徐瑞新++王潔++任國(guó)勇++盧一鵬++王昊++魯玲++廖婷婷++朱凌清++黃磊++王俊
摘要:綜述了植物脂肪酸合成、?;d體蛋白在脂肪酸合成中的作用、脂肪酸在基礎(chǔ)抗性和生物固氮中的作用,旨在為植物遺傳育種及脂肪酸合成及功能相關(guān)分子機(jī)制研究提供參考。
關(guān)鍵詞:?;d體蛋白;脂肪酸合成;基礎(chǔ)抗性;根瘤固氮
中圖分類號(hào):S184 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2016)22-5729-06
DOI:10.14088/j.cnki.issn0439-8114.2016.22.001
Research Progress on Plant Fatty Acid Synthesis and Its Role
in Basic Resistance and Nodulation
XU Rui-xin1,WANG Jie1,REN Guo-yong1,LU Yi-peng1,WANG Hao1,LU Ling1,
LIAO Ting-ting1,ZHU Lin-qing1,HUANG Lei1,WANG Jun1,2
(1.College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China;
2. Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, Hubei, China)
Abstract: This article reviewed recent progresses on fatty acid synthesis process, role of acyl carrier protein in fatty acid synthesis, role of fatty acid in basic resistance and nodulation, and aimed to provide reference for plant genetic breeding and molecular mechanism of fatty acid synthesis and function.
Key words: acyl carrier protein; fatty acid synthesis; basic resistance; nodule nitrogen fixation
脂類包括一大類天然分子,包括脂肪、蠟質(zhì)、固醇、脂溶性維生素(如維生素A、維生素D、維生素E和維生素K)、單甘酯、雙甘酯、甘油三酯、磷脂等。脂類在植物生長(zhǎng)發(fā)育過程中起重要作用,主要生理功能包括能量貯藏、細(xì)胞膜結(jié)構(gòu)成分、信號(hào)分子等[1,2]。脂肪酸是脂類物質(zhì)的重要組成部分,其合成過程包含一系列酶學(xué)反應(yīng),是脂肪合成及調(diào)控的關(guān)鍵。?;d體蛋白(Acyl carrier protein,ACP)是一類小分子酸性蛋白,廣泛存在于所有的生物體當(dāng)中,在脂類(lipid)合成、聚酮化合物(polyketide)合成、非核糖體肽(Non-ribosomal peptide)合成中扮演重要角色,負(fù)責(zé)傳遞酰基中間體。?;d體蛋白(ACP)參與了上述三類物質(zhì)的合成,但植物當(dāng)中ACP主要參與了脂肪酸的合成。
脂肪酸在生物體內(nèi)的主要功能為能量貯存,其氧化(α,β,ω等)為生物體提供大量乙酰輔酶A,作為中間產(chǎn)物通過三羧酸循環(huán)為機(jī)體提供必須能量。除此之外,脂肪酸還作為生物膜重要組成部分和信號(hào)分子參與了很多生物學(xué)過程,如植物基礎(chǔ)防御和生物固氮等。
本研究對(duì)植物脂肪酸合成過程、酰基載體蛋白在脂肪酸合成中的作用、脂肪酸與植物防御、生物固氮的關(guān)系等方面內(nèi)容進(jìn)行了綜述,并對(duì)今后植物脂肪酸參與基礎(chǔ)抗性及根瘤固氮相關(guān)研究進(jìn)行了展望。
1 植物脂肪酸合成過程
1.1 脂肪酸合成酶系統(tǒng)的分類
脂肪酸合成酶(FAS)可以分為兩類:類型Ⅰ和類型Ⅱ(表1)。兩種類型的主要區(qū)別在于編碼脂肪酸合成的基因和蛋白的組織結(jié)構(gòu),在類型Ⅱ中,蛋白均為相互獨(dú)立的多肽,均編碼自一系列獨(dú)立的基因[3]。該系統(tǒng)多數(shù)存在于細(xì)菌和專門的真核細(xì)胞器,如植物中的質(zhì)體和線粒體中。相反,類型Ⅰ脂肪酸合成酶系統(tǒng)則是一個(gè)大的多酶復(fù)合體,由一條或兩條多肽鏈組成,包含了所有脂肪酸合成所需的蛋白[4]。類型Ⅰ脂肪酸合成酶系統(tǒng)可以進(jìn)一步被細(xì)分為兩個(gè)亞組,類型Ⅰa和類型Ⅰb。類型Ⅰa存在于真菌及少數(shù)細(xì)菌物種中,由α6β6或者α6多聚體蛋白組成。類型Ⅰb存在于哺乳動(dòng)物中,由α2二聚體組成,每一個(gè)單體均含有脂肪酸合成的所有蛋白[5]。
1.2 從頭起始合成脂肪酸
從頭起始合成脂肪酸通過一系列保守的反應(yīng)來實(shí)現(xiàn),雖然不同生物體的脂肪酸合成系統(tǒng)結(jié)構(gòu)上區(qū)別很大,但是每一個(gè)獨(dú)立的酶學(xué)反應(yīng)步驟本質(zhì)上都是一樣的。在接受酰基鏈之前,ACP必須先經(jīng)過ACP合成酶的活化,該步驟將磷酸泛酰巰基乙胺基團(tuán)從輔酶A(CoA)上轉(zhuǎn)移到ACP中保守的天冬氨酸-絲氨酸-亮氨酸基序(DSL motif)的絲氨酸殘基上[6]。磷酸泛酰巰基乙胺基團(tuán)一端與ACP結(jié)合,另一端的-SH與酰基結(jié)合,形成硫酯鍵,將酯?;鶑囊粋€(gè)酶反應(yīng)轉(zhuǎn)到另一個(gè)酶反應(yīng)。植物?;d體蛋白由核基因編碼,但是在藻類中(Cylindrotheca sp. Strain N1)依靠質(zhì)體基因編碼[7]。
脂肪酸合成起始時(shí),乙酰-CoA在乙酰CoA:ACP轉(zhuǎn)移酶(Acetyl-CoA-ACP-transferase)的作用下生成乙酰合酶,乙酰CoA羧化酶包含4個(gè)蛋白,由accABCD編碼,同時(shí)需要生物素輔因子和ATP共同作用[8]。緊接著乙酰合酶與ACP在丙二酸單酰CoA-ACP轉(zhuǎn)酰酶作用下生成丙+-二酸單酰ACP。隨后乙酰合酶與丙二酸單酰ACP在β-酮酰-ACP合酶作用下發(fā)生縮合反應(yīng),生成乙酰乙酰ACP。接下來乙酰乙酰ACP以NADPH作為還原劑,在β-酮酰-ACP還原酶的作用下被還原成D-α,β-羥丁酰ACP。然后D-α,β-羥丁酰ACP在β-羥酰-ACP脫水酶的催化下脫去一個(gè)水分子生成α,β-反式-丁烯酰-ACP。最后α,β-反式-丁烯酰-ACP同樣以NADPH作為還原劑,在烯酰-ACP還原酶作用下生成丁酰-ACP。丁酰ACP為第一輪循環(huán)的最后產(chǎn)物,隨后進(jìn)入脂肪酸合成的第二輪循環(huán),如此循環(huán)往復(fù),每一次循環(huán)增加兩個(gè)碳原子單元,直到碳原子數(shù)目達(dá)到16或18個(gè)為止(圖1)[9]。
最近的研究發(fā)現(xiàn)了完整ACP(Holo-ACP)被證明具有自?;蛯⑵渌暾鸄CP?;墓δ躘10,11]。該功能最初是在PKS系統(tǒng)中被報(bào)道,隨后在FAS系統(tǒng)中也發(fā)現(xiàn)完整ACP具有自?;钚訹10-13]。但是到目前為止,尚不清楚該活性的生理功能[11]。
1.3 脂肪酸合成后修飾
脂肪酸合成到C16和C18時(shí),軟脂酰-ACP和硬脂酰-ACP可以直接被Kornberg-Pricer通路中?;D(zhuǎn)移酶催化生成磷脂。軟脂酰-ACP和硬脂酰-ACP另外一種可能的命運(yùn)是被硫酯酶水解,脫脂化的脂肪酸可以被運(yùn)輸出質(zhì)體,在內(nèi)質(zhì)網(wǎng)中進(jìn)行進(jìn)一步的修飾,或者參與位于質(zhì)體外空間的復(fù)雜的脂類合成。在質(zhì)體外的修飾通常被稱作真核途徑(eukaryotic pathway),而在質(zhì)體內(nèi)進(jìn)行的被稱為原核途徑(prokaryotic pathway)。在絕大多數(shù)高等植物中,磷脂酰甘油是原核途徑的惟一產(chǎn)物,其他的類囊體脂質(zhì)則由真核途徑完成。但在一些植物,如菠菜和擬南芥中,類囊體脂質(zhì)則同時(shí)由原核和真核途徑完成[14]。
根據(jù)雙鍵的個(gè)數(shù),不飽和脂肪酸可被分為單不飽和脂肪酸和多不飽和脂肪酸。根據(jù)雙鍵的位置及其功能,不飽和脂肪酸又可以被分為ω-3和ω-6系列。脂肪酸中雙鍵的引入依賴于去飽和酶的活性。在植物中,去飽和酶通過有氧機(jī)制完成,氧被4個(gè)H+還原,其中兩個(gè)來自于脂肪酸底物,另外兩個(gè)來自于還原劑。
編碼去飽和酶的基因?yàn)镕AD(Fatty Acid Desaturase)或者fad(表2)。脂肪酸去飽和酶分為兩大類:一類負(fù)責(zé)脂肪酸形成甘油脂之前引入第一個(gè)雙鍵,另一類負(fù)責(zé)在形成甘油脂之后對(duì)脂肪酸進(jìn)一步去飽和。前者為18:0-ACP去飽和酶,為可溶性酶。后者包括7個(gè)去飽和酶,分別是FAD2、FAD3、FAD4、FAD5、FAD6、FAD7和FAD8,均為膜整合蛋白。其中,F(xiàn)AD2和FAD3定位于內(nèi)質(zhì)網(wǎng)中,余下的均定位于葉綠體中(表2)[15]。
2 ?;d體蛋白
2.1 植物ACP同工酶的分化
通常,在多細(xì)胞植物中存在多個(gè)不同ACP同工酶。例如在單子葉植物燕麥(Arena sativa)和大麥(Hordeum vulgare)中,雙子葉植物擬南芥(Arabidopsis thaliana)、萼距花屬Wrightii(Cuphea wrightii)、甘藍(lán)型油菜(Brassica napus)、菠菜(Spinacia oleraceae L)、大豆(Glycine max)中,低等維管植物包括石松卷柏(Selaginella krausseriana),裸子植物麻黃(Ephedra sp.)、雙子鐵(Dioon edule),蕨類植物(Davallia feejensis)、萍屬(Marsilea sp.)中,以及現(xiàn)存最原始的維管植物松葉蕨(Psilotum nudum)中。甚至包括非維管植物,地錢(Lunularia sp.;Marchantia sp.)和苔蘚(Polytrichum sp.)類也都存在多個(gè)ACP同工酶成員。相反,在單細(xì)胞植物中,如萊茵衣藻(Chlamydomonas reinhardtii)、杜氏藻(Dunaliella tertiolecta)、集胞藻屬(Synechocystis strain 6803)等,只有一個(gè)ACP同工酶成員[16]。由此可見,植物中可能ACP同工酶的數(shù)目與組織復(fù)雜度有關(guān)。而在細(xì)菌中ACP基因數(shù)目差異較大,在E.coli中只有一個(gè)ACP,而在稍復(fù)雜的根瘤菌中,則存在多個(gè)ACP[17]。
所有的高等植物中,均具有多個(gè)ACP同工酶[18]。到目前為止,在擬南芥中共發(fā)現(xiàn)了3個(gè)ACP定位于線粒體和5個(gè)ACP定位于質(zhì)體的ACP[19]。類似的情況也出現(xiàn)在大豆(Glycine max)[20,21]、大麥(Hordeumvulgare)[22,23]、蓖麻castor (Ricinuscommunis)、雪茄花(Cuphea lanceolata)[24]和油菜(Brassica napus)[25]中。但是不同ACP表達(dá)模式差別很大,呈現(xiàn)組織特異性或者組成型表達(dá)模式[20]。在菠菜(Spinach)中,ACPI存在于深色葉片當(dāng)中,而ACPII僅能在菠菜種子和根中被檢測(cè)到[20]。除此之外,不同的ACP對(duì)環(huán)境改變的反應(yīng)也不一樣。例如,擬南芥ACP4受光誘導(dǎo),而ACP2和ACP3均對(duì)光不敏感[18]。于是人們提出假設(shè):不同組織或物種中脂肪酸合成復(fù)合體親睞不同的ACP,該假設(shè)得到越來越多的證據(jù)的支持。將來自雪茄花的ACP-1或者ACP-2加入到脂肪酸合成提取物中,導(dǎo)致中短鏈脂肪酸與長(zhǎng)鏈脂肪酸的比值增加。而在油菜脂肪酸合成體外實(shí)驗(yàn)中,僅有ACP-2能提高中短鏈脂肪酸與長(zhǎng)鏈脂肪酸的比值[26]。第一個(gè)體內(nèi)實(shí)驗(yàn)的證據(jù)來自Branen的報(bào)道,在擬南芥葉片中過表達(dá)主要存在于種子中的ACP-1能顯著提高葉片18∶3和降低16∶3的脂肪酸含量。
2.2 植物ACP的亞細(xì)胞區(qū)隔
在植物當(dāng)中,ACP被定位于質(zhì)體和線粒體。最初,在菠菜葉片原生質(zhì)體中,ACP被發(fā)現(xiàn)定位于葉綠體中[27]。1986年,在粗糙脈孢菌(Neurospora crassa,又稱紅面包菌)線粒體中分離出一種與E.coli中ACP具有較高相似度的蛋白[28],并被證實(shí)為ACP[29]。隨后,在土豆、豌豆葉片和酵母線粒體中也發(fā)現(xiàn)ACP的存在[30]。研究發(fā)現(xiàn),絕大部分脂肪酸(C16∶0和C18∶0)合成發(fā)生在葉綠體中,只有少量有限的脂肪酸合成發(fā)生在線粒體中[31,32]。線粒體中主要合成辛酰-ACP、十六酰-ACP和十八酰-ACP,而辛酰-ACP主要用于合成硫辛酸(Lipoic acid)[33]。在擬南芥中,有5個(gè)位于葉綠體的ACP和3個(gè)位于線粒體的ACP[19]。
3 脂肪酸與植物防御
脂肪酸是所有生物中重要的能量貯存形式,也是膜脂的重要組成部分。傳統(tǒng)上,脂肪酸在植物防御中的作用是以一種被動(dòng)方式進(jìn)行的,扮演的角色是表皮組分或者植物激素(茉莉酸)的生物合成前體。隨著研究的深入,發(fā)現(xiàn)越來越多的脂肪酸或者其降解產(chǎn)物直接誘導(dǎo)了各種植物防御反應(yīng)(表1)。研究表明,脂肪酸及其衍生物對(duì)植物基礎(chǔ)免疫非常重要。C16脂肪酸水平影響植物對(duì)真菌和細(xì)菌的基礎(chǔ)抗性。C18∶1含量的降低能提高植物對(duì)病蟲害的抗性。據(jù)報(bào)道,擬南芥質(zhì)體中C18∶1水平受甘油-3-磷酸酰基化調(diào)控,甘油三磷酸與C18∶1之間的平衡對(duì)水楊酸和茉莉酸介導(dǎo)的信號(hào)通路至關(guān)重要[34]。同時(shí),C18∶1水平的降低還能通過誘導(dǎo)多種不同R基因,從而表現(xiàn)對(duì)活體營(yíng)養(yǎng)病原體的廣譜抗性[35]。C18∶2和C18∶3對(duì)于真菌的基礎(chǔ)抗性非常重要。擬南芥fad7fad8突變體中,缺乏三烯脂肪酸(C18∶3),當(dāng)植株被丁香假單胞菌無毒菌株侵染時(shí),活性氧中間體(ROI)生成量降低,從而提高了對(duì)真菌的易感性[36]。脂肪酸代謝突變體增強(qiáng)細(xì)胞表皮滲透性,導(dǎo)致對(duì)細(xì)菌的易感性提高。但是對(duì)真菌侵染時(shí)的反應(yīng)不一,對(duì)某些真菌表現(xiàn)出抗性提高,而對(duì)另一些真菌則表現(xiàn)易感性上升,這些結(jié)果暗示了存在另一條活躍但尚未被了解的植物表皮抗性信號(hào)通路。脂氧素(Oxylipin)是脂肪酸分解產(chǎn)物,參與了植物防御反應(yīng)。據(jù)報(bào)道,茉莉酸、茉莉酸甲酯、植物抗毒素、C18∶2氫過氧化物、酮二烯脂肪酸等均參與了植物的防御反應(yīng)(表3)。
4 脂肪酸與根瘤固氮
豆科作物結(jié)瘤固氮是一個(gè)復(fù)雜的過程,既包含了豆科植物對(duì)根瘤菌的抗性,也包含了根瘤菌突破植物抗性最終形成共生的過程。據(jù)報(bào)道,為了滿足根瘤生長(zhǎng)的需要,根瘤形成過程中膜的生物合成提高了35倍[37]。而生物膜主要是由蛋白、糖類和磷脂雙分子層組成。植物通過脂肪酸的合成來滿足膜生物合成的需要。研究表明,在大豆根瘤菌侵染過程中有6種脂肪酸含量發(fā)生顯著變化[38]。根毛中十八碳烯酸的含量在根瘤菌侵染后12~48小時(shí)內(nèi)顯著上調(diào)。α-桐酸、α-亞麻酸、二十四烷酸在根瘤菌侵染后48小時(shí)時(shí)積累上調(diào)。這些脂肪酸既包括飽和脂肪酸,也包括不飽和脂肪酸,但其影響機(jī)制還不明確。
亞麻酸是植物膜上最豐富的脂肪酸非飽和脂肪酸,而膜上脂肪酸的釋放影響膜的流動(dòng)性,在植物對(duì)生物和非生物脅迫的抗性中起到一定的作用[39]。與此同時(shí),亞麻酸在根瘤菌侵染后的大量積累,也可能參與改變膜流動(dòng)性以助于細(xì)菌侵染。而游離α-亞麻酸具有抗真菌的活性。馬鈴薯葉片中游離α-亞麻酸含量受丁香假單胞菌侵染時(shí)上調(diào)[40]。在歐芹當(dāng)中,當(dāng)用真菌誘導(dǎo)劑誘導(dǎo)時(shí),游離α-亞麻酸含量提高[41]。這些現(xiàn)象都表明游離α-亞麻酸的積累可能是植物抗性反應(yīng)的一個(gè)信號(hào)。到目前為止,α-亞麻酸在結(jié)瘤過程中究竟是行使促進(jìn)還是抑制作用還不得而知。除此之外,油酸作為十八碳烯酸的一種,在蒺藜苜蓿根組織遭到菌根真菌的侵染時(shí)顯著積累[42,43]。研究發(fā)現(xiàn),通過發(fā)根系統(tǒng)瞬時(shí)下調(diào)大豆GmACP在根中的表達(dá)水平,能顯著降低大豆根中飽和脂肪酸:軟脂酸(C16∶0)和硬脂酸(C18∶0)含量,同時(shí)結(jié)瘤效率受到顯著影響。該研究首次在實(shí)驗(yàn)中證實(shí)脂肪酸代謝在根瘤固氮中的作用,但其具體機(jī)制尚不清楚,有待進(jìn)一步深入研究。
5 結(jié)論
綜上所述,脂肪酸在植物生長(zhǎng)發(fā)育和基礎(chǔ)抗性中具有重要作用,尤其參與了生物結(jié)瘤固氮相關(guān)過程。然而,抗性防御(對(duì)抗)和生物結(jié)瘤固氮(共生)在某種程度上是“對(duì)立”的,生物體如何通過脂肪酸種類和含量差異來協(xié)調(diào)和轉(zhuǎn)換這種“對(duì)立”關(guān)系,是今后研究的重要方向。
參考文獻(xiàn):
[1] FAHY E,SUBRAMANIAM S, MURPHY R C, et al. Update of the LIPID MAPS comprehensive classification system for lipids[J].Journal of Lipid Research,2009,50 Suppl:S9-S14.
[2] SUBRAMANIAM S,F(xiàn)AHY E,GUPTA S,et al. Bioinformatics and systems biology of the lipidome[J].Chemical Reviews,2011, 111(10):6452-6490.
[3] WHITE S W,ZHENG J,ZHANG Y M,et al.The structural biology of type II fatty acid biosynthesis[J].Annual Review of Biochemistry,2005,74:791-831.
[4] LEIBUNDGUT M,MAIER T,JENNI S,et al. The multienzyme architecture of eukaryotic fattyacid synthases[J].Current Opinion in Structural Biology,2008,18(6):714-725.
[5] SCHWEIZER E,HOFMANN J.Microbial type I fatty acid synthases(FAS):Major players in a network of cellular FAS systems[J].Microbiology and Molecular Biology Reviews,2004,68(3):501-517.
[6] THOMAS J,CRONAN J E.The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli:Genetic and enzymological characterization[J].The Journal of Biological Chemistry,2005, 280(41):34675-34683.
[7] HWANG S R,TABITA F R.Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain N1[J]. The Journal of Biological Chemistry,1991,266(21):13492-13494.
[8] JR CJ, WALDROP G L. Multi-subunit acetyl-CoA carboxylases[J]. Progress in Lipid Research,2002,41(5):407-435.
[9] GEIGER O, L?譫PEZ-LARA I M. Rhizobial acyl carrier proteins and their roles in the formationof bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts[J].FEMS Microbiology Letters,2002,208(2):153-162.
[10] MISRA A, SHARMA S K, SUROLIA N, et al. Self-acylation properties of type II fatty acid biosynthesis acyl carrier protein[J]. Chemistry & Biology,2007,14(7):775-783.
[11] MISRA A, SUROLIA N, SUROLIA A. Catalysis and mechanism of malonyl transferase activity in type II fatty acid biosynthesis acyl carrier proteins[J].Molecular Bio Systems,2009,5(6):651-659.
[12] ARTHUR C J, SZAFRANSKA A, EVANS S E, et al. Self-malonylation is an intrinsic property of a chemically synthesized type II polyketide synthase acyl carrier protein[J].Biochemistry,2005,44(46):15414-15421.
[13] ARTHUR C J,SZAFRANSKA A E,LONG J,et al. The malonyl transferase activity of type II polyketide synthase acyl carrier proteins[J].Chemistry & Biology,2006,13(6):587-596.
[14] WALLIS J G,BROWSE J.Mutants of Arabidopsis reveal many roles for membrane lipids[J].Progress in Lipid Research,2002,41(3):254-278.
[15] OHLROGGE J, BROWSE J. Lipid biosynthesis[J].The Plant Cell,1995,7(7):957-970.
[16] BATTEY J F, OHLROGGE J B. Evolutionary and tissue-specific control of expression of multipleacyl-carrier protein isoforms in plants and bacteria[J].Planta,1990,180(3):352-360.
[17] GEIGER O,L?魷PEZ-LARA I M. Rhizobial acyl carrier proteins and their roles in the formationof bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts[J].FEMS Microbiology Letters,2002,208(2):153-162.
[18] BONAVENTURE G, OHLROGGE J B. Differential regulation of mRNA levels of acyl carrier protein isoforms in Arabidopsis[J].Plant Physiology,2002,128(1):223-235.
[19] MURPHY D J. Plant lipids: Biology, utilisation and manipulation[M]. Oxford:Blackwell Publishing,2005.
[20] OHLROGGE J B,KUO T M. Plants have isoforms for acyl carrier protein that are expressed differently in different tissues[J].Journal of Biological Chemistry,1985,260(13):8032-8037.
[21] HOEJ P B,SVENDSEN I.Barley chloroplasts contain two acyl carrier proteins coded for by different genes[J].Carlsberg Research Communications,1984,49(4):483-492.
[22] HANSEN L,KAUPPINEN S.Barley acyl carrier protein II:nucleotide sequence of cDNA clones and chromosomal location of the Acl2 gene[J].Plant Physiology,1991,91:472-474.
[23] KOPKA J,ROBERS M,SCHUCH R,et al.Acyl carrier proteins from developing seeds of Cuphea lanceolata Ait[J].Planta,1993,191(1):102-111.
[24] SAFFORD R, WINDUST J H, LUCAS C, et al. Plastid-localised seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family[J].European Journal of Biochemistry,1988,174(2):287-295.
[25] SCH?譈TT B S,BRUMMEL M,SCHUCH R,et al. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids[J]. Planta,1998,205(2):263-268.
[26] OHLROGGE J B,KUHN D N,STUMPF P K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea[J].Proceedings of the National Academy of Sciences, 1979,76(3):1194-1198.
[27] LAKIN-THOMAS P L,BRODY S.Neurospora crassa mitochondria contains two forms of a 4'-phosphopantetheine-modified protein[J].The Journal of Biological Chemistry,1986,261(11):4785-4788.
[28] BRODY S,MIKOLAJCZYK S.Neurospora mitochondria contain an acyl-carrier protein[J].European Journal of Biochemistry,1988,173(2):353-359.
[29] CHUMAN L, BRODY S. Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms[J]. European Journal of Biochemistry,1989,184(3):643-649.
[30] WADA H, SHINTANI D, OHLROGGE J. Why do mitochondria synthesize fatty acids Evidence for involvement in lipoic acid production[J].Proceedings of the National Academy of Sciences,1997,94:1591-1596.
[31] HILTUNEN J K, SCHONAUER M S, AUTIO K J, et al. Mitochondrial fatty acid synthesis Type II: More than just fatty acids[J].Journal of Biological Chemistry,2009,284(14): 9011-9015.
[32] GUEGUEN V,MACHEREL D,JAQUINOD M,et al.Fatty acid and lipoic acid biosynthesis in higher plant mitochondria[J].The Journal of Biological Chemistry,2000,275(7):5016-5025.
[33] KACHROO A,VENUGOPAL S C, LAPCHYK L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2004,101(14):5152-5157.
[34] CHANDRA-SHEKARA A C,VENUGOPAL S C,BARMAN S R, et al. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis[J].Proceedings of the National Academy of Sciences,2007,104(17):7277-7282.
[35] YAENO T,MATSUDA O, IBA K. Role of chloroplast trienoic fatty acids in plant disease defense responses[J]. The Plant Journal,2004,40(6):931-941.
[36] ROTH L,STACEY G. Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains[J]. European Journal of Cell Biology,1989,49(1):24-32.
[37] BRECHENMACHER L,LEI Z, LIBAULT M, et al. Soybean metabolites regulated in root hairs inresponse to the symbiotic bacterium Bradyrhizobium japonicum[J].Plant Physiology,2010, 153(4):1808-1822.
[38] UPCHURCH R G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress[J].Biotechnology Letters,2008,30(6):967-977.
[39] GOBEL C,F(xiàn)EUSSNER I,HAMBERG M,et al. Oxylipin profiling in pathogen-infected potato leaves[J].Biochim Biophys Acta,2002,1584(1):55-64.
[40] KIRSCH C,TAKAMIYA-WIK M, REINOLD S, et al. Rapid, transient, and highly localized induction of plastidial omega-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum[J].Proceedings of the National Academy of Sciences,1997,94(5):2079-2084.
[41] STUMPE M,CARSJENS J G,STENZEL I,et al.Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula[J].Phytochemistry,2005,66(7):781-791.
[42] SCHLIEMANN W,AMMER C, STRACK D. Metabolite profiling of mycorrhizal roots of Medicago truncatula[J].Phytochemistry,2008,69(1):112-146.
[43] XUE H Q, UPCHURCH R G, KWANYUEN P. Ergosterol as a Quantifiable biomass marker for Diaporthe haseolorum andCercospora kikuchi[J].Plant Disease,2006,90(11):1395-1398.
[44] KACHROO A, FU D Q, HAVENS W, et al. An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean[J]. Molecular Plant-Microbe Interaction,2008,21(5):564-575.
[45] MADI L,WANG X,KOBILER I,et al. Stress on avocado fruits regulates Δ9-stearoyl ACPdesaturase expression, fatty acid composition,antifungal diene level and resistance to Colletotrichum gleosporiodes attack[J].Physiological and Molecular Plant Pathology,2003,62:277-283.
[46] MARTIN J M,WILHELM B,EVA S,et al. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid[J]. Proceedings of the National Academy of Sciences,1993,90:7490-7494.
[47] CHRISTOPH K,MONICA T,SUSANNE R,et al. Rapid, transient, and highly localized induction of plastidial ω-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum[J]. Proceedings of the National Academy of Sciences,1997,94:2079-2084.
[48] DITTRICH H, KUTCHAN T M, ZENK M H. The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures[J]. FEBS Letters, 1992,309(1):33-36.
[49] MICHELE M,ROBERT A C,ERIN B,et al. Jasmonate is essential for insect defense in Arabidopsis[J]. Proceedings of the National Academy of Sciences,1997,94:5473-5477.
[50] OHTA H,SHIDA K,PENG Y L,et al.A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea[J].Plant Physiology,1991,97:94-98.
[51] YARA A,YAENO T,MONTILLET J L,et al. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid[J]. Biochemical biophysical research communications,2008,370(2):344-347.
[52] VOLLENWEIDER S,WEBER H,STOLZ S,et al. Fatty acid ketodienes and fatty acid ketotrienes:Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves[J]. The Plant Journal,2000,24(4):467-476.