彭凡+王樑+肖健+胡絢+韋冰峰2
摘 要:基于加速度頻響函數(shù)矩陣反演頻域動載荷是病態(tài)逆問題,反求的結果精度差,對數(shù)據(jù)的小擾動敏感,基于Tikhonov正則化方法,提出一種反演途徑,將測點響應與待求激勵進行歸一化變換,在此基礎上引入變換后的頻響函數(shù)矩陣和正則化泛函進行求解,應用廣義交叉驗證準則選取最優(yōu)正則化參數(shù).考慮簡支矩形薄板上的4個動載荷的識別問題,分析激勵點和響應測點的不同位置以及動載荷大小之間相差程度不同的4個算例,將本文方法與不采用歸一化變換的正則化求解結果進行2種相對誤差的均方根比較.結果表明,利用歸一化變換可提高動載荷反演精度,增強正則化方法的抗噪能力,當測點之間的響應以及各動載荷大小相差較大時,明顯改善了識別精度.
關鍵詞:動態(tài)載荷;頻響函數(shù);反問題;正則化;歸一化
中圖分類號:O326;O347.1 文獻標志碼:A
A Regularization Approach of Dynamic Load Identification
in Frequency Domain by Acceleration Responses
PENG Fan1 ,WANG Liang1,XIAO Jian2,HU Xuan1 , WEI Bingfeng2
( 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
2. Research Institute of Beijing Structure and Environment Engineering,Beijing 100076, China)
Abstract:Load identification based on acceleration frequency response matrix is an ill-conditioned problem. The identification accuracy can obviously be affected by small perturbations of the response data. Based on Tikhonov regularization method, a new approach is proposed in which both the response data at measured points and the loads to be identified are normalized, the transformed frequency response matrix and regularization function are introduced, and the corresponding problem of functional minimum is solved to obtain the loads. The optimal regularization parameters are determined by generalized cross validation criterion. The identification of four transverse dynamic loads on a rectangular thin plate with simply supported edges is performed. Four numerical examples are designed to have different application locations of loads and measured points as well as different magnitude ratio of dynamic loads in frequency domain. The results show that the new approach of dynamic load identification in frequency domain is effective to improve the identification accuracy and the noise resistance. Particularly, the errors of the identification can be significantly reduced in the cases where the large difference between the magnitudes of dynamic loads in frequency domain exists, or when excitation positions are close to structural boundaries.
Key words:dynamic loads; frequency response function; inverse problem; regularization; normalization
載荷識別的理論和應用研究受到了研究者越來越多的重視[1-5],目前,人們已提出了多種頻域內(nèi)反演動態(tài)載荷的技術,其中頻響函數(shù)矩陣求逆是一類重要方法[6-7].然而,反演的病態(tài)特性使得量測數(shù)據(jù)的小擾動導致結果不準確,甚至不可信.當以測點的加速度頻域響應作為輸入時,低頻段的反演誤差非常明顯.正則化方法是提高反求精度和穩(wěn)健性的一條重要途徑,典型的正則化方法包括截斷奇異值分解和Tikhonov正則化方法[8].截斷奇異值分解法的基本思想是將所得的廣義解式子右端進行截斷[9],即只保留前面若干個對應于較大奇異值的部分,將后面的對應于較小奇異值的部分過濾掉,如何選取截斷閾值,是該方法的難點.Tikhonov正則化方法通過引入包含響應殘差和激勵的模的泛函,由泛函對載荷的一階偏導為零,得到正則化以后的激勵求解列式[10-11].文獻[12-13]提出綜合使用奇異值分解法與Tikhonov正則化的載荷識別策略,當頻響函數(shù)矩陣的條件數(shù)大于某一臨界值時,使用正則化技術,反之,由奇異值分解法實施反求.張磊等[14]提出在總體最小二乘算法的基礎上進行Tikhonov正則化,利用共軛梯度法解算該目標函數(shù)的最優(yōu)化問題.然而,當各響應測點的響應之間、響應與激勵之間以及激勵與激勵之間在數(shù)量上差別大,會導致正則化方法效果差,有必要重新考察變分泛函的構造.為此,文中由歸一化變換使得加速度響應和激勵的模值在一個相近的范圍內(nèi)變化,在此基礎上重新構造變分泛函,給出一種Tikhonov正則化求解途徑,通過簡支矩形薄板的多點載荷反求算例檢驗其有效性.
2 算例及討論
2.1 算例設計及誤差定義
2.2 算例1
對于表1所示位置組合Ⅰ的動載荷,考慮加載條件Ⅰ,分別采用不經(jīng)歸一化處理和經(jīng)過歸一化處理的正則化方法反求載荷,結果如圖2所示.由圖2可知, 4個反演載荷均在低頻范圍內(nèi)波動大,在較高頻段內(nèi),反求值與實際值相差很小.這是因為基于加速度反求的逆運算項之模值隨頻率減小而顯著增加,隨頻率增加而減小,故在低頻段,頻響函數(shù)矩陣求逆的條件數(shù)較大,導致較大的誤差與波動.圖2表明,歸一化變換后的正則化求解能提高識別精度,尤其在低頻段內(nèi),效果明顯.而在大于二階基頻(約45 Hz)的頻率段,兩種反演途徑給出的結果接近相同.
分析載荷頻域值相同的加載條件Ⅱ,識別誤差結果如表4所示.由表4可知,2種正則化途徑所得結果的誤差相比表3列出的對應值減小,歸一化處理對F1,F(xiàn)2和F3的識別效果改善較小,但明顯提高了F4的識別精度.這是因為F4接近邊界,產(chǎn)生的測點加速度響應小,歸一化變換將其影響放大了,使得其識別精度得到提高.
2.3 算例2
分析位置組合Ⅱ,首先考慮載荷條件Ⅰ,誤差結果如表5所示.比較表5與表3可見, F4的誤差減小,而F1的誤差有所增加,主要原因是此位置組合中的F4作用點靠近板中部,從而激發(fā)了較強的響應,而F1相對其余3個載荷更靠近邊界.歸一化變換改善了反求的總體精度,且明顯降低了F4的相對誤差.
考慮載荷條件Ⅱ,誤差如表6所示.從總體和個體來看,2種正則化途徑所給結果的識別精度接近相同,原因在于4個頻域載荷相同,且作用點離邊界較遠以及各測點頻域相應的強度接近相同.同樣由于F1離邊界相對最近,故識別誤差最大的載荷由F4變成了F1,而歸一化處理使得F1的識別誤差略有減小.
3 結 論
在頻域中采用歸一化變換,將各測點響應和待求載荷的大小變化調(diào)整到相近的范圍,構造新的Tikhonov泛函進行正則化求解.利用數(shù)值仿真所得結果可知:
1)歸一化處理能從整體和個體上提高各動載荷的反演精度.
2)當頻域動載荷大小相差較明顯,或者載荷作用點靠近邊界時,歸一化處理使得相應荷載的反求精度明顯改善,抵抗測量噪性干擾的能力增強.
參考文獻
[1] LNOUE H,HARRIGAN J J,REID S R. Review of inverse analysis for indirect measurement of impact force[J].Applied Mechanics Review,2001,54(6):503-525.
[2] 韓旭,劉杰,李偉杰,等.時域內(nèi)多源動態(tài)載荷的一種計算反求技術[J].力學學報,2009,41(4):595-602.
HAN Xu, LIU Jie, LI Weijie,et al.A computational inverse technique for reconstruction of multisource loads in time domain[J].Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):595-602.(In Chinese)
[3] SU N, LIU J ,HAN X, et al. A new improved regularization method for dynamic load identification[J].Inverse Problem in Science and Engineering,2014,22(7):1062-1076.
[4] 彭凡,馬慶鎮(zhèn),肖健,等.整體平動自由結構載荷時域識別技術研究[J]. 振動與沖擊,2016,35(6):95-99.
PENG Fan, MA Qingzhen, XIAO Jian, et al. Research on load identification in time domain for free structures with oval translation[J].Journal of Vibration and Shock,2016,35(6):95-99.(In Chinese)
[5] 彭凡,王樑,肖健.質量時變系統(tǒng)的動載荷識別[J].湖南大學學報:自然科學版,2016,43(8):52-56.
PENG Fan, WANG Liang, XIAO Jian. Identification of dynamic loads in mass-variable system[J]. Journal of Hunan University:Natural Sciences, 2016, 43(8):52-56.(In Chinese)
[6] SANCHEZ J, BENAROYA H.Review of force reconstruction techniques[J]. Journal of Sound and Vibration,2014, 333(14): 2999 -3018.
[7] 劉恒春,朱德懋,孫久厚.振動載荷識別的奇異值分解法[J].振動工程學報,1990,3(1):24-33.
LIU Hengchun, ZHU Demao,SUN Jiuhou.A singular value decomposition method for the identification vibration loads[J]. Journal of Vibration Engineering,1990,3(1):24-33.(In Chinese)
[8] NELSON P A,YOON S H. Estimation of acoustic source strength by inverse of methods: partⅠ,conditioning of the inverse problem[J]. Journal of Sound and Vibration, 2000, 233(4):643-668.
[9] THITE A N,THOMPSON D J.The quantification of structure structure borne transmission paths by inverse methods. part1: improved singular value rejection methods[J]. Journal of Sound and Vibration, 2003,264(2/3): 411-431.
[10]KIM Y, NELSON P A. Optimal regularisation for acoustic source reconstruction by inverse methods[J]. Journal of Sound and Vibration,2004, 275(3/5):463-487.
[11]CHOI H G,THITE A N,THOMPSON D J. Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination [J]. Journal of Sound and Vibration, 2007,304(3/5):894-917.
[12]CHOI H G, THITE A N, THOMPSON D J. A threshold for the use of Tikhonov regularization in inverse force determination[J]. Applied Acoustics, 2006,67(8):700-719.
[13]郭榮,房懷慶,裘剡,等.基于Tikhonov正則化及奇異值分解的載荷識別方法[J].振動與沖擊,2014,33(6):53-58.
GUO Rong, FANG Huaiqing,QIU Shan,et al. Novel load identification method based on the combination of Tikhonov regularization and singular value decomposition[J].Journal of Vibration and Shock,2014, 33(6):53-58 .(In Chinese)
[14]張磊,曹躍云,楊自春,等.總體最小二乘正則化算法的載荷識別[J]. 振動與沖擊, 2014,33(9):159-164.
ZHANG Lei, CAO Yueyun, YANG Zichun,et al.Load identification using CG-TLS regulariztion algorithm[J]. Journal of Vibration and Shock,2014,33(9):159-164.(In Chinese)
[15]GOLUB G H, HEATH M, WAHBA G. Generalized Cross-Validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979,21(2): 215-223.