姚秀華 王中海
T細胞是淋巴細胞中數(shù)量最多、功能最復雜的一類細胞。上世紀70年代,學者意識到有一具有免疫抑制的細胞亞群存在于T細胞群中,1995年Sakaguchi[1]明確提出了調(diào)節(jié)性T細胞的概念,并成功分離出了CD4+CD25+調(diào)節(jié)性T細胞亞群。按照分化抗原的不同,命名了CD1~CD166等若干個分化抗原群,其中CD4和CD8是區(qū)分成熟T細胞亞群的主要表面標志。不同的CD4+T細胞通過分泌不同的細胞因子,對免疫系統(tǒng)的起著重要的調(diào)控作用,按不同的作用分為1型輔助性T細胞(T helper type 1 cells,Th1)、2型輔助性T細胞(T helper type 2 cells,Th2)、17型輔助性T細胞(T helper type 17 cells,Th17)、濾泡輔助性T細胞和調(diào)節(jié)性T細胞等。其中,Tregs是目前發(fā)現(xiàn)的一種具有免疫抑制功能的重要細胞亞群。叉狀頭螺旋轉(zhuǎn)錄因子被認為是調(diào)節(jié)性T細胞的特異性標志物。以下就調(diào)節(jié)性T細胞的種類及其與FOXP3的免疫機制及與腫瘤之間的關(guān)系做一闡述。
Tregs的分化場所主要在胸腺及外周,均依賴于特定細胞因子的作用。促進其分化的主要因素包括,(1)細胞因子:包括轉(zhuǎn)化生長因子-β(transforming growth factor-13,TGF-β)、IL-2家族細胞因子(IL-2、白細胞介素-7和白細胞介素-15)、半乳糖血凝素-9(galectin-9,Gal-9)、角質(zhì)細胞生長因子(karetinocyte growth factor,KGF)。其中,TGF-β和IL-2的研究最為深入透徹,也是目前認為對Treg細胞分化十分重要的兩種細胞因子[2-7]。(2)T細胞受體。(3)T細胞受體的下游關(guān)鍵信號分子,包括TCR→CARMA1復合物→核因子-kB(nuclear factor-kB,NF-kB)信號通路[8-11]、TCR→蛋白激酶Cθ→calcineurin→NFAT通路[12-13]、CD28。(4)非細胞因子物質(zhì),如維甲酸、芳香烴受體激動劑等。(5)其他如micro-RNA、抗原呈遞細胞。
Tregs占外周血CD4+T細胞的5%~10%,根據(jù)其起源、效應機制和抗原,將其分為兩類:(1)自然發(fā)生的Tregs(natural regulatory T cell,nTreg)分化場所在胸腺,在胸腺細胞成熟的過程中,一部分CD4單陽性的自身反應性細胞因表達FOXP3而通過陰性選擇,成為Tregs。nTreg在病理性自身免疫反應方面發(fā)揮預防作用。CD4+CD25+Treg主要指的是nTreg細胞。(2)誘導性的Tregs(induced regulatory T cell,iTreg)分化方式為外周分化,iTreg是由CD4+T細胞在多種條件下經(jīng)過抗原刺激后,再受到大量的TGF-β作用后發(fā)育而來,在微生物感染和移植免疫中起重要作用。Tregs分化過程完成的標志就是FOXP3在CD4+T細胞的穩(wěn)定表達。
叉狀頭螺旋轉(zhuǎn)錄因子為XP染色體11,23染色體上的X連鎖基因,可逆轉(zhuǎn)錄誘導幼稚T細胞向CD4+CD25+Tregs轉(zhuǎn)換,并獲得成熟Tregs具備的抑制活性,在Tregs的發(fā)育及功能表達上起著決定性的作用,通常將其作為CD4+CD25+Tregs的特異性標志物,其本身也在Tregs增殖、分化、免疫抑制等功能調(diào)控中處重要的核心位置[14]。
FOXP3除了在Tregs中表達,也表達于普通的T細胞[15]。兩者之間主要差異在于普通的T細胞中FoxP3的表達水平較低,且為一過性表達,這種一過性表達不足以令普通的T細胞具有抑制功能。普通的T細胞細胞獲得抑制能力很大程度上依賴于FOXP3表達量,這種抑制能力在敲除FOXP3后會迅速逆轉(zhuǎn)[16],編碼FOXP3基因突變對小鼠和人的影響都是致命性的[17-18]。有學者報道,小鼠產(chǎn)生的CD4+CD25+T細胞被敲除了Foxp3基因后不具備調(diào)節(jié)功能,并促進了自身免疫性疾病的發(fā)生[19]。而通過技術(shù)使CD4+T淋巴細胞表達Foxp3,獲得的Tregs可具有與nTreg相同的表型和功能[20]。越來越多的學者認同,F(xiàn)OXP3穩(wěn)定的高水平表達是Tregs發(fā)揮抑制功能的必備條件,但表觀遺傳修飾和其他轉(zhuǎn)錄因子(如活化T細胞核因子、Runx1和ROR-γt)的協(xié)作對穩(wěn)定Treg細胞的表型和功能特性也是必不可少。
自身免疫耐受是指機體的免疫系統(tǒng)具有識別、清除異己,同時又避免與機體本身的成份發(fā)生反應的能力。某些自身反應性T細胞可以逃避克隆消除,識別外周組織抗原,引起自身免疫反應。自身應答T細胞克隆與相應組織抗原并存,在正常情況下,不引起自身免疫性疾病的狀態(tài),稱為免疫忽視。過度的免疫忽視或免疫監(jiān)控失調(diào)稱之為免疫逃逸,是腫瘤發(fā)生的分子生物學基礎。Tregs FOXP3重要是通過下述機制發(fā)揮免疫抑制功能。
1.通過細胞因子發(fā)揮抑制作用:腫瘤的發(fā)生、發(fā)展是一個復雜的病理生理過程,包含多個分子事件。在腫瘤微環(huán)境中,調(diào)節(jié)性T細胞分泌多種抑制性細胞因子,干擾抗原呈遞,抑制免疫活性細胞的增殖及淋巴細胞的分化、同時促進抗凋亡分子的表達,使腫瘤細胞能抵御免疫效應細胞的誘導凋亡的作用。這一機制被認為是Tregs發(fā)揮抑制作用的主要機制之一。這些細胞因子包括IL-10、TGF-β和IL-35,均由Tregs分泌釋放。研究證實,IL-10和TGF-β是Tregs發(fā)揮抑制作用不可缺少的一環(huán)[21]。TGF-β一方面可抑制機體的免疫功能;另一方面可以令腫瘤細胞逃脫免疫效應細胞的識別和偵察。有學者[22-24]發(fā)現(xiàn),Tregs可以通過分泌TGF-β來抑制自然殺傷細胞的細胞毒性作用,從而抑制免疫應答,使腫瘤細胞賴以存活。IL-35是IL-12家族的新成員,敲除小鼠的IL-35后,其調(diào)節(jié)性T細胞的功能受到明顯的抑制。
2.通過粒酶介導的細胞溶解發(fā)揮抑制作用:特定的條件下,Tregs可分泌顆粒酶或穿孔素導致代謝受阻來誘導細胞的裂解死亡。調(diào)節(jié)性T細胞的細胞溶解機制在人類由顆粒酶A介導,在小鼠由顆粒酶B介導。
3.在腫瘤局部腫瘤細胞與Treg細胞相互作用:Tregs表面的細胞毒T淋巴細胞相關(guān)抗原4,能與樹突狀細胞表面的CD80、CD86結(jié)合,并向效應性T細胞傳遞抑制性信號,抑制樹突狀細胞的成熟,減弱樹突狀細胞的抗原遞呈效應,最終減弱效應T細胞的活化,削弱其抗腫瘤抗原效應[25-26]。
Tregs可高度表達CCL22受體,而大部分的腫瘤細胞可分泌CCL22,因此,能夠使Tregs向腫瘤細胞周圍聚集和擴增。在乳腺癌中,CCL22可能可作為乳腺癌預后評定的指標之一[27]。
4.通過阻斷代謝消耗IL-2:IL-2是效應細胞(如CD4+和CD8+T淋巴細胞)生長所必需的因子,也是正向調(diào)控免疫應答的重要細胞因子。Tregs通過在其表面高度表達IL-2受體從而直接消耗大量IL-2,導致T細胞凋亡,產(chǎn)生競爭性抑制的作用[28]。
5.Tregs:FOXP3表達的調(diào)控機制:FOXP3在CD4+CD25+Treg發(fā)育和功能中起著關(guān)鍵的作用。FOXP3基因位點上有很多遺傳保守非編碼序列參與FOXP3基因的調(diào)控,能提高Tregs FOXP3的表達。FOXP3能通過下調(diào)激活T細胞核因子、核因子KB的活性負向調(diào)節(jié)T細胞中細胞因子基因的表達,而發(fā)揮其免疫抑制作用。
多項研究顯示,多種腫瘤如惡性黑色素瘤、結(jié)腸癌、卵巢癌、胃癌患者,外周血及腫瘤局部微環(huán)境中存在Tregs數(shù)量及比例升高,且與腫瘤的進展程度及不良預后正相關(guān)[29-31]。Christoph等[32]對比宮頸癌和惡性黑色素瘤、結(jié)腸癌、支氣管癌患者腫瘤組織中浸潤淋巴細胞平均量,發(fā)現(xiàn)宮頸癌、CIN和支氣管癌浸潤CD4+和CD8+T細胞的總體數(shù)量明顯高于結(jié)腸癌、惡性黑色素瘤。分析原因可能為98%的宮頸癌是由于HPV病毒引起,由于其增加的內(nèi)源性抗原,需要特別靈活和強大的免疫防御系統(tǒng),因此,宮頸癌中有大量Tregs的存在。
相關(guān)實驗表明,應用治療性腫瘤疫苗時,可同時清除體內(nèi)的Tregs且能夠明顯增強抗腫瘤治療的效果[33]。臨床數(shù)據(jù)顯示,設法刪除或阻斷CD4+CD25+Tregs的功能是新型抗腫瘤免疫治療策略中不可缺少的重要組成部分。針對惡性腫瘤的治療目的,調(diào)節(jié)性T細胞的失活,似乎是一個有前途的且具有挑戰(zhàn)性的任務。因為調(diào)節(jié)性T細胞和其他T細胞共享大多數(shù)受體。Ko等[34]把一種激動性抗體結(jié)合到小鼠GITR,在靜息T細胞GITR受體低水平表達,但在Tregs組成型表達并立即上調(diào)細胞毒性T細胞活性。小鼠的Tregs通過GITR觸發(fā)相對應的抗原特異性刺激廢除他們的抑制作用。在幾個小鼠腫瘤模型中抗GITR抗體(DTA1)的系統(tǒng)應用誘發(fā)明顯甚至腫瘤的完全破壞。為此,我們期待,調(diào)節(jié)性T細胞、FOXP3可能可作為腫瘤治療的一個靶點。
1 Sakaguchi S,Sakaguchi N,Asano M,et al.lmmunologic self-toIerance maintained by activated T cells expressing IL-2 receptor alpha—chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J Immunol,1995,155:1151-1164.
2 Josefowicz SZ,Rudensky A.Control of regulatory T cell lineage commitment and maintenance.Immunity,2009,30:616-625.
3 Chen W,Jin W,Hardegen N,et al.Conversion of peripheral CD4+CD25naive T cells to CD4+CD25+regulatory T cells by tgf-beta induction of transcription factor foxp3.J Exp Med ,2003,198:1875-1886.
4 Tone Y,Furuuchi K,Kojima Y,et al.Smad3 and nfat cooperate to induce foxp3 expression through its enhancer.Nat Immunol ,2008,9:194-202.
5 Liu Y,Zhang P,LiJ,et al.A critical function for tgf-beta signaling in the development of natural cd4+cd25+foxp3+ regulatory T cells.Nat Immunol,2008,9:632-640.
6 Lio CW,Hsieh CS.A two-step process for thymic regulatory T cell development.Immunity ,2008,28:100-111.
7 Soper DM,Kasprowicz DJ,Ziegler SF.Il-2rbeta links il-2r signaling with foxp3 expression.Eur J Immunol,2007,37:1817-1826.
8 Medoff BD,Sandall BP,Landry A,et al.Differential requirement for carma1 in agonist-selected T-cell development.Eur J Immunol,2009,39:78-84.
9 Molinero LL,Yang J,Gajewski T,et al.Carma1 controls an early checkpoint in the thymic development of foxp3+ regulatory T cells.J Immunol,2009,182:6736-6743.
10 Schmidt-Supprian M,Tian J,Grant EP,et al.Differential dependence of cd4+cd25+ regulatory and natural killer-like T cells on signals leading to nf-kappab activation.Proc Natl Acad Sci USA,2004,101:4566-4571
11 BarnesMJ,Krebs P,Harris N,et al.Commitment to the regulatory T cell lineage requires carma1 in the thymus but not in the periphery.PLoS Biol,2009,7:e51.
12 Ruan Q,Kameswaran V,Tone Y,et al.Development of foxp3(+) regulatory T cells is driven by the c-rel enhanceosome.Immunity,2009,31:932-940.
13 MantelPY,Ouaked N,Ruckert B,et al.Molecular mechanisms underlying foxp3 induction in human T cells.J Immunol,2006,176:3593-3602.
14 Fu W,Ergun A,Lu T,et al.A multiply redundant genetic switch‘locks in’the transcriptional signature of regulatory T cells.Nat Immunol,2012,13:972-980.
15 Starr TK,Jameson SC,Hogquist KA.Positive and negative selection of T cells.Annu Rev Immunol,2003,21:139-176.
16 McMurchy AN,Bushell A,Levings MK,et al.Moving to tolerance:clinical application of T regulatory cells.Semin Immunol,2011,23:304-313.
17 Khattri R,Cox T,Yasayko SA,et al.An essential role for Scurfin in CD4+ CD25+ T regulatory cells.Nat Immunol,2003,4:337-342.
18 Bennett CL,Christie J,Ramsdell F,et al.The immune dysregulation,polyendocrinopathy,enteropathy,X-linked syndrome (IPEX) is caused by mutations of FOXP3.Nat Genet,2001,27:20-21 .
19 Brunkow ME,Jeffery EW,Hjerrild KA,et al.Disruption of a new forkhead/winged -helix protein,scurfin,results in the fatal lymphoproliferative disorder of the scurfy mouse.Nat Genet,2001,27:68.
20 Hori S,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3.Science,2003,299:1057.
21 Annacker O,Pimenta-Araujo R,Burlen-Defranoux O,et al.CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10.J Immunol,2001,166:3008-3018.
22 Firmpong Boateng K,van Rooijen N,Geiben Lynn R.Regulatory T cells suppress natural killer cells during plasmid DNA vaccination in mice,blunting the CD8+ T cell immune response by the cytokineTGF-β.PLoS One,2010,5:e12281.
23 Wang J,Shao N,Ding X,eta1.Crosstalk between transforming growth factor-β signaling pathway and long noncoding RNAs in cancer.Cancer Lett,2016,370:296-301.
24 Mi HL,Kyung SK,Jongsun K.A comparative study of the effects of inhibitory cytokines on human natural killer cells and the mechanistic features of transforming growth faetor-beta.Cell Immunol,2014,290:52-61.
25 ecilia O,Lukas C,Anna M,et al.Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD41 CD251 regulatory T-cell mediated suppression.Immunology,2006,118:240-249.
26 Bitao L,Craig W,Janine L,et al.Regulatory T cells inhibit dendritic cells by lymphocyte activation gene3 engagement of MHC classⅡ.J Immunol,2008,180:5916-5926.
27 LiYQ,Liu FF ,Zhang XM ,et al.Tumor Secretion of CCL22 Activates Intratumoral Tregs Infiltration and is Independent Prognostic Predictor of Breast Cancer.PLoS One,2013,8:e76379.
28 Vang AG,William H,Hongli D,et al.Regulatory T-cells and cAMP suppress effector T-ceils independently of PKA—CREM/ICER:a potential role for Epac.Bloc J,2013,456:463-473.
29 Li B ,GreeneMI.FOXP3 actively represses transcription by recriting the HAT/HDAC complex .Cell Cycle,2007,6:1432-1436.
30 Perrone G,Ruffini PA,Catalano V,et al.Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer.Eur J Cancer,2008,44:1875-1882.
31 Xia M,ZhaoMQ,Wu K,et a1.Investigations on the clinical significance 0f FOXP3 Protein expression in cervical oeso Phageal cancel and the number of FOXP3+ tumour-infiltrating lymPhocyte.Int Med Res,2013,41:1002-1008.
32 Christoph L,Corinna H,Jonas S,et al.Blackwell Publishing Asia Regulatory (FOXP3+) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical cancer.Japanese Cancer Association,2009,100:1112-1117
33 Roselli M,Cereda V,di Bari MG,et al.Effects of conventional therapeutic interventions on the number and function of regulatory T cells .Oncoimmunology,2013,2:e27025.
34 Ko K,Yamazaki S,Nakamura K,et al.Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+regulatory T cells.J Exp Med,2005,202:885-891.