徐 艷,郭 倩,朱益波,王立梅,齊 斌,*
(1.蘇州大學(xué)基礎(chǔ)醫(yī)學(xué)與生物科學(xué)學(xué)院,江蘇 蘇州 215000;2.常熟理工學(xué)院生物與食品工程學(xué)院,蘇州市食品生物技術(shù)重點實驗室,發(fā)酵工程技術(shù)研究中心,江蘇 常熟 215500)
苯基乳酸耐受性大腸桿菌的篩選及其高產(chǎn)苯基乳酸特性
徐 艷1,2,郭 倩2,朱益波2,王立梅2,齊 斌2,*
(1.蘇州大學(xué)基礎(chǔ)醫(yī)學(xué)與生物科學(xué)學(xué)院,江蘇 蘇州 215000;2.常熟理工學(xué)院生物與食品工程學(xué)院,蘇州市食品生物技術(shù)重點實驗室,發(fā)酵工程技術(shù)研究中心,江蘇 常熟 215500)
苯基乳酸(phenyllactic acid,PLA)耐受性菌株的篩選能夠有效降低PLA對生產(chǎn)菌株的抑制作用,有利于PLA產(chǎn)量的提高。通過紫外誘變的方法篩選耐受PLA的菌株,并應(yīng)用于PLA的合成。以Escherichia coli BL21(DE3)作為原始出發(fā)菌株,通過紫外誘變的方法誘變篩選獲得一株耐受PLA突變菌株E. coli Z2016(CCTCC保藏編號M2016332)。以E. coli Z2016為宿主菌,分別構(gòu)建了重組菌株E. coli Z2016 pET-28a-ldhY52V和E. coli Z2016 pET-28a-ldhL用于D-和L-苯基乳酸的合成。結(jié)果表明:E. coli Z2016在含有1 g/L D-PLA的培養(yǎng)基中能夠正常生長;重組突變菌株E. coli Z2016 pET-28a-ldhY52V和E. coli Z2016 pET-28a-ldhL全細胞合成D-PLA和L-PLA產(chǎn)量分別為6.75、6.97 g/(L·h),較重組出發(fā)菌株分別提高了14.02%和8.95%;分批補加底物反應(yīng)120 min,E. coli Z2016 pET-28aldhY52V得到的D-PLA為20.02 g/L,較對照組提高22.17%,轉(zhuǎn)化率為90.07%;E. coli Z2016 pET-28a-ldhL得到的L-PLA產(chǎn)量為20.87 g/L,較對照組提高16.85%,最終轉(zhuǎn)化率為91.24%。篩選耐受性菌株是提高PLA產(chǎn)量的有效途徑。
紫外誘變;苯基乳酸;苯基乳酸耐受菌株;大腸桿菌;全細胞轉(zhuǎn)化
苯基乳酸(phenyllactic acid,PLA)是存在于蜂蜜[1-3]及乳酸菌發(fā)酵產(chǎn)物[4-6]中的天然有機酸,PLA對多種細菌[7]、霉菌[8-9]及酵母菌[10]具有有效的抑制作用,Schwenninger[11]和Valerio[12]等的抑菌實驗結(jié)果都表明PLA的最低抑菌濃度較低,且隨著pH值降低,最低抑菌濃度進一步降低,在食品行業(yè),PLA能夠抑制引起食品腐敗的微生物的生長,從而延長食品的存放時間,且對人體和動物細胞無毒性,可以作為一種天然、安全的生物防腐劑使用;除此之外,PLA在藥物[13-14]、化妝品[15-16]等工業(yè)中也具有廣闊的應(yīng)用前景。PLA結(jié)構(gòu)中的第2個碳原子為手性碳原子,因此PLA有D-型與L-型2 種對映異構(gòu)體。目前,高光學(xué)純度的PLA合成研究主要集中在通過微生物全細胞轉(zhuǎn)化合成[17-19]。前期研究利用Escherichia coli BL21(DE3)(pET-28a-d-ldhY52V)全細胞轉(zhuǎn)化底物苯丙酮酸(phenylpyruvate,PPA),單批合成D-PLA的產(chǎn)量為5 g/L,轉(zhuǎn)化率為75%,PPA分批補加后產(chǎn)量為15.6 g/L[20];利用E. coli BL21(DE3)/pET-28a-ldhL在60 min內(nèi)將70.32 mmol/L PPA還原生成 50.59 mmol/L L-PLA,底物物質(zhì)的量轉(zhuǎn)化率為71.9%[21]。另有研究者通過同步糖化發(fā)酵技術(shù)發(fā)酵生產(chǎn)PLA,得到產(chǎn)量為20 g/L[22]。但是,前期研究發(fā)現(xiàn),隨著PLA的積累,其對微生物細胞的抑制迅速增加,進而使得PLA的合成趨于停止。因此,獲得一株能夠耐受一定濃度PLA的菌株將有助于打破這一瓶頸。
大量研究證明通過篩選出具有耐受性的微生物能夠提高相關(guān)產(chǎn)物的產(chǎn)量[23-25]。比如,篩選耐受副產(chǎn)物糠醛的微生物進行水解木質(zhì)纖維素,乳酸的產(chǎn)量提高,轉(zhuǎn)化率達到96%[26]。誘變育種方法具有快速、收效大、簡便等優(yōu)點,是發(fā)酵工業(yè)中重要的育種方法之一。目前,紫外誘變?nèi)匀皇俏⑸镉N中常用和有效的誘變方法之一[27-28]。本研究針對常用的E. coli BL21(DE3)作為原始出發(fā)菌株,通過紫外誘變和PLA篩選獲得耐受菌株,并利用該突變株構(gòu)建相應(yīng)工程菌株應(yīng)用于合成D-PLA和L-PLA,為PLA的高產(chǎn)提供新的研究思路。
1.1 菌種
表1為本研究所用菌種與質(zhì)粒。
1.2 材料與試劑
胰蛋白胨、酵母提取物 英國Oxoid公司;氯化鈉、葡萄糖 國藥集團化學(xué)試劑有限公司;D-PLA美國Sigma公司;苯丙酮酸鈉、卡那霉素、異丙基-β-D-硫代半乳糖苷(isopropy-β-D-thiogalactoside,IPTG)、6×Tartrazine DNA Loading Buffer、無毒性核酸染色劑、SanPrep柱式質(zhì)粒DNA小量抽提試劑盒、高效感受態(tài)試劑盒 生工生物工程(上海)股份有限公司;EXTaq DNA聚合酶、DNA Marker 大連寶生物公司。
1.3 儀器與設(shè)備
高速臺式離心機 德國Thermo公司;恒溫振蕩培養(yǎng)箱太倉市華美生化儀器廠;高效液相色譜儀 日本島津公司;電子天平 瑞士Mettler Toledo公司;立式壓力蒸汽滅菌器 上海申安醫(yī)療器械廠;瓊脂糖水平電泳槽、凝膠成像系統(tǒng) 美國Bio-Rad公司。
1.4 方法
1.4.1 E. coli BL21(DE3)在D-PLA脅迫下存活率的測定
將E. coli BL21(DE3)接種于液體LB培養(yǎng)基中,37 ℃、200 r/min過夜培養(yǎng)。菌液經(jīng)無菌生理鹽水稀釋至約1×106CFU/mL,分別取100 μL接種至含有0、0.5、1.0、1.5、2.0 g/L D-PLA的篩選培養(yǎng)基中,37 ℃培養(yǎng)12 h,分別測定不同質(zhì)量濃度的PLA脅迫下菌株的存活率,根據(jù)以下公式計算。
1.4.2 紫外誘變篩選耐受性菌株
將菌液用生理鹽水稀釋至1×106CFU/mL左右,取2 mL倒入無菌培養(yǎng)皿中,在預(yù)熱20 min的紫外燈(紫外燈的功率為10 W,照射距離為20 cm左右)下照射60 s,吸取0.2 mL誘變菌液接種至10 mL LB培養(yǎng)基,37 ℃、200 r/min暗培養(yǎng)12 h,然后分別吸取0.1 mL涂布篩選培養(yǎng)基(含1.0、1.5、2.0、2.5 g/L PLA的LB培養(yǎng)基)倒置培養(yǎng)12~24 h,記錄菌落生長情況,能夠在篩選培養(yǎng)基生長出的單菌落視為突變菌株。
1.4.3 D-PLA脅迫對突變菌株與出發(fā)菌株生長的影響
將出發(fā)菌株及突變菌株分別以1%的接種量接種至含0.5、1.0、2.0 g/L D-PLA的100 mL LB培養(yǎng)基,37 ℃、200 r/min振蕩培養(yǎng)。定時取樣稀釋,測定OD600nm。
1.4.4 構(gòu)建重組突變菌
將質(zhì)粒pET-28a-ldhY52V、pET-28a-ldhL按照高效感受態(tài)試劑盒的方法轉(zhuǎn)化進E. coli Z2016構(gòu)建重組菌,并對重組菌進行菌落PCR與BamHⅠ和HindⅢ雙酶切驗證。
1.4.5 全細胞合成PLA
將活化的重組突變菌E. coli Z2016 pET-28a-ldhY52V、E. coli Z2016 pET-28a-ldhL和出發(fā)重組菌株E. coli pET-28a-ldhY52V、E. coli pET-28a-ldhL按1%的接種量接種到裝有100 mL LB液體培養(yǎng)基(含50 μg/mL卡那霉素)的搖瓶中,37 ℃、200 r/min恒溫振蕩培養(yǎng)至OD600nm為0.6~0.8,加入終濃度1.0 mmol/L IPTG 25 ℃誘導(dǎo)培養(yǎng)8 h后,4 ℃、6 000 r/min離心10 min收集菌體,取0.3 g濕菌體用pH 7.0 磷酸緩沖液洗滌2 次后,重懸于10 mL緩沖液中(含有2%葡萄糖和10 g/L PPA),定時取樣進行HPLC檢測。檢測方法參考文獻[20]。
分批補加底物合成PLA:培養(yǎng)后的菌體細胞經(jīng)磷酸緩沖液沖洗2 次后重懸成100 mL 30 g/L(濕質(zhì)量)的菌液,加入6~7 mL 200 g/L PPA、2 g葡萄糖,于37 ℃、200 r/min條件下反應(yīng),反應(yīng)30 min時,補加6 mL 200 g/L PPA,共反應(yīng)120 min。每隔10 min取樣進行HPLC檢測。
2.1 D-PLA脅迫對E. coli BL21(DE3)存活率的影響
如圖1所示,不同質(zhì)量濃度的D-PLA脅迫下,E. coli BL21(DE3)的存活率變化明顯。在0 g/L PLA下,E. coli存活率設(shè)為100%,增加PLA質(zhì)量濃度,E. coli的存活率迅速降低,當(dāng)PLA的質(zhì)量濃度為0.5 g/L時,E. coli的存活率為47.3%,1 g/L PLA脅迫時,E. coli的存活率為5.56%,繼續(xù)增加PLA質(zhì)量濃度,E. coli存活率為0。D-PLA能夠抑制E. coli BL21(DE3)的生長,且質(zhì)量濃度越高,存活率越低。D-PLA的抑菌作用高于L-PLA[29],在D-PLA脅迫下的突變菌株具有更高的應(yīng)用價值。
2.2 突變菌株篩選結(jié)果及D-PLA脅迫對突變菌與對照菌生長的影響
經(jīng)多輪篩選,最終在一個2 g/L D-PLA 的LB培養(yǎng)基上獲得一個單菌落。該單菌落經(jīng)分離純化后命名為E. coli Z2016,并將其保存于中國典型培養(yǎng)物保藏中心,保藏編號M2016332。在含有1 g/L D-PLA 的LB培養(yǎng)基上,原始菌株與突變菌株的生長情況見圖2,突變菌株在含有1 g/L D-PLA的LB培養(yǎng)基上長出單菌落,且形態(tài)良好,而原始菌株在該培養(yǎng)基中沒有單菌落出現(xiàn)。
突變菌株與原始菌株在含不同濃度D-PLA的LB培養(yǎng)基中生長情況如圖3所示,突變菌株與原始菌株在不含D-PLA的培養(yǎng)基正常生長,且到達穩(wěn)定期時OD600nm數(shù)值基本一致;在1 g/L D-PLA脅迫時,原始菌株幾乎不能生長,突變菌株能夠正常生長;2 g/L D-PLA脅迫時,突變菌株也能夠生長,但生長速率和穩(wěn)定期細胞數(shù)量比1 g/L D-PLA條件下有明顯下降。結(jié)果表明,通過誘變篩選得到的突變菌株E. coli Z2016比原始出發(fā)菌株能夠耐受更高質(zhì)量濃度的PLA。
2.3 重組表達質(zhì)粒的酶切驗證與菌落PCR驗證
將表達質(zhì)粒pET-28a-ldhY52V、pET-28a-ldhL轉(zhuǎn)化感受態(tài)E. coli Z2016并進行驗證,結(jié)果如圖4所示,經(jīng)過菌落PCR均得到一條1 000 bp左右的條帶,雙酶切驗證結(jié)果分別得到一條1 000 bp和5 000 bp左右的條帶,均與理論值一致。驗證結(jié)果表明表達質(zhì)粒均成功轉(zhuǎn)入E. coli Z2016感受態(tài)細胞。
2.4 重組突變大腸桿菌全細胞轉(zhuǎn)化合成PLA
重組突變菌株與對照菌株在相同條件下全細胞合成PLA,PLA的產(chǎn)量如圖5所示。在相同條件下,突變重組菌株合成6.75 g/L D-PLA,較對照組產(chǎn)量(5.92 g/L)提高了14.02%。L-PLA產(chǎn)量6.90 g/L,比對照組(6.32 g/L)提高了8.95%。結(jié)果表明本研究中構(gòu)建的重組突變菌株,在合成D-PLA和L-PLA過程中,均使得產(chǎn)物產(chǎn)量獲得明顯增加。分批補加底物的條件下反應(yīng)120 min,E. coli Z2016 pET-28a-ldhY52V合成的D-PLA為20.02 g/L,比E. coli pET-28a-ldhY52V的產(chǎn)量16.37 g/L增加了22.17%,產(chǎn)率為10.01 g/(L?h),最終轉(zhuǎn)化率為90.07%,與Zhu Yibo等[20]的研究相比,PLA的產(chǎn)量與轉(zhuǎn)化率均有所增加。蔣卓越等[19]構(gòu)建E. coli pET-28a-DLDHY52L合成D-PLA 18.47 g/L,轉(zhuǎn)化率為65.96%,Wang Min等[31]利用E. coli JM109 pET-28a-M307L合成D-PLA,得到D-PLA產(chǎn)量為21.43 g/L,轉(zhuǎn)化率為82.3%,轉(zhuǎn)化率和D-PLA的產(chǎn)率都低于本研究所得。E. coli Z2016 pET-28a-ldhL合成的L-PLA為20.87 g/L,與E. coli pET-28a-ldhL產(chǎn)量17.83 g/L相比增加了16.85%,最終轉(zhuǎn)化率為91.24%,產(chǎn)率為10.435 g/(L?h),高于王穎等[21]的研究。Zheng Zhaojuan等[30]通過構(gòu)建重組菌E. coli pETDuet-ldhL-fdh得到L-PLA產(chǎn)量為13.214 g/L。
此外,重組突變菌合成的PLA在反應(yīng)后期仍有小幅增長(圖6B、D),而原始重組菌合成的PLA在反應(yīng)后期不再有明顯增加。由耐受性大腸桿菌構(gòu)建的重組菌合成的PLA產(chǎn)量高于原始重組菌,為增加PLA產(chǎn)量提供新的思路。
紫外誘變篩選能夠獲得對PLA耐受性提高的E. coli BL21(DE3)突變株。突變株E. coli Z2016對于D-PLA的耐受性顯著提高,能夠在含1 g/L PLA的LB培養(yǎng)基中正常生長。以E. coli Z2016為宿主菌構(gòu)建的重組突變菌株,其全細胞合成D-PLA與L-PLA的產(chǎn)量和轉(zhuǎn)化率與對照菌株相比,均有明顯提高。提高菌株對于PLA的耐受性是進一步強化生物合成PLA及其類似物的有效策略。
[1] DIMITROVA B, GEVRENOVA R, ANKLAM E. Analysis of phenolic acids in honeys of differrent floral origin by solid-pase extraction and high performance liquid chromatography[J]. Phytochemical Analysis, 2007, 18(1): 24-32. DOI:10.1021/cr980070c.
[2] TAN S T, WILKINS A L, MOLAN P C, et al. A chemical approach to the determination of floral sources of new zealand honeys[J]. Journal of Apicultural Research, 1989, 28(4): 212-222. DOI:10.1080/0021883 9.1989.11101187.
[3] TUBEROSO C I G, BIFULCO E, CABONI P, et al. Lumichrome and phenyllactic acid as chemical markers of thistle (Galactites tomentosa Moench) honey[J]. Journal of Agricultural & Food Chemistry, 2011, 59(1): 364-369. DOI:10.1021/jf1039074.
[4] SCHNURER J, MAGNUSSON J. Antifungal lactic acid bacteria as biopreservatives[J]. Trends in Food Science and Techinology, 2005, 16(1/2/3): 70-78. DOI:10.1016/j.tifs.2004.20.014.
[5] MU W, YU S, ZHU L, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology and Biotechnology, 2012, 95(5): 1155-1163. DOI:10.1007/S00253-012-4269-8.
[6] RODRIGUEZ N, SALGADO J M, CORTES S, et al. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enterica[J]. Food Control, 2012, 25(1): 274-284. DOI:10.1016/j.foodcont.2011.10.042.
[7] LAVERMICOCCA P, VALERIO F, EVIDENTE A, et al. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B[J]. Applied and Environmental Microbiology, 2000, 66(9): 4084-4090. DOI:10.1016/ S0038-7017(97)00088-6.
[8] OHHIRA I, KUWAKI S, MORITA H, et al. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Enterococcus faecalis TH10[J]. Biocontrol Science, 2004, 9(3): 77-81. DOI:10.4265/bio.9.77.
[9] VALERIO F, DIBIASE M, LATTANZIO V M T, et al. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid[J]. International Journal of Food Microbiology, 2016, 222: 1-7. DOI:10.1016/j.ijfood micro.2016.01.011.
[10] LI L, SHIN S Y, LEE K W, et al. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase[J]. Letters in Applied Microbiology, 2014, 59(4): 404-411. DOI:10.1111/lam.12293.
[11] SCHWENNINGER S M, LACROIX C, TRUTTMANN S, et al. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture[J]. Journal of Food Protection, 2008, 71(12): 2481-2487. DOI:10.4315/0362-028X-71.12.2481.
[12] VALERIO F, LAVERMICOCCA P, PASCALE M, et al. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation[J]. FEMS Microbiology Letters, 2004, 233(2): 289-295. DOI:10.1111/j.1574-6968.2004.tb09494.x.
[13] LI X, NING Y, LIU D, et al. Metabolic mechanism of phenyllactic acid naturally occurring in Chinese pickles[J]. Food Chemistry, 2015, 186: 265-270. DOI:10.1016/j.foodchem.2015.01.145.
[14] 江明華, 林華, 施勤, 等. β-苯基乳酸對離體小鼠子宮的平滑肌作用[J].上海醫(yī)科大學(xué)學(xué)報, 1990, 17(5): 350-354.
[15] STROM K, SJOGREN J, BROBERG A, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid[J]. Applied and Environmental Microbiology, 2002, 68(9): 4322-4327. DOI:10.1128/AEM.68.9.4322-4327.2002.
[16] 孟琳, 白云平, 葛雙啟. 果酸在化妝品中的應(yīng)用[J]. 化學(xué)與生物工程, 2005, 22(4): 45-46. DOI:10.3969/j.issn.1672-5425.2005.04.017.
[17] HASHIMOTO y, KOBAyASHI E, ENDO T, et al. Conversion of a cyanhydrin compound into S-(?)-3-phenyllactic acid by enantioselective hydrolytic activity of Pseudomonas sp. BC-18[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(8): 1279-1283. DOI:10.1271/bbb.60.1279.
[18] 趙明月, 鄭兆娟. 重組大腸桿菌全細胞催化合成D-苯基乳酸的研究[J].廣東化工, 2015, 42(6): 29-30. DOI:1007-1865(2015)06-0029-02.
[19] 蔣卓越, 季偉, 錢蓓蓓, 等. 乳酸脫氫酶突變體D-LDHY52L在大腸桿菌中的重組表達及其合成D-苯基乳酸的研究[J]. 食品與發(fā)酵工業(yè), 2016, 42(1): 1-6. DOI:10.13995/j.cnki.11-1802/ts.201601001.
[20] ZHU Y B, HU F G, ZHU Y Y, et al. Enhancement of phenyllactic acid biosynthesis by recognition site replacement of D-lactate dehydrogenase from Lactobacillus pentosus[J]. Biotechnology Letters, 2015, 37(6): 1233-1241. DOI:10.1007/s10529-015-1778-4.
[21] 王穎, 范銘, 薛素妹, 等. 全細胞催化合成L-苯基乳酸重組大腸桿菌的構(gòu)建[J]. 食品與發(fā)酵工業(yè), 2015, 41(12): 13-17. DOI:10.13995/ j.cnki.11-1802/ts.201512003.
[22] KAWAGUCHI H, UEMATSU K, OGINO C, et al. Simultaneous saccharification and fermentation of kraft pulp by recombinant Escherichia coli for phenyllactic acid production[J]. Biochemical Engineering Journal, 2014, 88: 188-194. DOI:10.1016/ j.bej.2014.04.014.
[23] WANG y, LI y, PEI X, et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus[J]. Journal of Biotechnology, 2007, 129(3): 510-515. DOI:10.1016/j.jbiotec.2007.01.011.
[24] McDONALD L C, FLEMING H P, HASSAN H M. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum[J]. Applied and Environmental Microbiology, 1990, 56(7): 2120-2124.
[25] HYRONIMUS B, LEMARREC C, SASSI A H, et al. Acid and bile tolerance of spore-forming lactic acid bacteria[J]. International Journal of Food Microbiology, 2000, 61(2): 193-197. DOI:10.1016/S0168-1605(00)00366-4.
[26] KUO Y C, YUAN S F, WANG C A, et al. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain[J]. Bioresource Technology, 2015, 198: 651-657. DOI:10.1016/j.biortech.2015.09.071.
[27] 王麗寧, 趙妍, 張寶粉, 等. 利用原生質(zhì)體紫外誘變技術(shù)選育耐高溫香菇菌株[J]. 微生物學(xué)通報, 2014, 41(7): 1350-1357. DOI:10.13344/ j.microbiol.china.140226.
[28] NAIR S U, SINGHAL R S, KAMAT M Y. Enhanced production of thermostable pullulanase type 1 using Bacillus cereus FDTA 13 and its mutant[J]. Food Technology & Biotechnology, 2006, 44(2): 275-282.
[29] DIEULEVEUX V, GU?GUEN M. Antimicrobial effects of D-3-phenyllactic acid on Listeria monocytogenes in TSB-YE medium, milk, and cheese[J]. Journal of Food Protection, 1998, 61(10):1281-1285. [30] ZHENG Z J, ZHAO M Y, ZANG Y, et al. Production of optically pure L-phenyllactic acid by using engineered E. coli, coexpressing L-lactate dehydrogenase and formate dehydrogenase[J]. Journal of Biotechnology, 2015, 207: 47-51. DOI:10.1016/ J.JBIOTEC.2015.05.015.
[31] WANG M, ZHU L F, XU X L, et al. Efficient production of enantiomerically pure D-phenyllactate from phenylpyruvate by structure-guided design of an engineered D-lactate dehydrogenase[J]. Applied Microbiology and Biotechnology, 2016, 10: 7471-7478. DOI:10.1007/s00253-016-7456-1.
Screening of Phenyllactic Acid-Resistant Escherichia coli and Its Application in the Synthesis of Phenyllactic Acid
X
U Yan1,2, GUO Qian2, ZHU Yibo2, WANG Limei2, QI Bin2,*
(1. School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215000, China; 2. Key Laboratory of Food and Biotechnology of Suzhou, Fermentation Engineering Technology Research Center, College of Biological and Food Engineering, Changshu Institute of Technology, Changshu 215500, China)
Screening phenyllactic acid (PLA)-resistant strains enables effective reduction of the inhibitory effect of PLA on the synthesis process and thus an increase in PLA production. In this report, Escherichia coli BL21 (DE3) was mutagenized by UV irradiation and screened for a mutant resistant to PLA, E. coli Z2016 (CCTCC Accession No. M2016332). E. coli Z2016 was used the host strain to construct recombinant strains E. coli Z2016 pET-28a-ldhY52Vand E. coli Z2016 pET-28a-ldhL for the synthesis of D- and L-PLA. The results showed that E. coli Z2016 was able to grow normally in a medium containing 1 g/L D-PLA. The production of D- and L-PLA by the recombinant strains were 6.75 and 6.97 g/(L·h), which were increased by 14.02% and 8.95% as compared to those produced by the original strain, respectively. During 120 min of fed-batch fermentation, the production of D-PLA by E. coli Z2016 pET-28a-ldhY52Vwas 20.02 g/L with a conversion rate of 90.97%, which was increased by 22.17% as compared to that produced by the control. The L-PLA concentration produced by E. coli Z2016 pET-28a-ldhL was 20.87 g/L, which was increased by 16.85% as compared to produced by the control, with a conversion rate of 91.24%. Accordingly, the use of PLA-resistant strains provided an effective method to increase PLA production.
UV mutagenesis; phenyllactic acid; phenyllactic acid-resistant strain; E. coli; whole-cell transformation
10.7506/spkx1002-6630-201714004
TS201.2
A
1002-6630(2017)14-0024-06
2016-10-14
國家自然科學(xué)基金面上項目(31470092);國家自然科學(xué)青年科學(xué)基金項目(31501459);江蘇省“六大高峰人才”資助計劃項目(NY-021)
徐艷(1992—),女,碩士研究生,研究方向為微生物學(xué)。E-mail:1617374705@qq.com
*通信作者:齊斌(1965—),男,教授,博士,研究方向為食品生物技術(shù)。E-mail:qibin65@126.com
引文格式:徐艷, 郭倩, 朱益波, 等. 苯基乳酸耐受性大腸桿菌的篩選及其高產(chǎn)苯基乳酸特性[J]. 食品科學(xué), 2017, 38(14): 24-29.
DOI:10.7506/spkx1002-6630-201714004. http://www.spkx.net.cn
XU Yan, GUO Qian, ZHU Yibo, et al. Screening of phenyllactic acid-resistant Escherichia coli and its application in the synthesis of phenyllactic acid[J]. Food Science, 2017, 38(14): 24-29. (in Chinese with English abstract) DOI:10.7506/ spkx1002-6630-201714004. http://www.spkx.net.cn