国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

湖泊沉積物中磷酸鹽氧同位素前處理方法對比*

2017-04-12 01:19張秀梅王亞蕊馬書占陳向超馮慕華
湖泊科學 2017年2期
關鍵詞:磷酸鹽提取液湖泊

張秀梅,王亞蕊,馬書占,陳向超,馮慕華

(1:中國科學院南京地理與湖泊研究所湖泊與環(huán)境國家重點實驗室,南京 210008)(2:中國科學院大學,北京 100049)(3:中國科學院大學中丹學院,北京 100190)(4:蘇州科技大學環(huán)境科學與工程學院,蘇州 215011)

湖泊沉積物中磷酸鹽氧同位素前處理方法對比*

張秀梅1,2,3,王亞蕊1,2,馬書占1,4,陳向超1,2,馮慕華1**

(1:中國科學院南京地理與湖泊研究所湖泊與環(huán)境國家重點實驗室,南京 210008)(2:中國科學院大學,北京 100049)(3:中國科學院大學中丹學院,北京 100190)(4:蘇州科技大學環(huán)境科學與工程學院,蘇州 215011)

磷酸鹽氧同位素(δ18OP)是一種有效的磷源示蹤方式. 由于湖泊沉積物的組成十分復雜,必須對樣品進行除碳處理和純化處理. 本文對目前應用較為廣泛的幾種前處理方法進行比較,包括NaClO處理和H2O2處理等除有機碳方法,以及Blake法和McLaughlin法等純化方法,以期獲得適用于湖泊沉積物磷酸鹽氧同位素的前處理方法. 結(jié)果表明:(1)NaClO處理可以保證較高的無機磷提取效率,同時能有效地減少無機磷提取液中有機質(zhì)含量,且對不同形態(tài)磷的破壞較小;H2O2對有機質(zhì)的去除效果不穩(wěn)定,且處理后樣品磷形態(tài)之間發(fā)生轉(zhuǎn)化,顯著增加了提取的無機磷濃度. (2)Blake法和McLaughlin法分別采用磷鉬酸銨(APM)+磷酸銨鎂(MAP)沉淀和CePO4沉淀對樣品進行純化. 在純化處理湖泊沉積物過程中,Blake法優(yōu)于McLaughlin法,主要體現(xiàn)為有機質(zhì)去除率高,并且磷的回收率較為穩(wěn)定. (3)經(jīng)Blake法純化丹麥Nordborg湖沉積物樣品得到的Ag3PO4中C、N含量低于McLaughlin法且重現(xiàn)性好. 本文結(jié)合NaClO法與Blake法的優(yōu)點,建立了一種適合湖泊沉積物的磷酸鹽氧同位素前處理方法:首先用2.5% NaClO對沉積物樣品進行除碳預處理,然后對磷酸鹽提取液依次通過氫氧化鎂共沉淀(MAGIC)、APM+MAP沉淀、陽離子交換樹脂處理,最后生成Ag3PO4沉淀.

沉積物;磷酸鹽氧同位素;前處理;除有機碳;無機磷

磷循環(huán)屬于典型的沉積型循環(huán)[1].沉積物作為湖泊磷的蓄積庫,匯集了各種類型的陸源磷,但在一定條件下,沉積物又由磷的“匯”轉(zhuǎn)變?yōu)椤霸础保粩嗟蒯尫诺缴细菜衃2-3]. 因此,探究沉積物中磷的來源,對控制和治理湖泊富營養(yǎng)化具有重要的指導意義.

為了探明NaClO處理和H2O2處理等除有機碳方法,Blake法和McLaughlin法等純化方法在湖泊沉積物磷酸鹽氧同位素前處理中的效果,本文對這幾種方法進行了對比研究. 首先,采用2.5% NaClO和30% H2O2對有機質(zhì)含量較高的湖泊沉積物樣品進行預處理,并比較2種預處理對無機磷提取效率、提取液中溶解性有機碳(DOC)含量以及沉積物磷形態(tài)的影響. 其次,運用Blake法和McLaughlin法對沉積物提取液中磷酸鹽進行純化,比較2種方法中DOC的去除效率和磷酸鹽的回收率. 本文結(jié)合預處理除碳方法和2種純化方法的優(yōu)點,并對一些操作步驟進行篩選優(yōu)化,建立一種適用于湖泊沉積物磷酸鹽氧同位素的前處理方法.

1 材料與方法

1.1 試劑與儀器

試劑:NaClO(Aladdin)、 H2O2(AR)、HCl(GR)、Mg(NO3)2·6H2O(AR)、NaOH(GR)、HNO3(GR)、(NH4)6Mo7O24·4H2O(AR)、CeNO3(Aladdin)、陽離子交換樹脂(BioRad AG-50X8,H+型,100~200目)、陰離子交換樹脂(BioRad AG1-X8,OH-型,200~400目)、NaHCO3(Aladdin)、MgCl2(AR)、BD試劑、CH3COOK·3H2O(GR)、CH3COOH(AR).

器皿及儀器: 聚四氟乙烯(PTFE)離心管、100 ml燒杯、1 L燒杯、10 ml玻璃離心管、恒溫振蕩器(HZ-9511K)、冷凍干燥機(7948030,Labconco)、離心機(TGL-16M,湘儀)、馬弗爐(KBF1700)、帶砂芯的層析柱、總有機碳分析儀(Torch,Teledyne Tekmar)、元素分析儀(EA3000,EuroVector).

1.2 樣品采集

丹麥富營養(yǎng)化湖泊Nordborg湖平均水深5 m,湖面面積0.546 km2,換水周期為0.82 a[16]. 流域面積63%為農(nóng)田,25%為城鎮(zhèn)用地,其他區(qū)域被森林覆蓋. 湖北岸設有兩個前置庫,攔截凈化農(nóng)田來水. 于2014年3月12日用彼得森采泥器進行表層沉積物樣品采集. 4個樣品分別位于Nordborg湖最深處(8.5 m)、1/2水深處(4.2 m)、前置庫KS1和前置庫KS2,記為樣品1、樣品2、樣品3和樣品4. 4個沉積物樣品的碳、氮、磷含量如表1所示.

表1 丹麥Nordborg湖沉積物樣品的碳、氮、磷含量

1.3 實驗方法

1.3.1 預處理方法 將沉積物樣品凍干后研磨過200目篩. 分別取0.5 g左右樣品于PTFE離心管中,設置3個實驗組:對照組、NaClO處理組和H2O2處理組. 每組處理3個平行. 具體步驟如下:

對照組:不進行任何預處理.

NaClO處理組:加入10 ml 2.5% NaClO溶液震蕩24 h后離心(7000轉(zhuǎn)/min,10 min),棄去上清液,剩余殘渣用純水洗滌4~5次至中性.

H2O2處理組:加入10 ml 30% H2O2溶液浸泡24 h后,待無明顯氣泡生成后離心(7000轉(zhuǎn)/min,10 min),棄去上清液,剩余殘渣用純水洗滌4~5次至中性.

1.3.2 純化方法 以樣品3為例,分別按照Blake法和McLaughlin法對沉積物提取液進行純化處理,并測定每一步的DOC濃度和磷含量,最后測定產(chǎn)物Ag3PO4的C、N含量. 每組處理7個平行.

1.4 數(shù)據(jù)統(tǒng)計與分析

采用Origin 9.0軟件進行圖形繪制,并用SPSS 20.0軟件對數(shù)據(jù)進行統(tǒng)計分析.

2 結(jié)果與討論

2.1 不同預處理方法的比較

2.1.1 不同預處理方法對DOC去除效果的影響 經(jīng)NaClO處理后無機磷提取液中DOC濃度減少了32%~74%;H2O2對DOC的去除效果不穩(wěn)定,經(jīng)H2O2處理后樣品1和樣品4的無機磷提取液中DOC濃度分別減少了10%和55%,但是樣品2和樣品3的DOC濃度卻分別增加了21%和70%. 對比2種預處理方法對樣品DOC的去除結(jié)果發(fā)現(xiàn),兩者差異顯著(P=0.01),且NaClO處理對DOC去除效果優(yōu)于H2O2(圖1a). 這與土壤方面的相關研究結(jié)果一致,在去除土壤有機質(zhì)時NaClO比H2O2更有效[20-23].

NaClO去除天然有機質(zhì)時,ClO-直接與腐殖酸、富里酸、芳香族化合物等發(fā)生氯化反應,生成CHCl3、氯代乙酸等[24-26]. 而且NaClO溶液呈堿性,可將部分腐殖酸和富里酸洗脫出來,從而減少無機磷提取液中DOC濃度.

H2O2穩(wěn)定性較差,可被沉積物中的Fe3+和錳氧化物催化分解[27],從而減弱對有機質(zhì)的降解作用[28]. 腐殖質(zhì)、木質(zhì)素以及一些簡單的碳水化合物與H2O2反應會生成大量小分子有機酸(如蟻酸、乙酸、乙二酸、丙二酸)、苯酚、苯甲酸[29]. 樣品2和樣品3的無機磷提取液中DOC濃度升高可能是因為H2O2將沉積物樣品中部分難降解有機質(zhì)轉(zhuǎn)化成水溶性有機酸.

2.1.2 不同預處理方法對沉積物磷形態(tài)的影響 NaClO對沉積物磷形態(tài)的影響小于H2O2. 經(jīng)NaClO處理后,無機磷提取率維持在93%~98%(圖1b),但沉積物的總磷減少14%~29%(圖2),表明NaClO對有機磷有明顯的去除效果而對無機磷幾乎無影響. 經(jīng)H2O2處理后,除樣品1總磷減少30%外,其他3種樣品的總磷與對照組幾乎沒有差異(圖2),但無機磷的提取率提高了35%~64%(圖1b),表明H2O2將有機磷轉(zhuǎn)化為無機磷.

圖1 2.5% NaClO和30% H2O2預處理后沉積物提取液中DOC濃度(a)和無機磷含量(b)的變化

比較NaClO和H2O2處理后沉積物磷賦存形態(tài)的變化可得,NaClO和H2O2處理組的Ex-P分別減少了29%~86%和86%~90%,說明Ex-P更易受H2O2破壞(P=0.039). Ex-P一般通過物理吸附作用或者磷酸鹽與沉積相膠體、礦物通過配位交換的方式吸附在沉積物表面[30],極易因環(huán)境的改變而釋放. 實驗過程中,NaClO 與沉積物反應緩和,而H2O2與沉積物反應時卻有大量氣泡冒出,激烈的氣泡涌動可能促進了Ex-P的釋放. 但由于Ex-P僅占總磷的1%~3%,因此Ex-P的變化對無機磷提取率的影響可忽略.

NaClO對CFAP和CAP影響不大,含量波動范圍分別為-9%~6%和-4%~3%. CFAP和CAP主要是CaCO3結(jié)合態(tài)的磷,穩(wěn)定性較強,不易釋放[3]. H2O2使這2種磷形態(tài)的磷含量明顯增加,其中CFAP增加了21%~65%;CAP除樣品3變化較小,僅減少了4%外,其它樣品增加了32%~182%,其原因可能是H2O2在氧化有機質(zhì)的過程中將有機磷轉(zhuǎn)化為無機磷.

與對照組相比,經(jīng)過NaClO和H2O2處理后Org-P含量分別減少了47%~69%和82%~96%. 這表明NaClO和H2O2均對Org-P有明顯影響,且H2O2處理對Org-P影響更明顯(P=0.020).

圖2 2.5% NaClO和30% H2O2預處理后沉積物磷形態(tài)的變化

2.2 兩種經(jīng)典方法的純化效率對比

Blake法和McLaughlin法分別采用2次MAGIC和1次MAGIC操作,DOC濃度分別減少了42.03%和33.98%,二者相差8.04%,表明第2次MAGIC操作對DOC的去除作用有限. 這可能與Mg(OH)2沉淀對有機質(zhì)的吸附作用有關,在2次MAGIC操作中Mg(OH)2沉淀量基本不變,故吸附的有機質(zhì)含量變化不大,減少的部分可能是被NaOH清洗掉的堿溶性有機質(zhì). 由于MAGIC操作復雜,且耗時長,因此,建議只采用1次MAGIC.

在利用特征沉淀對樣品進行純化的步驟中,Blake法與McLaughlin法分別采用了APM+MAP沉淀和CePO4沉淀,但是二者對有機質(zhì)的去除效果有顯著差異(P=0.007). 經(jīng)APM+MAP沉淀處理后,樣品中DOC濃度減少至7.74±1.13 mg/L,約為提取液DOC濃度的12.70%;而CePO4沉淀卻使DOC濃度升高至提取液的2倍. Blake法中APM和MAP沉淀分別選用5% NH4NO3和1∶20氨水進行洗滌,2種試劑可分別去除酸溶性有機質(zhì)和堿溶性有機質(zhì),從而使DOC濃度下降. McLaughlin法中DOC濃度升高的原因可能是在第一步中陽離子交換樹脂用量不足,導致金屬離子無法完全去除,在CePO4沉淀的過程中,生成金屬氫氧化物. 在洗滌沉淀的過程中,大量CH3COOK會吸附于沉淀,且固液分離時有少量CH3COOK溶液仍滯留在離心管內(nèi),導致DOC濃度升高.

圖3 Blake法和McLaughlin法對有機質(zhì)去除效率對比

表2 各步驟磷回收率比較

2.3 兩種經(jīng)典方法的純化效果比較

按照Blake法,將純化后的溶液蒸發(fā)濃縮,加入銀氨溶液后加熱使氨水揮發(fā)析出Ag3PO4,亮黃色的結(jié)晶浮于溶液表面. 按照McLaughlin法,調(diào)節(jié)pH至7~8,加入AgNO3溶液,迅速生成黃白色的Ag3PO4沉淀,沉淀隨時間慢慢變暗.

為了比較Ag3PO4純度,分別對2種方法得到的Ag3PO4進行C、N含量測定(圖4). 其中1~7和8~13分別代表用Blake法和McLaughlin法純化樣品3得到的Ag3PO4平行樣. 經(jīng)Blake法純化獲得的Ag3PO4的C、N含量分別為0.622%±0.081%和0.032%±0.006%;經(jīng)McLaughlin法純化獲得的Ag3PO4的C、N含量分別為3.37%±0.82%和0.55%±0.21%,分別是Blake法的5.4和17.2倍,說明Blake法的純化效果更好,重現(xiàn)性高,效果穩(wěn)定. 這與Tamburini等[15]的研究結(jié)果一致. Tamburini等在分析不同有機質(zhì)含量的土壤樣品的δ18OP時發(fā)現(xiàn),通過McLaughlin法純化獲得的Ag3PO4中含有有機質(zhì),且對后續(xù)的氧同位素測定有干擾;慢沉淀可以減少有機質(zhì)的混入和對δ18OP測定的影響[15].

圖4 經(jīng)Blake法和McLaughlin法獲得的Ag3PO4的C、N含量對比

圖5 湖泊沉積物磷酸鹽氧同位素前處理流程圖

3 結(jié)論

1)NaClO處理可以保證較高的無機磷提取效率,同時能有效地減少無機磷提取液中有機質(zhì)含量,且對不同形態(tài)磷的破壞較小;H2O2對有機質(zhì)的去除效果不穩(wěn)定,處理后沉積物的磷形態(tài)之間發(fā)生轉(zhuǎn)化. 因此,NaClO 法更適用于湖泊沉積物樣品的預處理.

2) Blake法對有機質(zhì)的去除率高于McLaughlin法;2種方法的磷回收率差異不大,但Blake法穩(wěn)定性較好. Blake法和McLaughlin法得到的Ag3PO4中C、N含量的對比分析表明,Blake法的純化效果更好且更穩(wěn)定.

3)結(jié)合NaClO法與Blake法的優(yōu)點,建立了一種適合湖泊沉積物的磷酸鹽氧同位素前處理方法(圖5). 首先用2.5% NaClO對沉積物樣品進行除碳預處理,然后對磷酸鹽提取液依次通過氫氧化鎂共沉淀(MAGIC)、APM+MAP沉淀、陽離子交換樹脂處理,最后生成Ag3PO4.

[1] Li Bo ed. Ecology. Beijing:Higher Education Press, 2000: 251-252. [李博. 生態(tài)學. 北京:高等教育出版社,2000: 251-252.]

[2] Fan Chengxin. Physiochemical characteristics of sedimets in Gehu Lake and simulation of its phosphorus release.JLakeSci, 1995, 7(4): 341-349. DOI:10.18307/1995.0408.[范成新. 滆湖沉積物理化特征及磷釋放模擬. 湖泊科學, 1995, 7(4): 341-349.]

[3] Song Yuanyuan, Feng Muhua, Su Zhengguangetal.Vertical distribution of chemical speciation of phosphorus in sediments from different sources of Fuxian Lake.ActaScientiaeCircumstantiae, 2013, 33(9): 2579-2589. [宋媛媛,馮慕華,蘇爭光等. 撫仙湖不同來源沉積物磷形態(tài)垂向分布特征. 環(huán)境科學學報,2013, 33(9): 2579-2589.]

[4] Davies CL, Surridge BW, Gooddy DC. Phosphate oxygen isotopes within aquatic ecosystems: Global data synthesis and future research priorities.ScienceoftheTotalEnvironment, 2014, 496: 563-575.

[5] Liang Y, Blake R. Oxygen isotope signature of Pi regeneration from organic compounds by phosphomonoesterases and photooxidation.GeochimicaetCosmochimicaActa, 2006, 70(15): 3957-3969.

[6] Mclaughlin K, Paytan A, Kendall Cetal.Phosphate oxygen isotopes as a tracer for sources and cycling of phosphate in San Francisco Bay.JournalofGeophysicalResearch, 2006, 111, G03003.

[7] Jaisi DP, Blake RE. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates.GeochimicaetCosmochimicaActa, 2010, 74(11): 3199-3212.

[8] Goldhammer T, Brunner B, Bernasconi SMetal.Phosphate oxygen isotopes: Insights into sedimentary phosphorus cycling from the Benguela upwelling system.GeochimicaetCosmochimicaActa, 2011, 75(13): 3741-3756.

[9] Stephan E. Oxygen isotope analysis of animal bone phosphate: Method refinement, influence of consolidants, and reconstruction of palaeotemperatures for holocene sites.JournalofArchaeologicalScience, 2000, 27: 523-535.

[10] O’Neil JR, Roe LJ, Reinhard Eetal. A rapid and precise method of oxygen isotope analysis of biogenic phosphate.IsraelJournalofEarthSciences, 1994, 43(3/4): 203-212.

[11] Blake RE, Chang SJ, Lepland A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.Nature, 2010, 464(7291): 1029-1032.

[12] Mclaughlin K, Silva S, Kendall Cetal. A precise method for the analysis of δ18O of dissolved inorganic phosphate in seawater.LimnologyandOceanography:Methods, 2004, 2(7): 202-212.

[13] Lu Yangyang, Zheng Zhenzhen, Yin Xijieetal. The measurement of oxygen isotope composition of dissolved inorganic phosphate in seawater.ActaGeoscienticaSinica, 2012, 33(6): 961-966. [盧陽陽,鄭珍珍,尹希杰等. 海水溶解磷酸鹽氧同位素組成的測定. 地球?qū)W報, 2012, 33(6): 961-966.]

[14] Mclaughlin K, Cade-Menun BJ, Paytan A. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources.Estuarine,CoastalandShelfScience, 2006, 70(3): 499-506.

[15] Tamburini F, Bernasconi S, Angert Aetal. A method for the analysis of the δ18O of inorganic phosphate extracted from soils with HCl.EuropeanJournalofSoilScience, 2010, 61(6): 1025-1032.

[16] Egemose S, De Vicente I, Reitzel Ketal. Changed cycling of P, N, Si, and DOC in Danish Lake Nordborg after aluminum treatment.CanadianJournalofFisheriesandAquaticSciences, 2011, 68(5): 842-856.

[17] Zhang JZ, Guo L, Fischer CJ. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi Sea and the Bering Sea: Importance of detrital apatite.AquaticGeochemistry, 2010, 16(3): 353-371.

[18] Editorial Board of Water and Wastewater Monitoring and Analysis Methods,Ministry of Environmental Protection of the People’s Republic of China ed. Water and wastewater monitoring and analysis methods: 4th edition. Beijing: China Environmental Science Press, 2002. [國家環(huán)境保護總局《水和廢水監(jiān)測分析方法》編委會. 水和廢水監(jiān)測分析方法:第4版. 北京: 中國環(huán)境科學出版社, 2002.]

[19] Blake RE, Chang SJ, Lepland A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.Nature, 2010, 464(7291): 1029-1032.

[20] Lavkulich LM, Wiens JH. Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents.SoilScienceSocietyofAmericaJournal,1970, 34: 755-758.

[21] Mikutta R,Kleber M, Kaiser Ketal. Review: Organic matter removal from soil using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate.SoilScienceSocietyofAmericaJournal, 2005, 69:121-135.

[22] Siregar A, Kleber M, Mikutta Retal.Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents.EuropeanJournalofSoilScience, 2005, 56(4): 481-490.

[23] Anderson J. An improved pretreatment for mineralogical analysis of samples containing organic matter.ClaysandClayMinerals, 1963, 10(3): 380-388.

[24] Jimenez MCS, Dominguez AP, Silverio JMC. Reaction kinetics of humic acid with sodium hypochlorite.WaterResearch, 1993, 27(5): 815-820.

[25] Li CW, Benjamin MM, Korshin GV. Use of UV spectroscopy to characterize the reaction between NOM and free chlorine.EnvironmentalScience&Technology, 2000, 34(12): 2570-2575.

[26] Pomes ML, Larive CK, Thurman EMetal. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas.EnvironmentalScience&Technology, 2000, 34(20): 4278-4286.

[27] Strukul G. Catalytic oxidations with hydrogen peroxide as oxidant. Springer Science & Business Media. Dordrecht: Kluwer Academic Publisher, 1992: 97-98.

[28] Wang GS, Liao CH, Wu FJ. Photodegradation of humic acids in the presence of hydrogen peroxide.Chemosphere, 2001, 42(4): 379-387.

[29] Chakrabartty S, Kretschmer H, Cherwonka S. Hypohalite oxidation of humic acids.SoilScience, 1974, 117(6): 318-322.

[30] Yin Ran, Wang Fushun, Mei Hangyuanetal.Distribution of phosphorus forms in the sediments of cascade reservoirs with different trophic states in Wujiang catchment.ChineseJournalofEcology, 2010, 29(1): 91-97.[尹然, 汪福順, 梅航遠等. 烏江流域不同營養(yǎng)水平的梯級水庫沉積物中磷形態(tài)特征. 生態(tài)學雜志, 2010, 29(1): 91-97.]

[31] Pan B, Wu J, Pan Betal. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.WaterResearch, 2009, 43(17): 4421-4429.

Comparison of pretreatment methods of oxygen isotope composition of phosphate in lake sediments

Zhang Xiumei1,2,3,Wang Yarui1,2, Ma Shuzhan1,4, Chen Xiangchao1,2& Feng Muhua1**

(1:StateKeyLaboratoryofLakeScienceandEnvironment,NanjingInstituteofGeographyandLimnology,ChineseAcademyofSciences,Nanjing210008,P.R.China)(2:UniversityofChineseAcademyofSciences,Beijing100049,P.R.China)(3:Sino-DanishCenterforEducationandResearch,Beijing100190,P.R.China)(4:SchoolofEnvironmentalScienceandEngineering,SuzhouUniversityofScienceandTechnology,Suzhou215011,P.R.China)

Oxygen isotope of phosphate (δ18OP) was a very effective proxy for tracing sources. Due to the complicated composition of lake sediments, samples must be treated by carbon elimination and purified before the δ18OPmeasurement. In order to establish a suitable pretreatment method for δ18OPof lake sediments, this study compared several widely-used pretreatment methods, including organic carbon elimination by NaClO treatment and H2O2treatment, purification by Blake method and McLaughlin method. The results showed: (1) NaClO kept high inorganic phosphate extract ratios, and removed organic matter efficiently with less impacts on different phosphate species. The organic removal efficiency by H2O2was not stable while the phosphate species changed after treatments and inorganic phosphate concentration increased significantly. (2)Ammonium phosphomolybdate(APM)+ ammonium phosphate(MAP)and CePO4was used by Blake method and McLaughlin method,respectively. Blake method had better performance on the purification of lake sediments samples than McLaughlin method, and a higher organic matter removal rate than McLaughlin method with stable phosphate throughput. (3) The Ag3PO4produced by the Blake method had lower C, N contents and better repeatability than the McLaughlin method. The advantages of both the NaClO treatment and the Blake method were made full use to establish an improved δ18OPpretreatment method for lake sediments with modified procedures. It is recommended to use 2.5% NaClO to remove organic matter before phosphate extraction, and then purify the phosphate extractions through MAGIC, APM+MAP, and cation resin treatment, in turn.

Sediments; oxygen isotope of phosphate; pretreatment method; organic carbon elimination; inorganic phosphate

*國家自然科學基金項目(41471075,41171366)資助.2016-04-19收稿;2016-08-11收修改稿. 張秀梅(1989~),女,碩士研究生;E-mail: zhxm_66@yeah.net.

J.LakeSci.(湖泊科學), 2017, 29(2): 512-520

DOI 10.18307/2017.0227

?2017 byJournalofLakeSciences

**通信作者;E-mail: mhfeng@niglas.ac.cn.

猜你喜歡
磷酸鹽提取液湖泊
火星生命探測中一種潛在的生物標志物磷酸鹽
你相信嗎?湖泊也可以“生死輪回”
亞麻木脂素提取液滲透模型建立與驗證
A close look at Nauru’s ecosystem
穿山龍?zhí)崛∫翰煌兓椒ǖ谋容^
山香圓葉提取液純化工藝的優(yōu)化
奇異的湖泊
HBV-DNA提取液I的配制和應用評價
不同磷酸鹽對干酪的pH值和粘彈性影響差異顯著