趙晶晶 張忠義 鄭能建 田晶 朱光旭 肖化云
摘要氨基酸穩(wěn)定氮同位素(δ15N)分析能準(zhǔn)確有效地評估生物體的營養(yǎng)級以及氮在食物鏈中的流動。本研究優(yōu)化了氨基酸氮同位素的分析方法:樣品在酸性條件下水解后, 釋放出的蛋白質(zhì)氨基酸經(jīng)陽離子交換樹脂純化后, 衍生為對應(yīng)的N新戊?;?, O異丙醇(Npivaloylisopropyl, NPP)酯, 利用氣相色譜燃燒同位素比值質(zhì)譜儀(Gas chromatographycombustionisotope ratio mass spectrometry, GCCIRMS)測定其δ15N。經(jīng)非極性氣相色譜柱DB5ms分離后, 13種氨基酸NPP酯衍生物均可得到良好的基線分離。在樣品量不低于20 ng N條件下, GCCIRMS方法的精密度優(yōu)于1‰, 測得的δ15N值與EAIRMS法測得的δ15N值沒有明顯差異。陽離子樹脂純化前后各氨基酸δ15N值差異低于1‰, 表明沒有產(chǎn)生明顯的同位素分餾。采用本方法成功地估算了阿哈湖生態(tài)系統(tǒng)中常見水生生物的營養(yǎng)級, 可作為研究氨基酸代謝以及生態(tài)系統(tǒng)特征的新方法。
關(guān)鍵詞N新戊?;?,O異丙醇(NPP)酯; 氨基酸; 氣相色譜燃燒同位素比值質(zhì)譜; 營養(yǎng)級
1引 言
氮穩(wěn)定同位素已廣泛用來研究生態(tài)系統(tǒng)的特征與過程[1]。其中, 生物體有機(jī)質(zhì)總氮同位素的組成(δ15N)已成為一系列生態(tài)學(xué)研究的重要手段之一, 尤其是用于評估有機(jī)體的營養(yǎng)級和測定氮在食物鏈中的流動[2]??偟凰胤椒ㄓ脕碓u估營養(yǎng)級是基于大量研究的平均觀測值:δ15N隨食物網(wǎng)的富集指示大約為3.4‰[3]。然而總氮同位素方法也有局限性:(1)不同物種間的δ15N富集程度存在明顯差異。DeNiro 和Epstein研究發(fā)現(xiàn), 不同綱屬動物(昆蟲綱, 哺乳綱等)的
N值會造成所研究生態(tài)系統(tǒng)中營養(yǎng)關(guān)系的嚴(yán)重誤判。
氨基酸單體氮同位素組成是可以準(zhǔn)確有效地估算有機(jī)體營養(yǎng)級。研究表明, 生物體內(nèi)谷氨酸(Glu)以及苯丙氨酸(Phe)氮同位素比值差異可以指示其營養(yǎng)級[5~7]。代謝過程中, 谷氨酸快速進(jìn)行轉(zhuǎn)氨基作用, CN鍵斷裂, δ15N富集較大(+8.0‰)。相反, 苯丙氨酸的主要代謝步驟是增加一個(gè)羥基基團(tuán)轉(zhuǎn)化成酪氨酸, 此過程不伴隨CN鍵斷裂, δ15N富集不明顯(+0.4‰), 這種代謝關(guān)系的差異導(dǎo)致在特定營養(yǎng)級的有機(jī)體中谷氨酸和苯丙氨酸的δ15N明顯不同。水生生態(tài)系統(tǒng)有機(jī)體營養(yǎng)級計(jì)算公式為[8,9]:
TLGlu/Phe =1+ (δ15NGlu-δ15NPhe-3.4)/7.6(1)
在文獻(xiàn)[10]基礎(chǔ)上, 本研究對GC條件、前處理方法以及衍生技術(shù)進(jìn)行了優(yōu)化。本方法準(zhǔn)確性高, 重現(xiàn)性好, 為分析氨基酸氮穩(wěn)定同位素以及評估水生生物體營養(yǎng)級提供參考。
2實(shí)驗(yàn)部分
2.1儀器與試劑
氣相色譜燃燒同位素比值質(zhì)譜儀(GCCIRMS, 美國ThermoFisher公司); 氣相色譜質(zhì)譜儀(GCMS, 689070000C, 美國Agilent公司);元素分析儀(EA, 美國ThermoFisher公司); 氮吹儀(BYN1002, 上海秉越電子儀器有限公司)。
13種氨基酸標(biāo)準(zhǔn)品:丙氨酸, 甘氨酸, 纈氨酸, 亮氨酸, 異亮氨酸, 脯氨酸, 天冬氨酸, 蛋氨酸, 絲氨酸, 蘇氨酸, 谷氨酸和苯丙氨酸和γ氨基丁酸, 以及內(nèi)標(biāo)氨基酸:正亮氨酸和β氨基丁酸的純度均為99.9%, 均購于美國SigmaAldrich公司。陽離子交換樹脂(Dowex 50W X8 H+, 200~400 mesh, SigmaAldrich公司)用于純化樣品。水解和衍生試劑包括: 12.1 mol/L HCl(ACS級)、 甲醇(色譜級)、 正己烷、 二氯甲烷、 亞硫酰氯、 新戊酰氯、 無水MgSO4, 均購于上海阿拉丁公司。
2.2實(shí)驗(yàn)方法
2.2.1生物樣品采集、氨基酸提取以及衍生化 本研究的樣品為2015年8月10日自阿哈湖水域(東經(jīng)106°39′, 北緯26°33′)隨機(jī)采集9種水生生物。所有樣品冷凍干燥后, 研磨均勻。準(zhǔn)確稱取10 mg樣品置于反應(yīng)瓶中, 加入0.5 mL 2.1mol/L HCl后密封, 于110℃下水解24 h。室溫冷卻后, 水解液在60℃下用氮?dú)獯蹈?。水解產(chǎn)物溶解于0.1 mol/L HCl, 經(jīng)正己烷二氯甲烷(3∶2, V/V)充分脫脂后,過陽離子交換樹脂純化, 用4 mol/L 氨水洗脫。內(nèi)標(biāo)加入洗脫液中, 經(jīng)氮吹儀吹干, 并按照上述方法進(jìn)行衍生化。陽離子交換樹脂處理后可能存在的背景干擾由相應(yīng)的空白程序檢驗(yàn)。
2.2.2生物樣品氨基酸混標(biāo)衍生化標(biāo)準(zhǔn)樣品溶液充分干燥后加入1 mL亞硫酰氯異丙醇(1∶4, V/V)于110℃下酯化2 h。氮吹儀吹干后, 再加入1 mL新戊酰氯二氯甲烷溶液(1∶4, V/V) 于110℃下酰化2 h, 生成N新戊酰基和O異丙醇酯, 多余的衍生化試劑經(jīng)氮吹后完全去除。氨基酸NPP酯溶于0.5 mL二氯甲烷溶液, 用GCCIRMS測定氮同位素值[10]。
2.2.3色譜及儀器條件色譜柱:Agilent DB5ms毛細(xì)管柱(30 m × 0.25 mm × 0.25 μm); 載氣: He(99.9999%), 流速1.4 mL/min; 進(jìn)樣口溫度: 250℃; 升溫程序: 初始40℃保持2.5 min, 以15℃/min升至110℃,再以3℃/min升至150℃, 最后以6℃/min升至230℃; 無分流模式進(jìn)樣, 進(jìn)樣量1.0~1.5 μL。單個(gè)氨基酸保留時(shí)間用GCMS確定。氨基酸氮同位素分析使用GCCIRMS進(jìn)行, 氨基酸衍生化樣品先通過GC分離, 然后進(jìn)入毛細(xì)管微反應(yīng)器(IsoLink)轉(zhuǎn)化為相應(yīng)的氣體, 燃燒產(chǎn)生的水分由全氟磺酸滲透膜去除, 將連通燃燒管與質(zhì)譜儀的毛細(xì)管置于液氮冷阱中, 以固定樣品燃燒產(chǎn)生的CO2, 每測定10個(gè)樣品后, 將冷阱去掉, 以釋放固定住的CO2, 防止堵塞該毛細(xì)管[11]。設(shè)定燃燒爐溫度為1030℃, 選用N2測定模式, 自動調(diào)用m/z 28, 29, 30的離子源參數(shù)。
2.3數(shù)據(jù)處理
數(shù)據(jù)處理運(yùn)用ISODAT 軟件(Thermo, Fisher), δ15N峰開始和結(jié)束的斜度分別設(shè)為0.2和0.4 mV/s, δ15N值的計(jì)算如下:
δ15N(‰)=[(Rsample/Rstandard)-1]×1000(2)
其中, Rsample表示所測樣品中15N豐度與14N豐度之比, Rstandard表示標(biāo)準(zhǔn)樣品中15N豐度與14N豐度之比。
3結(jié)果與討論
3.1衍生條件及GCCIRMS系統(tǒng)
氨基酸是兩性離子, 其羧基、氨基以及側(cè)鏈官能團(tuán)被完全衍生化前并不適合用氣相色譜分離。在本研究中, 氨基酸通過衍生成功轉(zhuǎn)化為NPP酯。該方法的主要優(yōu)點(diǎn):所有的衍生化試劑不含氮原子, 因此不需要對氮同位素進(jìn)行進(jìn)一步校正;相較乙?;?, 新戊酰基的引入進(jìn)一步減小了氨基酸的極性, 增加了色譜的分離效果。另外, 氨基酸NPP衍生物產(chǎn)生的背景噪音更小[12]。對于氣體同位素質(zhì)譜系統(tǒng)而言, 毛細(xì)管柱和燃燒系統(tǒng)是非常重要的, 任一系統(tǒng)表面失活, 都可能會導(dǎo)致靈敏度的下降, 伴隨著保留時(shí)間的漂移, 信號強(qiáng)度顯著下降以及同位素比值不穩(wěn)定等現(xiàn)象。因此, 每隔20~25個(gè)樣品,
GCIsoLink燃燒爐都有必要進(jìn)行重新氧化。通氧后, 氮信號強(qiáng)度是判斷儀器是否恢復(fù)穩(wěn)定的最好評判標(biāo)準(zhǔn)。本研究在GCCIRMS通氧后連續(xù)測定丙氨酸NPP酯衍生物20次。如圖1所示, 丙氨酸氮信號值在第6次進(jìn)樣后達(dá)到穩(wěn)定。GCCIRMS通氧、反吹后, 為保證測定值的準(zhǔn)確性, 至少需測定標(biāo)準(zhǔn)樣品5次(活化), 待信號值穩(wěn)定后才能進(jìn)行樣品的測定。實(shí)際過程中, 利用氨基酸混標(biāo)進(jìn)行活化。GCCIRMS每批次能測定的樣品數(shù)量與、 樣品性質(zhì)及通氧時(shí)間等因素有關(guān)。實(shí)驗(yàn)時(shí)應(yīng)注意插入氨基酸標(biāo)準(zhǔn)來檢測Isolink的氧化性能, 一旦發(fā)現(xiàn)氧化效率降低, 立即停止測樣進(jìn)行通氧氧化。通過氧化、活化, 氨基酸保留時(shí)間和氮信號強(qiáng)度會恢復(fù)正常。
3.2氨基酸在GCCIRMS中的色譜行為
GC的分離度取決于分析物的揮發(fā)性以及與固定相的相互作用。本研究使用非極性氣相色譜柱(DB5ms)對氨基酸NPP衍生物進(jìn)行分離。與其它極性色譜柱相比, 該色譜柱可承受更寬的溫度范圍,
并可以得到氨基酸峰之間的最佳基線分離(如圖2a和圖2b)。目標(biāo)化合物峰的基線分離是準(zhǔn)確測定同位素值的首要條件, 尤其對于復(fù)雜的生物樣品而言。氨基酸衍生物保留時(shí)間與引入的烷基的長度相關(guān), 其次還與氣相色譜柱的極性相關(guān)。在本研究中, 13種氨基酸可以得到基線分離(如圖2a和圖2b), 低分子量、非極性的氨基酸, 例如丙氨酸、甘氨酸, 與固定相作用不強(qiáng)烈, 所以首先被洗脫出來。其次被洗脫出來的是較高分子量的中性氨基酸(例如纈氨酸, 亮氨酸)以及低分子量的極性氨基酸。最后被洗脫出來的是更高分子量的極性、芳香族氨基酸, 因?yàn)樗鼈兡芘c固定相發(fā)生強(qiáng)烈作用(圖2b)。樣品水解過程中, 天冬酰胺和谷氨酰胺會轉(zhuǎn)化為天冬氨酸和谷氨酸, 因此GCCIRMS 測量得到的天冬氨酸的δ15N 值代表了天冬氨酸中的氮和天冬酰胺中的氨基氮的δ15N 值, 谷氨酸的δ15N 值代表了谷氨酸中的氮和谷氨酰胺中的氨基氮的δ15N 值。
3.3GCCIRMS測定氨基酸氮同位素比值的精密度和準(zhǔn)確度
為了評估測定結(jié)果的精確度以及檢驗(yàn)本系統(tǒng)是否適用于自然豐度的氨基酸氮同位素比值的測定, 6個(gè)同樣濃度的氨基酸混合標(biāo)準(zhǔn)溶液分別衍生化, 并用GCCIRMS 測定其δ15N值。GCCIRMS測定的氨基酸δ15N值與EAIRMS測定的值相比, 評估測定結(jié)果的準(zhǔn)確性(表1)。結(jié)果表明, GCCIRMS測定值具有較高的精密度, 所有氨基酸的δ15N值精密度都在1‰以內(nèi)。EAIRMS和 GCCIRMS測定結(jié)果高度相關(guān), 回歸斜率接近1, 相關(guān)系數(shù)為0.98(圖3)。經(jīng)過校正, 這兩種儀器的測量值之間的差異小于1‰。另外, 采用BlandAltman 法評估EAIRMS和 GCCIRMS測定結(jié)果的一致性。結(jié)果表明, GCCIRMS測定結(jié)果的平均偏差接近0.0‰, 明顯位于儀器精確度范圍內(nèi)(圖4)。因此, GCCIRMS測定
氨基酸氮同位素沒有造成明顯的同位素分餾, 并且本方法得到的δ15N值EAIRMS具有同等的準(zhǔn)確度。
3.4氨基酸δ15N分析所需樣品量
GCCIRMS分析氨基酸氮同位素所需的樣品量是優(yōu)化δ15N測定結(jié)果的準(zhǔn)確度和精確度必須考慮的另一個(gè)重要參數(shù)。Merritt 等[13]認(rèn)為δ15N的測定值和進(jìn)樣量之間存在一定的相關(guān)性。Takano等[14]發(fā)現(xiàn)當(dāng)氨基酸峰高(m/z 28)大于100 mV時(shí), δ15N測定值的精確度較高(1σ=0.5‰), 約相當(dāng)于30 ng N的進(jìn)樣量。同樣的, Styring等[15]發(fā)現(xiàn)在100~1200 mV的信號強(qiáng)度范圍內(nèi), 氨基酸δ15N測定值重復(fù)性最佳。本研究同樣證實(shí)了這種現(xiàn)象, 0.3~4.5 nmol氨基酸標(biāo)準(zhǔn)經(jīng)過衍生后測得的信號值與對應(yīng)的δ15N值具有一定的相關(guān)性, 如圖5所示。為得到準(zhǔn)確可靠的δ15N值, 本實(shí)驗(yàn)中進(jìn)樣量為不少于20 ng N, 大致相當(dāng)于200 mV(m/z 28)信號強(qiáng)度。與文獻(xiàn)[14,16]相比, 可能是由于同位素質(zhì)譜儀以及燃燒爐性能的提高, 因此本研究所需進(jìn)樣量減少。
3.5陽離子交換樹脂對于氨基酸δ15N測定的影響
利用陽離子交換樹脂純化氨基酸樣品被認(rèn)為是一種有效方法, 可以去除一部分無機(jī)化合物, 并且將氨基酸從復(fù)雜的親水化合物中分離出來, 如糖、有機(jī)酸等。這些干擾化合物會大量消耗衍生劑, 也可能會對GCCIRMS系統(tǒng)的燃燒和還原爐造成損害[14,15]。尤其是, 當(dāng)樣品中的目標(biāo)化合物和其它含氮化合物不能基線分離時(shí), 會導(dǎo)致目標(biāo)化合物的δ15N測定值與真實(shí)值偏差較大[17]。因此, 為了得到準(zhǔn)確可信的δ15N值, 樣品純化是非常必要的。
如圖6所示, 過柱前后氨基酸δ15N值具有較好的相關(guān)性, 即使使用氨水洗脫樹脂中富集的氨基酸, δ15N值差異也不明顯。這說明使用此方法能夠有效排除非氨基酸類物質(zhì)對檢測結(jié)果的干擾。
為了驗(yàn)證陽離子交換樹脂可能帶來的雜質(zhì)化合物, 空白溶液經(jīng)完整的前處理過程后衍生并用GCCIRMS分析。如圖2c所示, 色譜圖中沒有明顯的背景化合物, 因此使用陽離子交換樹脂對生物樣品進(jìn)行純化是非常有效的手段。
3.6氨基酸氮同位素方法初步評估阿哈湖淡水生態(tài)系統(tǒng)常見物種營養(yǎng)級
本研究通過對自然界生物個(gè)體中氨基酸氮同位素的測定評估該有機(jī)體的營養(yǎng)級。氨基酸的氮同位素組成以及TLGlu/Phe值如表2所示。根據(jù)所得TLGlu/Phe 值, 可以有效確定淡水生態(tài)系統(tǒng)的有機(jī)體營養(yǎng)級。大部分淡水生態(tài)系統(tǒng)中的食物鏈?zhǔn)加诔跫壣a(chǎn)者(TL = 1,例如藻類和植物)。一般認(rèn)為食草動物的營養(yǎng)級為2, 雜食性動物處于2~3之間, 而肉食性動物則處于3以上。在本研究中, 以白鰱和草魚為代表的草食性魚的的TLGlu/Phe≈2, 分別為1.9和 2.1。初級生產(chǎn)者水綿和黑藻的TLGlu/Phe 值分別為1.0和1.2。黃顙魚是一種被公認(rèn)的兇殘的食肉型魚類, 其TLGlu/Phe=3.2。包括花鰱、鯽魚、鯉魚以及日本沼蝦在內(nèi)的水生生物被認(rèn)為是雜食性動物, TLGlu/Phe 值處于2.3~2.4之間。表2中的TLGlu/Phe 值和個(gè)體預(yù)期的營養(yǎng)級高度符合。因此, 氨基酸氮同位素法能準(zhǔn)確反映有機(jī)體在自然淡水生態(tài)系統(tǒng)中的營養(yǎng)級。
4結(jié) 論
本研究采用氨基酸NPP酯衍生方法對前處理、衍生以及GC條件進(jìn)行優(yōu)化, 有效分離了13種氨基酸, 通過GCCIRMS測定得到準(zhǔn)確可靠的δ15N值。陽離子交換樹脂純化氨基酸是一種有效的方式, 氨基酸標(biāo)準(zhǔn)經(jīng)純化后其δ15N值變化幅度低于1‰。在進(jìn)樣量不低于20 ng N時(shí), GCCIRMS測定氨基酸δ15N值精度較高。本方法可以廣泛應(yīng)用于大部分生物樣品中氨基酸δ15N值的測定。另外, 應(yīng)用本方法測定阿哈湖水生生態(tài)系統(tǒng)中生物個(gè)體的氨基酸的δ15N 值, 進(jìn)而計(jì)算對應(yīng)的營養(yǎng)級, 所得結(jié)果與預(yù)期值高度相符,說明本方法可以有效估計(jì)自然生態(tài)中的某特定生物體的營養(yǎng)級。
References
1Fry B. Stable Isotope Ecology, New York: Springer Science & Business Media, 2007: 1-2
2Hobson K A. Mar. Ecol. Prog. Ser., 1992, 84: 9-18
3DeNiro M J, Epstein S. Geochim. Cosmochim. Acta, 1981, 45(3): 341-351
4Bronk D A, Glibert P M. Marine Biology, 1993, 115(3): 501-508
5Chikaraishi Y, Steffan S A, Ogawa N O, Ishikawa N F, Sasaki Y, Tsuchiya M, Ohkouchi N. Ecol. Evol., 2014, 4(12): 2423-2449
6Naito Y I, Bocherens H, Chikaraishi Y, Drucker D G, Wiing C, Yoneda M, Ohkouchi N. J. Archaeol. Sci., 2016, 6: 720-732
7Chikaraishi Y, Ogawa N O, Doi H, Ohkouchi N. Ecol. Res., 2011, 26(4): 835-844
8Dore J E, Brum J R, Tupas L M, Karl D M. Limnol. Oceanogr., 2002, 47(6): 1595-1607
9Ohkouchi N, Tsuda R, Chikaraishi Y, Tanabe K. Mar. Biol., 2012, 160(4): 773-779
10Corr L T, Berstan R, Evershed R P. Rapid Commun. Mass Spectrom., 2007, 21(23): 3759-3771
11LI GuoHui, ZHONG QiDing, WANG DaoBing, SHEN ShiGang. Journal of Chinese Mass Spectrometry Society, 2016, 37(1): 60-67
李國輝, 鐘其頂, 王道兵, 申世剛. 質(zhì)譜學(xué)報(bào), 2016, 37(1): 60-67
12XU ChunYing, MEI XuRong, LI YuZhong, ZHONG XiuLi. Chinese Agricultural Science Bulletin, 2008, 24(4): 151-156
徐春英, 梅旭榮, 李玉中, 鐘秀麗.中國農(nóng)學(xué)通報(bào), 2008, 24(4): 151-156
13Merritt D A, Hayes J. J. Amer. Soc. Mass Spectrom., 1994, 5(5): 387-397
14Takano Y, Kashiyama Y, Ogawa N O, Chikaraishi Y, Ohkouchi N. Rapid Commun. Mass Spectrom., 2010, 24(16): 2317-2323
15Styring A K, Kuhl A, Knowles T D, Fraser R A, Bogaard A, Evershed R P. Rapid Commun. Mass Spectrom., 2012, 26(19): 2328-2334
16Molero G, Aranjuelo I, Teixidor P, Araus J L, Nogues S. Rapid Commun. Mass Spectrom., 2011, 25(5): 599-607
17Ricci M P, Merritt D A, Freeman K H, Hayes J. Org. Geochem., 1994, 21(67): 561-571
AbstractThe analysis of stable nitrogen isotopic composition (δ15N) of individual amino acid was recognized as an effective method for estimating the trophic level of organisms and detecting the nitrogen flow in food webs. In this study, we evaluated a twostage procedure of esterification followed by acylation, in which biological samples underwent hydrolysis in acid and the released individual amino acids were derivative into the corresponding Npivaloylisopropyl (NPP) esters for gas chromatographycombustionisotope ratio mass spectrometric (GCCIRMS) analysis. A total of 13 kinds of individual amino acid derivatives were baseline separated on a nonpolar gas chromatography column (DB5ms). The amount of sample for each test was not less than 20 ng N on column. High correlations were observed between the δ15N values respectively obtained by GCCIRMS and element analysisisotope ration mass spectrometry (EAIRMS). Furthermore, the mean precision of this method was better than 1‰. Cationexchange chromatograph was used to purify the samples, and the difference of the detection δ15N values before and after purification by the resin was within 1‰. This method was applied to estimate the trophic level of various natural freshwater organisms from Aha Lake. The present study provided a new idea for the application of stable nitrogen isotope (δ15N) in the trophic level estimation of organisms and metabolism analysis of amino acid.
KeywordsNpivaloylisopropyl esters; Amino acid; Gas chromatographycombustionisotope ratio mass spectrometry; Trophic level