国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

實驗增溫對西藏高原玉米田土壤呼吸的影響

2017-04-01 02:38:01付剛鐘志明
生態(tài)環(huán)境學(xué)報 2017年1期
關(guān)鍵詞:玉米田土壤濕度土壤溫度

付剛,鐘志明

中國科學(xué)院地理科學(xué)與資源研究所//生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測與模擬重點實驗室//拉薩高原生態(tài)系統(tǒng)研究站,北京 100101

實驗增溫對西藏高原玉米田土壤呼吸的影響

付剛,鐘志明*

中國科學(xué)院地理科學(xué)與資源研究所//生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測與模擬重點實驗室//拉薩高原生態(tài)系統(tǒng)研究站,北京 100101

青藏高原農(nóng)業(yè)區(qū)正經(jīng)歷著明顯的氣候變暖,但氣候變暖如何影響高寒農(nóng)業(yè)生態(tài)系統(tǒng)碳循環(huán)目前仍不明確。土壤呼吸是第二大陸地生態(tài)系統(tǒng)碳通量,高寒農(nóng)業(yè)生態(tài)系統(tǒng)土壤呼吸對氣候變暖的響應(yīng)的不確定性限制了氣候變化背景下人類對青藏高原高寒生態(tài)系統(tǒng)碳循環(huán)的預(yù)測能力。2015年4月在西藏玉米田采用開頂式生長箱進(jìn)行模擬增溫試驗,旨在探究氣候變暖對土壤呼吸及其溫度敏感性的影響。在2015年玉米生長季節(jié)的5—8月份,利用Li8100土壤通量觀測系統(tǒng)測定了6次土壤呼吸日變化(8:00—20:00),并利用HOBO微氣候觀測系統(tǒng)觀測了5 cm深處的土壤溫度和土壤濕度。結(jié)果表明,實驗增溫顯著提高了5 cm深處的土壤溫度(t=11.93,P=0.000),增幅為3.22 ℃,同時顯著降低了5 cm深處的土壤含水量,降幅為0.04 m3·m-3(t=4.87,P=0.008)。對照和模擬增溫處理的土壤呼吸速率分別為6.79 μmol·m-2·s-1和7.34 μmol·m-2·s-1,兩者間無顯著差異(F=1.65,P=0.235)。盡管如此,土壤呼吸仍存在著顯著的日變化(F=137.66,P=0.000)和季節(jié)變異(F=54.48,P=0.000)。對照和模擬增溫處理的土壤呼吸溫度敏感性分別為1.70和1.77,兩者間也無顯著差異(t=2.69,P=0.100)。土壤溫度解釋了36%的對照處理的土壤呼吸變異,而土壤溫度和土壤濕度共同解釋了62%的土壤呼吸變異。因此,3.22 ℃的土壤增溫沒有顯著改變土壤呼吸及其溫度敏感性,這與3.22 ℃的土壤增溫引起了土壤濕度的降低有關(guān)。

被動增溫;土壤含水量;溫度敏感性;青藏高原

土壤呼吸(soil respiration,Rs)是全球第二大陸地生態(tài)系統(tǒng)碳通量,僅小于植被光合作用(Raich et al.,1995)。土壤呼吸的一個極小的變化都可能影響全球碳平衡(Cox et al.,2000;Peng et al.,2015a)。就排放到大氣中的CO2而言,農(nóng)業(yè)土壤是重要的貢獻(xiàn)者,在全球碳循環(huán)中扮演著重要角色。與森林和草地生態(tài)系統(tǒng)相比,農(nóng)業(yè)土壤富含土壤有機(jī)質(zhì),土壤水分條件較好以及通氣狀況良好,農(nóng)業(yè)土壤對氣候變化可能有更強的響應(yīng)(Lal,2004)。在1995—2004年,中國農(nóng)業(yè)生態(tài)系統(tǒng)的土壤呼吸大約占全中國陸地生態(tài)系統(tǒng)土壤呼吸的22.2%,且農(nóng)田的土壤呼吸溫度敏感性大于草地(Yu et al.,2010)。與全中國其他地區(qū)相比,有關(guān)青藏高原農(nóng)田生態(tài)系統(tǒng)對氣候變化的響應(yīng)實驗研究很少(Zhong et al.,2016)1-8,而高寒農(nóng)田是農(nóng)田生態(tài)系統(tǒng)的重要組成部分。因此,準(zhǔn)確定量化青藏高原高寒農(nóng)田生態(tài)系統(tǒng)土壤呼吸對氣候變化的響應(yīng)對理解全球氣候變化和預(yù)測大氣CO2濃度變化意義重大(Liang et al.,2004)。

青藏高原的農(nóng)業(yè)區(qū)主要位于半干旱的河谷區(qū)域(Yang et al.,1996),由于海拔高(3000~4500 m)和溫度低,這些地區(qū)是典型的高寒農(nóng)業(yè)區(qū)(Zhang et al.,2000)。由于青藏高原具有高寒和干燥的特點,其農(nóng)業(yè)生態(tài)系統(tǒng)非常脆弱,且其農(nóng)業(yè)區(qū)正經(jīng)歷著明顯的氣候變暖(Shen et al.,2014)。原位控制增溫實驗?zāi)軌驗槿驓夂蜃兓芯刻峁┮欢ǖ睦碚摶A(chǔ)和數(shù)據(jù)支持,然而,目前在青藏高原農(nóng)業(yè)區(qū)開展原位控制增溫的實驗研究還很少見(付剛等,2016)1093。有關(guān)青藏高原農(nóng)田生態(tài)系統(tǒng)土壤呼吸對原位控制增溫的響應(yīng)研究也只限于西藏青稞Highland barley農(nóng)田土壤呼吸的初始響應(yīng)(Zhong et al.,2016)1-8。雖然針對青稞農(nóng)田的研究表明模擬增溫并沒有顯著改變青稞農(nóng)田土壤呼吸及其溫度敏感性(Zhong et al.,2016)1,但是前人的很多研究均表明模擬增溫顯著改變了青藏高原高寒草地和森林生態(tài)系統(tǒng)的土壤呼吸(Lin et al.,2011;Xu et al.,2010)。有關(guān)青藏高原的整合分析也表明,增溫將顯著促進(jìn)土壤呼吸(Zhang et al.,2015)。此外,前人的一些研究表明,模擬增溫顯著促進(jìn)了溫帶和亞熱帶農(nóng)田生態(tài)系統(tǒng)的土壤呼吸(Liu et al.,2012;Reth et al.,2009)。然而,氣候變暖如何影響青藏高原農(nóng)業(yè)生態(tài)系統(tǒng)土壤呼吸目前仍不清楚,需要增加更多的有關(guān)模擬增溫對青藏高原農(nóng)田生態(tài)系統(tǒng)土壤呼吸的影響研究。

定量化玉米生態(tài)系統(tǒng)對氣候變化的響應(yīng)在定量化氣候變化如何影響全球農(nóng)業(yè)生態(tài)系統(tǒng)中扮演著重要角色。作為一種適應(yīng)性強的農(nóng)作物,玉米在西藏自治區(qū)也有種植,2009年的種植面積為4020 hm2(分別占同期糧食作物和農(nóng)作物總播種面積的2.4%和1.7%)(李玲等,2014;李勇等,2014)。目前有關(guān)玉米田對原位控制增溫的實驗研究只分析了玉米物候和生物量與增溫的關(guān)系(付剛等,2016)1093,而缺少土壤呼吸對增溫的響應(yīng)研究。因此,本研究基于西藏自治區(qū)拉薩市達(dá)孜縣農(nóng)業(yè)生態(tài)實驗站玉米田模擬增溫實驗平臺,分析了土壤呼吸及其溫度敏感性對增溫的響應(yīng)?;谇叭说难芯浚╖hong et al.,2016)1,本研究假設(shè)增溫不會顯著促進(jìn)土壤呼吸,同時也不會顯著降低土壤呼吸溫度敏感性。

1 材料與方法

1.1 研究地概況與實驗設(shè)計

本研究區(qū)域(91°21'E,29°41'N,海拔3688 m)位于西藏自治區(qū)拉薩市農(nóng)業(yè)生態(tài)試驗站。年平均溫度7.9 ℃,年均降水量425 mm,90%的降水集中于6—9月(Zhong et al.,2016)2。自20世紀(jì)70年代開始試驗區(qū)土壤被用于農(nóng)作物種植。試驗共設(shè)置兩個增溫處理(對照:C;增溫3.22 ℃:W),每個處理3次重復(fù)。2015年4月22日在試驗地布設(shè)了開頂式生長箱。開頂式生長箱高2.10 m,寬2.00 m,長3 m。每個小區(qū)間隔約為5~6 m。2015年4月22日播種玉米,9月19日收割,行間距約20 cm。

1.2 土壤溫度和土壤含水量監(jiān)測

在每個小區(qū)中間設(shè)置1套微氣候觀測系統(tǒng)(HOBO weather station,Onset Computer,Bourne,MA,USA),用于監(jiān)測5 cm深處的土壤溫度(soil temperature,Ts)和土壤濕度(soil moisture,SM)。

1.3 土壤呼吸測定

于2015年玉米生長季節(jié)的5—8月,利用帶有半徑為20 cm的不透明的調(diào)查室的開路式碳通量觀測系統(tǒng)(LI-8100,LI-COR Biosciences,Lincoln,NE,USA)測定土壤呼吸(Zhong et al.,2016)3,每月測定2次(非生長季未進(jìn)行觀測)。2015年5月,將半徑為20 cm、高5 cm的PVC環(huán)打入每個樣方的中間位置土壤約2~3 cm深處。由于PVC環(huán)位于兩行玉米之間,所以PVC環(huán)內(nèi)并不包括玉米地上部分。分別于5月25日、6月16日、7月3日、7月18日、8月1日、8月31日測定土壤呼吸的日變化(8:00—20:00),每2小時測定1次。在測量土壤呼吸的前1天將土壤環(huán)內(nèi)的雜草齊地面刈割,并將刈割掉的雜草地上部分取走,以排除雜草地上部分呼吸。

1.4 統(tǒng)計分析

對于每一個處理,首先將Rs和SM取對數(shù),然后利用多重逐步回歸分析分析Rs和Ts、SM的關(guān)系。根據(jù)Rs=aebTs分析每一個處理Rs的溫度敏感性,a表示當(dāng)Ts=0時Rs的值,b能反映Rs溫度敏感性(Q10)(Shen et al.,2015)。采用重復(fù)測量方差分析對土壤呼吸進(jìn)行了相關(guān)統(tǒng)計分析,所有的統(tǒng)計分析都通過SPSS(Version 16.0;SPSS Inc.,Chicago,IL)完成。

2 結(jié)果和討論

實驗增溫顯著提高了土壤溫度(t=11.93,P=0.000),增幅為3.22 ℃,增溫顯著降低了土壤濕度(t=4.87,P=0.008),降幅為18.0%(-0.04 m3·m-3)(圖1)。實驗增溫對土壤濕度的負(fù)效應(yīng)與以往的野外增溫觀測結(jié)果一致(Allison et al.,2008;Arnold et al.,1999;Hartley et al.,2007;Poll et al.,2013)。Xu et al.(2013)和Bai et al.(2013)通過整合分析,分別發(fā)現(xiàn)實驗增溫降低了9.25%和4.1%的農(nóng)業(yè)生態(tài)系統(tǒng)的土壤濕度。實驗增溫引起的土壤濕度的降低與實驗增溫增強了土壤蒸散有關(guān)(Peng et al.,2015b)。

雖然對照和增溫處理間的Rs差異極小(平均土壤呼吸速率分別為6.79 μmol·m-2·s-1和7.34 μmol·m-2·s-1),但是Rs的季節(jié)變化和日變化較大(表1,圖2)。同樣的現(xiàn)象也發(fā)生在藏北高寒草甸(Shen et al.,2016)、西藏青稞農(nóng)田(Zhong et al.,2016)4、溫帶農(nóng)業(yè)系統(tǒng)(Hou et al.,2014)和半干旱溫帶森林草原生態(tài)系統(tǒng)(Lellei-kovcs et al.,2008)。

表1 土壤呼吸重復(fù)測量方差分析Table 1 Repeated measures ANOVA for the main and interactive effects of experimental warming (W), measuring date (D) and time (T) on soilrespiration (Rs, μmol·m-2·s-1) in a maize system ofTibet

圖1 西藏玉米田(a)土壤溫度和(b)土壤含水量對實驗增溫的響應(yīng)。Fig. 1 Response of (a) soil temperature (Ts) and (b) soil moisture (SM) to experimental warming in a maize system of the Tibet

圖2 2015年(a)5月25日;(b)6月16日;(c)7月3日;(d)7月18日;(e)8月1日和(f)8月31日西藏玉米田土壤呼吸對實驗增溫的響應(yīng)Fig. 2 Response of soil respiration (Rs) to experimental warming in a maize system of the Tibet in (a) May 25; (b) June 16; (c) July 3; (d) July 18; (e) August 1 and (f) August 31 of 2015

土壤呼吸隨著土壤溫度的增加而顯著增強(圖3)。實驗增溫對Q10無顯著影響(對照:1.70;增溫:1.77)(t=2.69,P=0.100)。增溫導(dǎo)致Rs的變化量與SM的變化量呈顯著正相關(guān)關(guān)系(圖4),這與西藏青稞田的研究結(jié)果一致(Zhong et al.,2016)7。Ts和SM共同解釋了增溫處理的Rs變異,而Ts單獨解釋了對照的Rs變異(表2)。這些研究表明增溫導(dǎo)致的土壤干旱削弱甚至掩蓋了土壤溫度的增加對Rs的正效應(yīng)(Shen et al.,2015)。

前人的相關(guān)研究表明青藏高原高寒生態(tài)系統(tǒng)Rs對氣候變暖并不總是表現(xiàn)為正響應(yīng)(Shen et al.,2015;Zhong et al.,20161),本研究中增溫對Rs和Q10的不顯著影響也驗證了這一結(jié)論,這很可能與增溫導(dǎo)致的土壤干旱有關(guān)。這種現(xiàn)象也發(fā)生在農(nóng)田系統(tǒng)(Poll et al.,2013;Wall et al.,2013)、草地系統(tǒng)(Liu et al.,2009;Wan et al.,2007)和半干旱溫帶森林草原生態(tài)系統(tǒng)(Lellei-kovcs et al.,2008)。

3 結(jié)論

總體而言,3.22 ℃的土壤溫度升高沒有顯著影響西藏玉米田的土壤呼吸及其溫度敏感性,這與土壤增溫導(dǎo)致的土壤濕度的降低有關(guān)。在降水保持不變的情況下,增溫會造成土壤干旱;而灌溉可緩解甚至彌補土壤干旱對土壤呼吸的負(fù)影響,導(dǎo)致玉米田土壤向大氣排放更多的CO2,從而加劇氣候變暖。因此,就土壤呼吸對氣候變暖的響應(yīng)而言,即使在有灌溉條件的地區(qū)也不宜過度灌溉。

圖4 增溫導(dǎo)致的土壤呼吸的變化量與土壤含水量的變化量的關(guān)系Fig. 4 Relationship between the change of soil respiration (ΔRs) and the change of soil moisture (ΔSM) caused by experimental warming

表2 土壤呼吸與土壤溫度、土壤濕度的多重逐步回歸分析Table 2 Stepwise multiple regression analyses between soil respiration (Rs) and soil temperature (Ts) and soil moisture (SM), showing regression coefficient, coefficient of determination (r2) , partial correlation coefficient and significance probability (P)

ALLISON S D, TRESEDER K K. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils [J]. Global Change Biology, 14(12): 2898-2909.圖3 (a)對照和(b)增溫處理的土壤呼吸與土壤溫度的關(guān)系Fig. 3 Relationship between soil respiration (Rs) and soil temperature (Ts) for (a) the control and (b) experimental warming treatments

ARNOLD S S, FERNANDEZ I J, RUSTAD L E, et al. 1999. Microbial response of an acid forest soil to experimental soil warming [J]. Biology and Fertility of Soils, 30(3): 239-244.

BAI E, LI S L, XU W H, et al. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics [J]. New Phytologist, 199(2): 441-451.

COX P M, BETTS R A, JONES C D, et al. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature, 408 (6809): 184-187.

HARTLEY I P, HEINEMEYER A, EVANS S P, et al. 2007. The effect of soil warming on bulk soil vs. rhizosphere respiration [J]. Global Change Biology, 13(12): 2654-2667.

HOUR R X, OUYANG Z, WILSON G V, et al. 2014. Response of carbon dioxide emissions to warming under no-Till and conventional till systems [J]. Soil Science Society of America Journal, 78(1): 280-289.

LAL R. 2004. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 304(5677): 1623-1627.

LELLEI-KOVCS E, KOVACS-LANG E, KALAPOS T, et al. 2008. Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem [J]. Community Ecology, 9(1): 29-37. LIANG N S, NAKADAI T, HIRANO T, et al. 2004. In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest [J]. Agricultural and Forest Meteorology, 123(1-2): 97-117.

LIN X W, ZHANG Z H, WANG S P, et al. 2011. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau [J]. Agricultural and Forest Meteorology, 151(7): 792-802.

LIU W X, ZHANG Z, WAN S Q. 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland [J]. Global Change Biology, 15(1): 184-195.

LIU Y, CHEN S T, HU Z H, et al. 2012. Effects of simulated warming on soil respiration in a cropland under winter wheat-soybean rotation (in Chinese with English abstract) [J]. Environmental Science, 33(12): 4205-4211.

PENG F, XU M H, YOU Q G, et al. 2015a. Different responses of soil respiration and its components to experimental warming with contrasting soil water content [J]. Arctic Antarctic and Alpine Research, 47(2): 359-368.

PENG F, YOU Q G, XUE X, et al. 2015b. Evapotranspiration and its source components change under experimental warming in alpine meadow ecosystem on the Qinghai-Tibet plateau [J]. Ecological Engineering, 84: 653-659.

POLL C, MARHAN S, BACK F, et al. 2013. Field-scale manipulation of soil temperature and precipitation change soil CO2flux in a temperate agricultural ecosystem [J]. Agriculture Ecosystems & Environment, 165: 88-97.

RAICH J W, POTTER C S. 1995. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 9(1): 23-36.

RETH S, GRAF W, REICHSTEIN M, et al. 2009. Sustained stimulation of soil respiration after 10 years of experimental warming [J]. Environmental Research Letters, DOI: 10.1088/1748-9326/1084/ 1082/024005.

SHEN Z X, FU G, YU C Q, et al. 2014. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau [J]. Remote Sensing, 6(8): 6765-6789.

SHEN Z X, LI Y L, FU G. 2015. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet [J]. Applied Soil Ecology, 90: 35-40.

SHEN Z X, WANG J W, SUN W, et al. 2016. The soil drying along the increase of warming mask the relation between temperature and soil respiration in an alpine meadow of Northern Tibet [J]. Polish Journal of Ecology, 64(1): 125-129.

WALL G W, MCLAIN J E T, KIMBALL B A, et al. 2013. Infrared warming affects intrarow soil carbon dioxide efflux during vegetative growth of spring wheat [J]. Agronomy Journal, 105(3): 607-618.

WAN S, NORBY R J, LEDFORD J, et al. 2007. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland [J]. Global Change Biology, 13(11): 2411-2424.

XU W F, YUAN W P, DONG W J, et al. 2013. A meta-analysis of the response of soil moisture to experimental warming [J]. Environmental Research Letters, DOI: 10.1088/1748-9326/1088/1084/044027.

XU Z F, Wan C A, XIONG P, et al. 2010. Initial responses of soil CO2efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China [J]. Plant and Soil, 336(1-2): 183-195.

YANG G H, DU E S, XU Z Y, et al. 1996. Productivity of land resources and population carrying capacity in Xizang [J]. Lhasa: Tibetan People’s Publishing House: 44-72.

YU G, ZHENG Z, WANG Q, et al. 2010. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation [J]. Environmental Science & Technology, 44(16): 6074-6080.

ZHANG X Z, SHEN Z X, FU G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau [J]. Applied Soil Ecology, 87: 32-38.

ZHANG X Z, ZHANG Y G, ZHOUB Y H. 2000. Measuring and modelling photosynthetically active radiation in Tibet Plateau during April-October [J]. Agricultural and Forest Meteorology, 102(2-3): 207-212.

ZHONG Z M, SHEN Z X, FU G. 2016. Response of soil respiration to experimental warming in a highland barley of the Tibet [J]. SpringerPlus, DOI: 10.1186/s40064-40016-41761-40060.

付剛, 鐘志明. 2016. 西藏高原玉米物候和生態(tài)特征對增溫響應(yīng)的模擬試驗研究[J]. 生態(tài)環(huán)境學(xué)報, 25(7): 1093-1097.

李玲, 許立紅, 高麗萍, 等. 2014. 蘭州市鮮食玉米栽培技術(shù)[J]. 甘肅農(nóng)業(yè)科技, (1): 59-60.

李勇, 何云芬. 2014. 高海拔地區(qū)玉米栽培技術(shù)[J]. 南方農(nóng)業(yè), 8(21): 33-33.

Effect of Experimental Warming on Soil Respiration in A Maize System of Tibet

FU Gang, ZHONG Zhiming

Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

The agricultural regions on the Tibetan Plateau are experiencing obvious climatic warming, while how climatic warming will affect carbon cycling in agricultural ecosystems remains unclear. Soil respiration is the second largest carbon flux in terrestrial ecosystems. Uncertainties about the response of soil respiration in alpine croplands to climatic warming limits our ability to predict carbon cycling in alpine ecosystems on the Tibetan Plateau under future climatic change. A field warming experiment was conducted in a maize system of the Tibet in April 2015 and the objective of this study was to investigate the effect of experimental warming on soil respiration and its temperature sensitivity. Six diurnal variations of soil respiration were measured using LI8100 soil carbon flux measurement system during the period from May to August in 2015. Soil temperature and soil moisture at depth of 5 cm were also measured using HOBO microclimate measurement system. Experimental warming increased significantly soil temperature by 3.22 ℃ (t=11.93, P=0.000), but decreased significantly soil moisture by 0.04 m3·m-3(t=4.87, P=0.008). Soil respiration under control and warming conditions was 6.79 μmol·m-2·s-1and 7.34 μmol·m-2·s-1, respectively, and there was no significant difference of soil respiration between control and warming treatments (F=1.65, P=0.235). However, there was significant diurnal variation (F=137.66, P=0.000) and seasonal variation (F=54.48, P=0.000) of soil respiration. Experimental warming did not affect temperature sensitivity of soil respiration (t=2.69, P=0.100) and temperature sensitivity of soil respiration in control and warming treatments was 1.70 and 1.77, respectively. Soil temperature explained 36% variation of soil respiration in control plots, while soil temperature and soil moisture together explained 62% variation of soil respiration. Therefore, 3.22 ℃ increase in soil temperature did not affect soil respiration and its temperature sensitivity, which was correlated with the decline in soil moisture caused by experimental warming.

passive warming; soil moisture; temperature sensitivity; Tibetan Plateau

10.16258/j.cnki.1674-5906.2017.01.008

X16; S154.1

A

1674-5906(2017)01-0049-06

付剛, 鐘志明. 2017. 實驗增溫對西藏高原玉米田土壤呼吸的影響[J]. 生態(tài)環(huán)境學(xué)報, 26(1): 49-54.

FU Gang, ZHONG Zhiming. 2017. Effect of experimental warming on soil respiration in a maize system of Tibet [J]. Ecology and Environmental Sciences, 26(1): 49-54.

國家自然科學(xué)基金項目(31370458;31600432);生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測與模擬重點實驗室青年創(chuàng)新研究團(tuán)隊項目(LENOM2016Q0002);中國科學(xué)院“西部之光人才計劃”(藏北高原高寒草甸牲畜承載力對氣候變化和放牧的響應(yīng));西藏自治區(qū)自然科學(xué)基金項目(西藏高寒草甸物種豐富度和地上生物量對增溫的響應(yīng));西藏草業(yè)重大專項(2015ZDKJZC;2016ZDKJZC);國家科技支撐計劃項目(2011BAC09B03);國家重點研發(fā)計劃項目(2016YFC0502005;2016YFC0502006)

付剛(1984年生),男,副研究員,博士,研究方向為高寒生態(tài)系統(tǒng)與全球變化。E-mail: fugang@igsnrr.ac.cn

*通信作者

2016-09-11

猜你喜歡
玉米田土壤濕度土壤溫度
土壤濕度傳感器在園林綠化灌溉上的應(yīng)用初探
基于51單片機(jī)控制花盆土壤濕度
電子制作(2019年15期)2019-08-27 01:12:12
遼東山區(qū)3種人工林土壤呼吸對土壤溫度和土壤水分的響應(yīng)
管群間歇散熱的土壤溫度響應(yīng)與恢復(fù)特性
四川盆地土壤濕度時空分布及影響因子分析
中國不同氣候區(qū)土壤濕度特征及其氣候響應(yīng)
土壤濕度和土壤溫度模擬中的參數(shù)敏感性分析和優(yōu)化
玉米田除草劑的那些事
營銷界(2015年23期)2015-02-28 22:06:18
高溫干旱下的夏播玉米田害蟲防治?
營銷界(2015年23期)2015-02-28 22:06:17
玉米田不同控釋肥料效用研討
宿迁市| 四会市| 科尔| 遵义县| 木兰县| 洪雅县| 永济市| 汤原县| 永定县| 金堂县| 伊吾县| 汾西县| 珲春市| 温州市| 抚远县| 鄂伦春自治旗| 孙吴县| 马边| 内黄县| 鸡泽县| 和平县| 阳高县| 虞城县| 哈密市| 长乐市| 图木舒克市| 边坝县| 吴桥县| 舞钢市| 溧阳市| 永昌县| 治县。| 静宁县| 恩平市| 台东县| 邯郸县| 汪清县| 班玛县| 仁化县| 乐昌市| 宁远县|