西北緣晚奧陶—早志留世巖相古地理演化與烴源巖的關(guān)系[J]. 石油天然氣學(xué)報(bào):江漢石油學(xué)院學(xué)報(bào),2010,32(2):43-47. [Zhang Haiquan, Xu Xiaosong, Yu Qian, et al. Relationship between lithofacies paleogeographic evolution and source rocks of the Late Ordovician-Early Silurian in northwestern Yangtze Plate[J]. Journal of Oil and Gas Technology: Journal of Jianghan Petroleum Institute, 2010, 32(2): 43-47.]
[17] 朱筱敏. 沉積巖石學(xué)[M]. 4版. 北京:石油工業(yè)出版社,2008:94-98. [Zhu Xiaomin. Sedimentary Petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 94-98.]
[18] Jones A P, Omoto K. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan[J]. Sedimentology, 2000, 47(6): 1211-1226.
[19] Owen G, Moretti M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands[J]. Sedimentary Geology, 2011, 235(3/4): 141-147.
[20] Owen G. Load structures: gravity-driven sediment mobilization in the shallow subsurface[J]. Geological Society, London, Special Publications, 2003, 216(1): 21-34.
[21] Moretti M, Alfaro P, Caselles O, et al. Modelling seismites with a digital shaking table[J]. Tectonophysics, 1999, 304(4): 369-383.
[22] 李安龍,楊榮民,林霖,等. 波浪加載下海底土質(zhì)特性變化的研究[J]. 青島海洋大學(xué)學(xué)報(bào),2003,33(1):101-106. [Li Anlong, Yang Rongmin, Lin Lin, et al. Study on the geotechnical behavior of seabottom sediments under wave-loading[J]. Journal of Ocean University of Qingdao, 2003, 33(1): 101-106.]
[23] 楊少麗,沈渭銓,楊作升. 波浪作用下海底粉砂液化的機(jī)理分析[J]. 巖土工程學(xué)報(bào),1995,17(4):28-37. [Yang Shaoli, Shen Weiquan, Yang Zuosheng. The mechanism analysis of seafloor silt liquefaction under wave loads[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(4): 28-37.]
[24] 許國(guó)輝,常瑞芳,李安龍,等. 波浪作用下粘質(zhì)粉砂底床性態(tài)變化的試驗(yàn)研究[J]. 黃渤海海洋,2000,18(1):19-26. [Xu Guohui, Chang Ruifang, Li Anlong, et al. Experimental studies on behavior variation of clay-silt bed under wave-loading[J]. Journal of Oceanography of Huanghai & Bohai Seas, 2000, 18(1): 19-26.]
[25] Martel A T, Gibling M R. Clastic dykes of the Devono-Carboniferous Horton Bluff Formation, Nova Scotia: storm-related structures in shallow lakes[J]. Sedimentary Geology, 1993, 87(1/2): 103-119.
[26] Molina J M, Alfaro P, Moretti M, et al. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain)[J]. Terra Nova, 1998, 10(3): 145-150.
[27] Okusa S. Wave-induced stresses in unsaturated submarine sediments[J]. Géotechnique, 1985, 35(4): 517-532.
[28] Massari F, Parea G C. Progradational gravel beach sequences in a moderate-to high-energy, microtidal marine environment[J]. Sedimentology, 1988, 35(6): 881-913.
[29] Kerr M, Eyles N. Storm-deposited sandstones (tempestites) and related ichnofossils of the Late Ordovician Georgian Bay Formation, southern Ontario, Canada[J]. Canadian Journal of Earth Sciences, 1991, 28(2): 266-282.
[30] Molina J M, Ruiz-Ortiz P A, Vera J A. Calcareous tempestites in pelagic facies (Jurassic, Betic Cordilleras, southern Spain)[J]. Sedimentary Geology, 1997, 109(1/2): 95-109.
[31] Alfaro P, Delgado J, Estévez A, et al. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain)[J]. International Journal of Earth Sciences, 2002, 91(3): 505-513.
[32] Moretti M, Soria J M, Alfaro P, et al. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain)[J]. Facies, 2001, 44(1): 283-294.
[33] Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Géotechnique, 1978, 28(4): 377-393.
[34] Liam Finn W D, Siddharthan R, Martin G R. Response of seafloor to ocean waves[J]. Journal of Geotechnical Engineering, 1983, 109(4): 556-572.
[35] Lee F H, Foo S L. Undrained cyclic loading on a saturated dense sand stratum[J]. Géotechnique, 1990, 40(3): 451-465.
[36] Foda M A. Sea floor dynamics[J]. Advances in Coastal and Ocean Engineering, 1995, 1: 77-123.
[37] Boucot A J,陳旭,Scotese C R,等. 顯生宙全球古氣候重建[M]. 北京:科學(xué)出版社,2009:1-173. [Boucot A J, Chen Xu, Scotese C R, et al. Phanerozoic Global Paleoclimate Reconstruction[M]. Beijing: Science Press, 2009: 1-173.]
[38] Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117: 40-79.
[39] Torsvik T H, Cocks L R M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation[J]. Geological Society, London, Memoirs, 2013, 38(1): 5-24.
[40] Zhan Renbin, Jin Jisuo, Liu Jianbo, et al. Meganodular limestone of the Pagoda Formation: a time-specific carbonate facies in the Upper Ordovician of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 349-362.
[41] Roberts C M, McClean C J, Veron J E N, et al. Marine biodiversity hotspots and conservation priorities for tropical reefs[J]. Science, 2002, 295(5558): 1280-1284.
[42] Marshall C R. Fossil record reveals tropics as cradle and museum[J]. Science, 2006, 314(5796): 66-67.
[43] Kiessling W, Simpson C, Foote M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic[J]. Science, 2010, 327(5962): 196-198.
[44] Jin J, Harper D A T, Cocks L R M, et al. Precisely locating the Ordovician equator in Laurentia[J]. Geology, 2013, 41(2): 107-110.
[45] 杜遠(yuǎn)生,韓欣. 滇中中元古代昆陽(yáng)群因民組碎屑風(fēng)暴巖及其意義[J]. 沉積學(xué)報(bào),2000,18(2):259-262. [Du Yuansheng, Han Xin. Clastic tempestite and its significance in Yinmin Formation, Kunyang Group (Mesoproterozoic) in central Yunnan province[J]. Acta Sedimentologica Sinica, 2000, 18(2): 259-262.]
[46] 楊寶忠,楊坤光,夏文臣. 鄂東黃石地區(qū)中上寒武統(tǒng)風(fēng)暴巖的發(fā)現(xiàn)及意義[J]. 地質(zhì)科技情報(bào),2007,26(3):33-36. [Yang Baozhong, Yang Kunguang, Xia Wenchen. Discovery of Middle-Upper Cambrian tempestites and its significance in Huangshi, Eastern Hubei province[J]. Geological Science and Technology Information, 2007, 26(3): 33-36.]
[47] Dean E D, Arthur M A, Claypool G E. Depletion of13C Cretaceous marine organic matter: source, diagenetic, or environmental signal?[J]. Marine Geology, 1986, 70(1/2): 119-157.
[48] Freeman K H, Hayes J M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2levels[J]. Global Biogeochemical Cycles, 1992, 6(2): 185-198.
[49] Jasper J P, Hayes J M. A carbon isotope record of CO2levels during the Late Quaternary[J]. Nature, 1990, 347(6292): 462-464.
[50] Hollander D J, McKenzie J A. CO2control on carbon isotope fractionation during aqueous photosynthesis: a paleo-pCO2barometer[J]. Geology, 1991, 19(9): 929-932.
[51] 張廷山,侯方浩,高衛(wèi)東,等. 川西北地區(qū)早志留世風(fēng)暴巖及其環(huán)境與古生態(tài)意義[J]. 沉積學(xué)報(bào),1993,11(2):66-74. [Zhang Tingshan, Hou Fanghao, Gao Weidong, et al. Tempestites and the environmental paleoecological significance of Early Silurian, Nw Sichuan area[J]. Acta Sedimentologica Sinica, 1993, 11(2): 66-74.]
[52] 白志強(qiáng),劉樹根,宋金民,等. 米倉(cāng)山南緣中志留統(tǒng)羅惹坪組風(fēng)暴巖沉積特征及其意義[J]. 沉積學(xué)報(bào),2015,33(2):226-231. [Bai Zhiqiang, Liu Shugen, Song Jinmin, et al. Sedimentary characteristics and geological implications of tempestite, Luoreping Formation, Middle Silurian in southern Micangshan[J]. Acta Sedimentologica Sinica, 2015, 33(2): 226-231.]
A Discussion on Deformation Structures of Early Silurian Soft Sediment and Its Trigger Mechanism in the front of Micangshan Mountain
ZHANG TingShan1,2,DU Xiang1,2,YANG Wei1,2,CHEN XiaoHui1,2
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
As we know, soft sediment deformation structures in the geological history can be found in different space-time sedimentary rocks, however, its deformation process, active force and trigger mechanism are still in dispute in academia. Through the observation on the field outcrops in the front of Micangshan, there develop multiple sets of soft sediment deformation structures in the sandstone, siltstone and shale strata in Early Silurian. The distribution of the layer is stable, and each stratum has different morphological characters. According to its morphological characteristics and stratigraphic distribution, it can be divided into wavy deformation structure, convolute bedding, pillow structure and flamy structure. What's more, they always accompany with hummocky cross-beddings. On the basis of the lithologic character and profile structure combination of the soft sediment deformation structures, they can be divided into three types, which all belong to the continental shelf sedimentary environments. Based on the characteristics of the soft sediment deformation structures and combined with the paleoclimate and paleo-plate materials, carbon isotope data, and modern hurricane research results, the study area is located in the north of the equator. There is hot and arid, and the storm occurs frequently. The soft sediment deformation structures of the research area are mainly the consequence of the storm. Unconsolidated sediments are oscillated and liquefied when the strong storm hit the bottom of the sea. The discovery and the trigger mechanism of the soft sediment deformation structures in the front of Micangshan has a great significance for studying the recovery of the paleoclimate and paleo-plate, and the evolution of ancient Yangtze plate.
soft sediment deformation structures; storm action; Early Silurian; the front of Micangshan
1000-0550(2017)02-0253-11
10.14027/j.cnki.cjxb.2017.02.005
2016-01-25; 收修改稿日期: 2016-05-04
國(guó)家自然科學(xué)基金項(xiàng)目(41272135)[Foundation: National Natural Science Foundation of China, No. 41272135]
張廷山,男,1961年出生,教授,沉積學(xué)與古生態(tài)學(xué),E-mail: zts_3@126.com
P512.2
A