郭新愿,王 攀,任連海*,賀艷坤
1.北京工業(yè)大學(xué)建筑工程學(xué)院,北京 100022
2.北京工商大學(xué)食品學(xué)院環(huán)境工程系,北京 100048
膠質(zhì)芽孢桿菌(Bacillus mucilaginosus)在餐廚垃圾廢水中生長條件優(yōu)化
郭新愿1,王 攀2,任連海2*,賀艷坤2
1.北京工業(yè)大學(xué)建筑工程學(xué)院,北京 100022
2.北京工商大學(xué)食品學(xué)院環(huán)境工程系,北京 100048
郭新愿,王攀,任連海,等.膠質(zhì)芽孢桿菌(Bacillus mucilaginosus)在餐廚垃圾廢水中生長條件優(yōu)化[J].環(huán)境科學(xué)研究,2017,30(3):464-470.
GUO Xinyuan,WANG Pan,REN Lianhai,et al.Optimization of culture conditions for Bacillus mucilaginosus growing in food waste-recycling wastewater[J].Research of Environmental Sciences,2017,30(3):464-470.
為了探討餐廚垃圾廢水用作發(fā)酵基質(zhì)生產(chǎn)液態(tài)解鉀菌肥的可行性,選用膠質(zhì)芽孢桿菌(Bacillus mucilaginosus)作為試驗(yàn)菌種,采用正交和單因素方法對(duì)相關(guān)生長因素進(jìn)行了優(yōu)化.結(jié)果表明,在餐廚垃圾廢水中培養(yǎng)膠質(zhì)芽孢桿菌經(jīng)過3 d的調(diào)整期后進(jìn)入對(duì)數(shù)生長期,6~7 d時(shí)活菌數(shù)達(dá)到最大,Ⅰ類廢水活菌數(shù)為1.55×1010CFU mL,Ⅱ類廢水活菌數(shù)為6.60×1010CFU mL.以Ⅱ類廢水為基質(zhì)進(jìn)行正交試驗(yàn)確定的較優(yōu)培養(yǎng)條件為pH=7、溫度30℃、搖床轉(zhuǎn)速160 r min、接種量2.0%(V V).廢水的pH和鹽分對(duì)膠質(zhì)芽孢桿菌的生長代謝影響極為顯著:最適初始pH為7(活菌數(shù)為3.80×1010CFU mL和9.20×1010CFU mL);隨著ρ(NaCl)的增加,活菌數(shù)先升高后快速降低,最適ρ(NaCl)為4 g L.Ⅰ類和Ⅱ類廢水的最佳接種量分別為1.5%(活菌數(shù)為1.60× 1010CFU mL)和2.0%(活菌數(shù)為6.40×1010CFU mL).研究顯示,膠質(zhì)芽孢桿菌在餐廚垃圾廢水中經(jīng)過培養(yǎng)后可達(dá)到GB 20287—2006《農(nóng)用微生物菌劑》中液態(tài)菌肥的活菌數(shù)(2.0×108CFU mL),經(jīng)濕熱處理后的Ⅱ類廢水對(duì)膠質(zhì)芽孢桿菌的生長有明顯的促進(jìn)作用.
餐廚垃圾廢水;液態(tài)菌肥;膠質(zhì)芽孢桿菌;生長條件
我國餐廚垃圾產(chǎn)生量巨大,文獻(xiàn)表明我國城區(qū)平均每人每天產(chǎn)生餐廚垃圾0.10~0.12 kg[1-2].由于餐廚垃圾含水量大(80%~85%),儲(chǔ)存過程中極易腐爛變質(zhì),散發(fā)惡臭,容易傳播細(xì)菌和病毒,其原有的處理方式為衛(wèi)生填埋、粉碎后排入下水道或者與其他生活垃圾混合焚燒,上述處理方式會(huì)對(duì)大氣和水體造成污染,使餐廚垃圾中的資源得不到有效利用[3-5].濕熱處理是近年來開發(fā)的一種新型有效的餐廚垃圾處理技術(shù),它可以改變垃圾營養(yǎng)結(jié)構(gòu)和物理加工性能,對(duì)餐廚垃圾資源化非常有利[6-7].其脫出液及其他餐廚垃圾廢水具備有機(jī)物含量高、排放量大的特點(diǎn),現(xiàn)有處理方式多為無害化,如何將其資源化處理成為亟待解決的問題[8-9].
另一方面,由于連年施用化肥等原因,土壤微生物區(qū)系惡化、病原菌增加、酶活性降低,導(dǎo)致土壤養(yǎng)分失調(diào)、有毒物質(zhì)積累、肥力減弱等后果[10].農(nóng)用微生物菌肥是利用人工方法培養(yǎng)有益微生物而制成生物肥料,提高土壤肥力,改善作物的營養(yǎng)條件提高產(chǎn)量;有學(xué)者早在上世紀(jì)就提出微生物菌肥替代化肥是實(shí)施“高效清潔農(nóng)業(yè)”的有效措施,因此菌肥在國內(nèi)外已經(jīng)得到廣泛應(yīng)用[11-14].餐廚垃圾廢水中含有豐富的小分子糖、多肽、氨基酸等有機(jī)物,甚至有研究者成功從餐廚廢棄物發(fā)酵后的培養(yǎng)液中回收乳酸[15],也有研究者將其用于微生物菌肥生產(chǎn),如木霉微生物肥料等[16].因此,利用餐廚垃圾廢水生產(chǎn)液態(tài)菌肥是其資源化處理的有效途徑,具有顯著的環(huán)境效益、經(jīng)濟(jì)效益和生態(tài)效益.
膠質(zhì)芽孢桿菌(Bacillus mucilaginous)俗稱鉀細(xì)菌,是一種重要的微生物肥料生產(chǎn)菌種,能通過破壞鉀長石的晶格結(jié)構(gòu),使礦物中的鉀釋放出來,其含量可增加37%~162%,并能增加辣椒、水稻和棉花植株中的鉀含量[17-18].該試驗(yàn)選用膠質(zhì)芽孢桿菌作為試驗(yàn)菌種,研究利用餐廚垃圾廢水制備解鉀液態(tài)菌肥的最佳工藝條件.制作的液態(tài)菌肥根據(jù)GB 20287—2006《農(nóng)用微生物菌劑》[19]中規(guī)定的產(chǎn)品技術(shù)指標(biāo)來判斷試驗(yàn)菌種活菌數(shù)是否達(dá)到標(biāo)準(zhǔn).
1.1 材料與試劑
試驗(yàn)用膠質(zhì)芽孢桿菌為農(nóng)業(yè)部關(guān)于NY 1109—2006《微生物肥料生物安全通用技術(shù)準(zhǔn)則》附錄中規(guī)定使用的生產(chǎn)菌種,購自中國普通微生物菌種保藏管理中心.
餐廚垃圾取自北京市海淀區(qū)某高校食堂,根據(jù)餐廚垃圾目前常用 的處理工藝[20-21],獲得兩類餐廚垃圾廢水:①將餐廚垃圾經(jīng)孔徑濾網(wǎng)過濾,固液分離,分離出的液體再經(jīng)6 000 r min離心20 min(20℃),撇除浮油取液體部分,記作Ⅰ類廢水;②將餐廚垃圾破碎后加入濕熱反應(yīng)器于90℃水熱反應(yīng)3 h,濕熱處理后樣品再經(jīng)6 000 r min離心20 min(20℃),撇除浮油取液體部分,記作Ⅱ類廢水.廢水經(jīng)121℃高壓蒸汽滅菌20 min備用,其基本理化性質(zhì)及分析方法見表1.
膠質(zhì)芽孢桿菌液體種子培養(yǎng)基:蔗糖5.0 g; Na2HPO42.0 g;MgSO4·7H2O 0.5 g;FeCl30.005 g; CaCO30.1 g;蒸餾水1 L;pH為7.0~7.2.
Na2HPO4、MgSO4·7H2O、FeCl3、CaCO3、瓊脂購自北京化工廠,所有化學(xué)試劑均為分析純.試驗(yàn)用去離子水由ZYpure-EDla-100-UP型高純水系統(tǒng)一體機(jī)(北京中揚(yáng)永康環(huán)??萍加邢薰?制備得到.
1.2 儀器與設(shè)備
KDC-160HR型離心機(jī),科大創(chuàng)新股份有限公司; LRH-250型生化培養(yǎng)箱,上海恒科技術(shù)有限公司; VD-1320型超凈工作臺(tái),哈爾濱東聯(lián)電子技術(shù)開發(fā)公司;SQ510WGC型立式壓力蒸汽滅菌器,日本YAMATO公司;PHS-3D型pH計(jì),上海三信儀表廠; UV-5200型紫外分光光度計(jì),上海精密儀器儀表有限公司;BX41型顯微鏡,日本OLYMPUS公司;H2Q-C型恒溫振蕩器,金壇市科析儀器有限公司.
1.3 試驗(yàn)方法
菌種細(xì)胞與菌落形態(tài)觀察[22]:將經(jīng)活化后的膠質(zhì)芽孢桿菌接種至液體種子培養(yǎng)基,于30℃振蕩培養(yǎng)5 d(200 r min).液體發(fā)酵液通過革蘭氏染色法在1 000倍顯微鏡下觀察并記錄細(xì)胞的形態(tài)、大?。『线m稀釋度菌液涂布于膠質(zhì)芽孢桿菌固體培養(yǎng)基,通過平板計(jì)數(shù)法觀察并記錄菌落形態(tài).
膠質(zhì)芽孢桿菌生長曲線繪制[23-24]:在無菌條件下,將經(jīng)活化的膠質(zhì)芽孢桿菌菌種按照2.0%接種量接種至相應(yīng)液體種子培養(yǎng)基內(nèi)培養(yǎng)24 h,于接種后每隔2 h用紫外-可見光分光光度計(jì)測定吸光度(A600),試驗(yàn)設(shè)置三組平行.
膠質(zhì)芽孢桿菌在餐廚垃圾廢水中的生長曲線繪制:在無菌條件下,將經(jīng)活化的膠質(zhì)芽孢桿菌菌種由液體種子培養(yǎng)基按照2.0%接種量(V V)接種至餐廚垃圾廢水于30℃培養(yǎng)10 d,搖床轉(zhuǎn)速100 r min,于接種后每隔1 d記錄活菌數(shù)量.試驗(yàn)設(shè)置三組平行.
培養(yǎng)條件正交試驗(yàn):選擇pH(A,pH分別為6、7、8、9)、溫度(B,分別為25、30、35和40℃)、搖床轉(zhuǎn)速(C,分別為80、120、160和180 r min)和接種量(D,以V V計(jì),分別為1.0%、1.5%、2.0%和2.5%)4個(gè)因素,通過四因素四水平正交試驗(yàn)確定餐廚垃圾廢水培養(yǎng)膠質(zhì)芽孢桿菌的適宜條件,固定發(fā)酵時(shí)間為6 d,因素水平見表2.試驗(yàn)設(shè)置三組平行.
培養(yǎng)條件單因素試驗(yàn):在正交試驗(yàn)確定的較優(yōu)培養(yǎng)條件基礎(chǔ)上,重點(diǎn)研究pH、接種量和鹽度對(duì)膠質(zhì)芽孢桿菌生長過程的影響,以期進(jìn)一步獲得優(yōu)化的培養(yǎng)條件.
1.4 分析方法
活菌數(shù)量測定采用平板計(jì)數(shù)法,涂布平板設(shè)置三組平行.
正交試驗(yàn)數(shù)據(jù)使用SPSS Statics 20軟件進(jìn)行處理,以膠質(zhì)芽孢桿菌活菌數(shù)為因變量,以pH、溫度、搖床轉(zhuǎn)速和接種量為自變量,進(jìn)行單因變量多因素方差分析,識(shí)別對(duì)膠質(zhì)芽孢桿菌培養(yǎng)影響較為顯著的關(guān)鍵參數(shù),P<0.05為顯著,P<0.01為極顯著,同時(shí)獲得較優(yōu)的培養(yǎng)條件組合.
2.1 膠質(zhì)芽孢桿菌的理化性能
試驗(yàn)所用膠質(zhì)芽孢桿菌在液體種子培養(yǎng)基上經(jīng)活化培養(yǎng),菌落呈圓形凸?fàn)盥∑?,邊緣整齊,表面濕潤、透明,挑起時(shí)可拉成絲,革蘭氏染色結(jié)果陰性,菌體為(1~1.2)×(5~7)μm,與文獻(xiàn)[25-26]一致.膠質(zhì)芽孢桿菌培養(yǎng)4 h進(jìn)入對(duì)數(shù)生長期,在8~16 h進(jìn)入穩(wěn)定期,隨后進(jìn)入衰亡期(見圖1).
2.2 膠質(zhì)芽孢桿菌在餐廚垃圾廢水中的生長曲線
經(jīng)液體種子培養(yǎng)基生長至對(duì)數(shù)期的膠質(zhì)芽孢桿菌接種至餐廚垃圾廢水后的活菌數(shù)隨時(shí)間變化如圖2所示.從圖2可看出,經(jīng)過3 d的調(diào)整期后,膠質(zhì)芽孢桿菌進(jìn)入對(duì)數(shù)生長期,第6~7天活菌數(shù)達(dá)到最大(I類廢水1.55×1010CFU mL,Ⅱ類廢水6.60×1010CFU mL),此時(shí)I類廢水中ρ(COD)為16.09 g L,約89.3%的營養(yǎng)物質(zhì)被消耗掉,而Ⅱ類廢水中ρ(COD) 為16.03 g L,約有92%的營養(yǎng)物質(zhì)被消耗掉.由于廢水中碳源和營養(yǎng)物質(zhì)的消耗,膠質(zhì)芽孢桿菌的生長快速進(jìn)入消亡期,培養(yǎng)至第10天,Ⅰ類和Ⅱ類廢水中的膠質(zhì)芽孢桿菌活菌數(shù)依次分別下降36%和55%.
從膠質(zhì)芽孢桿菌的生長情況來看,Ⅱ類廢水較Ⅰ類廢水更適宜用作膠質(zhì)芽孢桿菌的培養(yǎng)基質(zhì),其最大菌液密度是Ⅰ類廢水的4.26倍,膠質(zhì)芽孢桿菌在Ⅱ類廢水生長速率較Ⅰ類廢水大幅增加.Ⅱ類廢水的ρ(COD)僅比Ⅰ類廢水高33.2%,其更適宜于膠質(zhì)芽孢桿菌生長的原因,可能是由于濕熱處理使餐廚垃圾中相當(dāng)比例的大分子微溶性脂肪、蛋白質(zhì)等物質(zhì)解聚、液化為可溶性脂肪酸、氨基酸等優(yōu)質(zhì)碳源,這種轉(zhuǎn)化更利于微生物菌體的吸收利用.
2.3 膠質(zhì)芽孢桿菌培養(yǎng)的正交試驗(yàn)優(yōu)化
選擇餐廚垃圾Ⅱ類廢水為基質(zhì),通過正交試驗(yàn)及方差分析考察溫度、pH、搖床轉(zhuǎn)速和接種量對(duì)膠質(zhì)芽孢桿菌生長代謝影響的顯著性程度.正交試驗(yàn)的方差分析結(jié)果見表3,pH極顯著影響膠質(zhì)芽孢桿菌的生長,而溫度、搖床轉(zhuǎn)速和接種量對(duì)菌株培養(yǎng)影響不顯著,影響顯著程度依次為pH>溫度>搖床轉(zhuǎn)速>接種量.而通過極差分析,初步確定較優(yōu)的培養(yǎng)條件為A2B2C3D3,即pH為7、溫度為30℃、轉(zhuǎn)速160 r min、接種量2.0%.
2.4 初始pH對(duì)膠質(zhì)芽孢桿菌培養(yǎng)的影響
根據(jù)2.3節(jié)正交試驗(yàn)結(jié)果,pH極顯著影響膠質(zhì)芽孢桿菌的生長代謝.餐廚垃圾受環(huán)境影響pH有較大變化[27-28],因而需要進(jìn)一步探討膠質(zhì)芽孢桿菌在餐廚垃圾廢水中的可耐受pH范圍.
圖3顯示,具有不同pH的Ⅰ類和Ⅱ類廢水按2.0%(V V)接種膠質(zhì)芽孢桿菌培養(yǎng)6 d的活菌數(shù)變化曲線.由圖3可見,膠質(zhì)芽孢桿菌對(duì)廢水pH變化極其敏感,Ⅰ類和Ⅱ類廢水最適于膠質(zhì)芽孢桿菌生長的初始pH均為7(活菌數(shù)為3.80×1010CFU mL和9.20×1010CFU mL),并且在弱堿性環(huán)境中亦能較好生長,這與已有研究[29-30]相一致.值得注意的是,Ⅰ類廢水中活菌數(shù)達(dá)標(biāo)的初始pH為7~9,當(dāng)pH≤6或pH≥10時(shí)Ⅰ類廢水中活菌數(shù)低于GB 20287—2006《農(nóng)用微生物菌劑》關(guān)于菌劑產(chǎn)品的活菌數(shù)要求(2.0×108CFU mL);而Ⅱ類廢水中活菌數(shù)的達(dá)標(biāo)pH范圍擴(kuò)大到6~10.資料[31-32]顯示,膠質(zhì)芽孢桿菌在pH在4.8~9.0范圍內(nèi)的液體種子培養(yǎng)基中均可生長,pH低于6.5和高于8.5時(shí),菌體增殖會(huì)受到明顯的抑制,試驗(yàn)顯示膠質(zhì)芽孢桿菌在餐廚垃圾廢水中表現(xiàn)出更強(qiáng)的活性和pH耐受性,可能與餐廚垃圾廢水能為膠質(zhì)芽孢桿菌的生長提供優(yōu)質(zhì)碳源與氮源有關(guān)[33-34].
2.5 初始接種量對(duì)膠質(zhì)芽孢桿菌生長的影響
接種量是制備液態(tài)菌肥的重要參數(shù)之一,懸浮培養(yǎng)細(xì)胞生長的啟動(dòng)需要有一個(gè)最低的起始密度,這一臨界密度不僅與細(xì)胞本身有關(guān),而且還與培養(yǎng)基成分以及接種量有關(guān),因此細(xì)胞的接種量能夠顯著影響懸浮培養(yǎng)細(xì)胞的生長周期[35-37].圖4顯示,Ⅰ類和Ⅱ類廢水按不同接種量接種膠質(zhì)芽孢桿菌培養(yǎng)6 d的活菌數(shù)變化曲線.由圖4可見,在試驗(yàn)接種量范圍內(nèi),初始接種量對(duì)最終活菌數(shù)數(shù)量級(jí)的影響并不十分顯著,但膠質(zhì)芽孢桿菌有效活菌數(shù)的總趨勢是先增加后減少,最適宜Ⅰ類和Ⅱ類廢水的接種量分別為1.5%(活菌數(shù)為1.60×1010CFU mL)和2.0%(活菌數(shù)為6.40×1010CFU mL),而經(jīng)濕熱處理后的Ⅱ類廢水對(duì)膠質(zhì)芽孢桿菌的生長有明顯的促進(jìn)作用.考察范圍內(nèi)的接種量均能用來生產(chǎn)液態(tài)菌肥,而從制備液態(tài)菌肥的工業(yè)化生產(chǎn)利益最大化角度來說,接種量越小經(jīng)濟(jì)效益越高,因此探究制備合格菌肥的最小接種量將成為下一步的工作任務(wù).
2.6 NaCl含量對(duì)膠質(zhì)芽孢桿菌培養(yǎng)的影響
由于特有的烹調(diào)方式導(dǎo)致我國餐廚垃圾鹽分(主要為NaCl)含量(鹽度)高達(dá)0.23% ~5.00%[38-39],而大部分存在于餐廚垃圾廢水中,因而需要重點(diǎn)探究餐廚垃圾廢水含鹽量對(duì)膠質(zhì)芽孢桿菌生長及代謝的影響.
以兩類餐廚垃圾廢水為基質(zhì),分別考察不同鹽度情況下膠質(zhì)芽孢桿菌在餐廚垃圾廢水中生長狀況.圖5顯示,兩類餐廚垃圾廢水培養(yǎng)膠質(zhì)芽孢桿菌6 d的活菌數(shù)隨廢水中ρ(NaCl)的變化曲線.膠質(zhì)芽孢桿菌活菌數(shù)隨ρ(NaCl)的升高呈現(xiàn)先增加后快速降低的趨勢,最利于菌種培養(yǎng)的 ρ(NaCl)為4 g L,而當(dāng)ρ(NaCl)超過12 g L時(shí),膠質(zhì)芽孢桿菌活菌數(shù)即無法達(dá)到GB 20287—2006《農(nóng)用微生物菌劑》關(guān)于菌劑產(chǎn)品的技術(shù)指標(biāo)要求,Ⅰ類廢水ρ(NaCl)為18 g L、Ⅱ類廢水ρ(NaCl)為20 g L時(shí)膠質(zhì)芽孢桿菌停止生長.當(dāng)某些地區(qū)的餐廚垃圾廢水含鹽量達(dá)到1 350~2 250 mg L時(shí)[40],可以預(yù)期市售膠質(zhì)芽孢桿菌的生長可以制備合格的液態(tài)菌肥.細(xì)胞的一個(gè)重要?jiǎng)恿μ匦允撬鼈兡芸焖龠m應(yīng)外界環(huán)境的變化[41],當(dāng)溶液中滲透壓升高時(shí),細(xì)菌消耗部分有機(jī)物生成胞外聚合物等物質(zhì)使其能在高滲透壓環(huán)境繼續(xù)生存[42],因此,馴化、篩選并分離出高效的耐鹽解鉀菌是促成后續(xù)實(shí)現(xiàn)優(yōu)質(zhì)液態(tài)解鉀菌肥生產(chǎn)的重要措施,如何琳燕等[43]從來源于全國部分省市17個(gè)土壤樣品中分離的硅酸鹽細(xì)菌耐ρ(NaCl)高達(dá)5.0 g L,但值得注意的是,高鹽度的降解產(chǎn)物制成有機(jī)肥會(huì)抑制植物的生長,長期使用還會(huì)導(dǎo)致土壤鹽堿化[44],因此餐廚垃圾廢水制備解鉀菌肥的鹽度范圍控制將是后續(xù)研究的內(nèi)容之一.
a)該研究購買的膠質(zhì)芽孢桿菌為革蘭氏陰性菌,菌體呈長桿狀,大小約為6 μm.以餐廚垃圾廢水為基質(zhì),餐廚垃圾廢水培養(yǎng)的膠質(zhì)芽孢桿菌經(jīng)過3 d的調(diào)整期后,膠質(zhì)芽孢桿菌進(jìn)入對(duì)數(shù)生長期,第6~7天活菌數(shù)達(dá)到最大(Ⅰ類廢水1.55×1010CFU mL,Ⅱ類廢水6.60×1010CFU mL),餐廚垃圾濕熱處理對(duì)膠質(zhì)芽孢桿菌的生長十分有利.
b)正交試驗(yàn)及方差分析結(jié)果表明,pH極顯著影響膠質(zhì)芽孢桿菌的生長,溫度對(duì)菌株生長影響較大,搖床轉(zhuǎn)速和接種量對(duì)菌株培養(yǎng)影響不顯著,影響顯著程度依次為pH>溫度>搖床轉(zhuǎn)速>接種量.較優(yōu)的培養(yǎng)條件為pH=7、溫度為30℃、搖床轉(zhuǎn)速160 r min、接種量2.0%.
c)初始接種量對(duì)膠質(zhì)芽孢桿菌的生長存在影響,隨著接種量的增加有效活菌數(shù)的總趨勢為先增加后減少趨勢,最適宜Ⅰ類和Ⅱ類廢水的接種量分別為1.5%(活菌數(shù)為1.60×1010CFU mL)和2.0%(活菌數(shù)為6.40×1010CFU mL),濕熱處理后的Ⅱ類廢水對(duì)膠質(zhì)芽孢桿菌的生長有明顯的促進(jìn)作用.
d)餐廚垃圾廢水中的鹽分顯著影響膠質(zhì)芽孢桿菌的生長代謝,活菌數(shù)均隨著ρ(NaCl)的增加先升高后快速降低,最利于菌種培養(yǎng)的ρ(NaCl)為4 g L,而要使膠質(zhì)芽孢桿菌活菌數(shù)達(dá)到GB 20287—2006《農(nóng)用微生物菌劑》關(guān)于菌劑產(chǎn)品的技術(shù)指標(biāo),ρ(NaCl)不可超過12 g L.
[1] 張慶芳,楊林海,周丹丹.餐廚垃圾廢棄物處理技術(shù)概述[J].中國沼氣,2012,30(1):22-26.ZHANG Qingfang,YANG Linhai,ZHOU Dandan.Overview on food waste treatment technology[J].China Biogas,2012,30(1): 22-26.
[2] 王衛(wèi),白婷.餐廚垃圾對(duì)中國城市化進(jìn)程中食品安全和生態(tài)環(huán)境的危害性探討[J].食品與發(fā)酵科技,2014,50(6):12-15.WANG Wei,BAI Ting.Restaurant kitchen garbage-an important potential source of sanger Chinese city in the process of food safety and ecological environment[J]. Food and Fermentation Technology,2014,50(6):12-15.
[3] DENIZ C,DEMIRCI A,ROBERT E G,et al.Applicability of optimized in-vessel food waste composting for windrow systems[J].Biosystems Engineering,2005,91(4):479-486.
[4] 吳修文,魏奎,沙莎,等.國內(nèi)外餐廚垃圾處理現(xiàn)狀及發(fā)展趨勢[J].農(nóng)業(yè)裝備與車輛工程,2011(12):49-52.WU Xiuwen,WEI Kui,SHA Sha,et al.Present status and developing trend of kitchen garbage processing in China and Abroad[J].Agricultural Equipment&Vehicle Engineering,2011 (12):49-52.
[5] 胡新軍,張敏,余俊鋒,等.中國餐廚垃圾處理的現(xiàn)狀、問題和對(duì)策[J].生態(tài)學(xué)報(bào),2012,32(14):4575-4584.HU Xinjun,ZHANG Min,YU Junfeng,etal.Foodwaste management in China:status,problems and solutions[J].Acta Ecologica Sinica,2012,32(14):4575-4584.
[6] SHANAB L A,JOM A S.Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment[J].Water Science and Technology,2001,44(10):129-135.
[7] CHEN Ting,JIN Yiying,LIU Fuqing,et al.Effect of hydrothermal treatment on the levels of selected indigenous microbes in food waste[J].Journal of Environmental Management,2012,106: 17-21.
[8] 王景莉,鞠澤青,熊淑芳.餐飲業(yè)廢水的處理方法分析[J].國外建材科技,2005,26(3):49-50.
[9] XUE M,GUO H,PLLOCK Y.Separation of pollutants from restaurant wastewater by electrocoagulation[J].Separation and Purification Technology,2000,19(1 2):65-76.
[10] 王興祥,張?zhí)伊?,戴傳超.連作花生土壤障礙原因及消除技術(shù)研究進(jìn)展[J].土壤,2010,42(4):505-512.WANG Xinxiang,ZHANG Taolin,DAI Chuanchao.Advance in mechanism and countermeasures of peanut succession monocropping obstacles[J].Soil,2010,42(4):505-512.
[11] 郭慧光,閆自申.滇池富營養(yǎng)化及面源控制問題思考[J].環(huán)境科學(xué)研究,1999,12(5):43-45. GUO Huiguang,YAN Zishen.Reflection on eutrophication and nonpoint source control in Dianchi Lake[J].Research of Environmental Sciences,1999,12(5):43-45.
[12] 周法永,盧布,顧金剛,等.我國微生物肥料的發(fā)展階段及第三代產(chǎn)品特征探討[J].中國土壤與肥料,2005(1):12-17.ZHOU Fayong,LU Bu,GU Jingang,et al.Chinese microbial fertilizer features in its developmental stages and a discuss on the third-generation product innovation[J].Soil and Fertilizer Sciences in China,2005(1):12-17.
[13] ASHA A J,SANTOSH K Y,PHANI K,et al.Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metalcontaminated soils[J].EnvironmentalMonitoring and Assessment,2008,145(1 2 3):7-15.
[14] YADAV H,GOTHWAL R K,NIGAM V K,et al.Optimization of culture conditions for phosphate solubilization by a thermo-tolerant phosphate-solubilizing bacterium BreviBacillussp.BISR-HY65 isolated from phosphate mines[J].Biocatalysis and Agricultural Biotechnology,2013,2(3):217-225.
[15] ZHAO Wenjun,SUN Xiaohong,WANG Qunhui,et al.Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method[J].Biomass and Bioenergy,2009,33(1): 21-25.
[16] 白志輝,宿燕明,荊夢,等.利用餐廚垃圾廢水生產(chǎn)木霉微生物肥料:中國,CN102040403A[P].2011-05-04.
[17] LIU Wuxing,XU Xushi,WU Xianghua,et al.Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture[J].Environmental Geochemistry Health,2006,28:133-140.
[18] HAN H S,LEE K D.Phosphate and potassium solubilizing bacteria effect on mineral uptake soil availability and growth of eggplant [J].Agriculture and Biological Sciences,2005,1(2):176-180.
[19] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.GB 20287—2006農(nóng)用微生物菌劑[S].北京:中國標(biāo)準(zhǔn)出版社,2006.
[20] 任連海,聶永豐,劉建國,等.餐廚垃圾濕熱處理的影響因素[J].清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,46(9):1551-1559.REN Lianhai,NIE Yongfeng,LIU Jianguo,et al.Influence factors of restaurant waste hydrothermal treatment[J].Tsinghua University (Science&Technology),2006,46(9):1551-1559.
[21] FEHR M,CALCADO M D R,ROMAO D C.The basis of a policy for minimizing and recycling food waste[J].Environmental Science and Policy,2002,5(3):247-253.
[22] 農(nóng)業(yè)部.NY T 2321—2013微生物肥料產(chǎn)品檢驗(yàn)規(guī)程[S].北京:中國農(nóng)業(yè)出版社,2013.
[23] ANDREW W,JAMES D,CRAIG N G.High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae[J].Analytical Biochemistry,2004,327(1):23-34.
[24] 曹國珍,繆建順,張苗苗,等.分光光度法測定釀酒酵母細(xì)胞懸液濃度研究[J].中國釀造,2014,33(4):129-133.CAO Guozhen,MIAO Jianshun,ZHANG Miaomiao,etal.Determination of Saccharomyces cerevisiae cell suspension concentration by spectrophotometry[J].China Brewing,2014,33(4):129-133.
[25] 吳作為,吳穎運(yùn),李欣,等.膠質(zhì)芽孢桿菌(Bacillus mucilaginosus) D4B1菌株生理特性研究[J].土壤肥料,2004(2):40-43.WU Zuowei,WU Yingyun,LI Xin,et al.Studies on physiology of Bacillus mucilaginosus D4B1 strain[J].Soil and Fertilizer Sciences in China,2004(2):40-43.
[26] 趙艷,張曉波,郭偉.不同土壤膠質(zhì)芽孢桿菌生理生化特征及其解鉀活性[J].生態(tài)環(huán)境學(xué)報(bào),2009,18(6):2283-2286.ZHAO Yan,ZHANG Xiaobo,GUO Wei.Physiologicaland biochemical characteristics and capacities of potassium releasing of Bacillus mucilaginosus screened from different soils[J].Ecology and Environmental Sciences,2009,18(6):2283-2286.
[27] LI Ming,ZHAO Youcai,GUO Qiang,et al.Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill[J].Renewable Energy,2008,33 (12):2573-2579.
[28] 王亞光,吳玉先,滕瑤,等.餐廚垃圾滲濾液的基本特性分析[J].吉首大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,37(1):69-73.WANG Yaguang,WU Yuxian,TENG Yao,et al.Characteristics analyses of kitchen waste leachat[J].Joural of Jishou Uninversity (Natural Science Edition),2016,37(1):69-73.
[29] 田稼,孫超,路鵬鵬,等.一株膠質(zhì)芽孢桿菌(Bacillus mucilaginosus)的鑒定及固體發(fā)酵研究[J].中國農(nóng)業(yè)科技導(dǎo)報(bào),2014,16(5):67-77.TIAN Jia,SUN Chao,LU Pengpeng,et al.Studies on identification and solid fermentation of a strain Bacilluse mucilaginosus YA-07 [J].Journal of Agricultural Science and Technology,2014,16(5): 67-77.
[30] 趙志浩,徐銀榮,邱龍.膠質(zhì)芽孢桿菌(Bacillus mucilaginosus)的發(fā)酵工藝研究和田間應(yīng)用[J].湖南農(nóng)業(yè)科學(xué),2004(5): 34-37.ZHAO Zhihao,XU Yinrong,QIU Long.Study on the fermented craft of Bacilluse Mucilaginosus and its application[J].Hunan Agricultural Sciences,2004(5):34-37.
[31] 陳育如,楊啟銀.解鉀硅酸鹽細(xì)菌培養(yǎng)基及培養(yǎng)條件的研究[J].南京師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,24(3):88-92.
[32] PODGORAKII V S,GROMOZOVA E N,BOLDAREVA A I,et al.Biological features of a strain of Bacillus mucillaginosus,isolated from soddy-podzolic soil in the Ukrainian SSR[J].Microbiology (USA),1991,60(4):492-495.
[33] 王金玲,趙鳳艷,呂長山,等.膠質(zhì)芽孢桿菌液體發(fā)酵產(chǎn)孢培養(yǎng)基的優(yōu)化[J].食品與生物技術(shù)學(xué)報(bào),2013,32(4):417-424.WANG Jinling,ZHAO Fengyan,LV Changshan,et al.Medium optimization for Bacillus mucilaginosus in submerged fermentation [J].Journal of Food Science and Biotechnology,2013,32(4): 417-424.
[34] 任連海,聶永豐,劉建,等.餐廚垃圾濕熱處理對(duì)其脫出液的影響[J].中國給水排水,2006,22(3):73-76.REN Lianhai,NIE Yongfeng,LIU Jian,etal.Impactof hydrothermal process on effluent of restaurant garbage[J].China Water&Wastwater,2006,22(3):73-76.
[35] 羅建平,鄭光植.人參培養(yǎng)細(xì)胞單細(xì)胞克隆的條件培養(yǎng)[J].生物工程學(xué)報(bào),1995,11(1):58-62.LUO Jianping,ZHENG Guangzhi.Conditioning culture of single cell clone from culture cell of Panax ginseng[J].Chinese Journal of Biotechnology,1995,11(1):58-62.
[36] 侯學(xué)文,郭勇.接種量及蔗糖濃度對(duì)懸浮培養(yǎng)玫瑰茄細(xì)胞生長的影響[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,21(4):51-54.HOU Xuewen,GUO Yong.The effects of inoculum amount and sucrose concentration on the growth of suspension roselle cell[J].Journal of South China Agricultural University,2000,21(4): 51-54.
[37] 楊博,王永華,潘力,等.接種量對(duì)菌體形態(tài)和產(chǎn)γ-亞麻酸的影響[J].中國油脂,2002,27(1):45-47.YANG Bo,WANG Yonghua,PAN Li,et al.Influence of inoculum on the morphology and γ-linolenic acid production[J].China Oils and Fats,2002,27(1):45-47.
[38] 王權(quán),宮常修,蔣建國,等.NaCl對(duì)餐廚垃圾厭氧發(fā)酵產(chǎn)VFA濃度及組分的影響[J].中國環(huán)境科學(xué),2014,34(12): 3127-3132.WANG Quan,GONG Changxiu,JIANG Jianguo,et al.Effect of NaCl content on VFA concentration and composition during anaerobic fermentation of kitchen waste[J].China Environmental Science,2014,34(12):3127-3132.
[39] 沙濤.濕熱預(yù)處理餐廚垃圾的鹽分研究[J].環(huán)境科學(xué)與管理,2015,40(12):103-106.SHA Tao.Research on salts in restaurant kitchen waste with wet and heating pre-treatment[J].Environmental Science and Management,2015,40(12):103-106.
[40] 李夢琪,陳呂軍.餐廚垃圾發(fā)酵廢液組分表征[J].環(huán)境工程學(xué)報(bào),2016,10(2):683-688.LI Mengqi,CHEN Lüjun.Analysis of composition in kitchen waste fermentation wastewater[J].Chinese Journal of Environmental Engineering,2016,10(2):683-688.
[41] ROBERTS M F.26 Characterization of organic compatible solutes of halotolerantand halophilic microorganisms[J].Methods in Microbiology,2006,35:615-647.
[42] VYRIDES I,STUCKEY D C.Effect of fluctuations in salinity on anaerobic biomass and production of soluble microbial products (SMPs)[J].Biodegradation,2009,20(2):165-175.
[43] 何琳燕,盛下放,陸光祥,等.不同土壤中硅酸鹽細(xì)菌生理生化特征及其解鉀活性的研究[J].土壤,2004,36(4):434-437.HE Linyan,SHENG Xiafang,LU Guangxiang,et al.Physiological and biochemical characteristics of silicate-dissolving bacteriain different soils and their capacities of releasting potassium[J].Soil,2004,36(4):434-437.
[44] KUO W C,CHENG K Y.Use of Respirometer in evaluation of process and toxicity of thermophilic anaerobic digestion for treating kitchen waste[J].Bioresource Technology,2007,98(9): 1805-1811.
Optimization of Culture Conditions for Bacillus mucilaginosus Growing in Food Waste-Recycling Wastewater
GUO Xinyuan1,WANG Pan2,REN Lianhai2*,HE Yankun2
1.College of Architecture and Civil engineering,Beijing University of Technology,Beijing 100022,China
2.Environmental Science and Engineering,Beijing Technology and Business University,Beijing 100048,China
Bacillus mucilaginous was used as the experimental strain to produce dissolving potassium liquid biofertilizer using food wasterecycling wastewater as fermentation substrate.The culture conditions were optimized by the orthogonal and single factor methods.The results showed that B.mucilaginous cultured in the food waste-recycling wastewater reached logarithmic growth stage in as short as 3 days of adaptation period,and the number of strains reached the maxima on day 6-7(wastewater I 1.55×1010CFU mL,wastewater II 6.60× 1010CFU mL).The optimal culture conditions were pH=7,T=30℃,shaking speed 160 r min,and inoculums of 2.0%(V V)as determined by orthogonal experiment with wastewater II as fermentation substrate.pH and salt concentration of the wastewater had a great influence on the growth and metabolism of B.mucilaginous;the optimal pH for B.mucilaginous growth was pH=7(wastewater I 3.80× 1010CFU mL,wastewater II 9.20×1010CFU mL);with the increase of ρ(NaCl),the strain numbers first increased and then steeply decreased,and the optimal ρ(NaCl)for bacterial culture was 4 g L.The optimum inoculation amount was 1.5%for wastewater I and 2.0% for wastewater II,with strain numbers of 1.60×1010CFU mL and 6.40×1010CFU mL,respectively.The number of living B.mucilaginouscultivated in waste-recycling wastewater could reach the standard number level of living bacterium in liquid bacterial manure set by the Ministry of Agriculture of China.The wastewater II obtained by hydrothermal treatment of food waste could obviously promote the growth of B.mucilaginous.
food wastewater; liquid biofertilizer; Bacillus mucilaginous;culture condition
X703.5
1001-6929(2017)03-0464-07
A
10.13198 j.issn.1001-6929.2017.01.50
2016-08-13
2016-12-12
國家自然科學(xué)基金項(xiàng)目(51578008);國家“十二五”科技支撐計(jì)劃項(xiàng)目(2014BAC27B01-03)
郭新愿(1976-),女,河南新鄉(xiāng)人,gxy0823@163.com.
*責(zé)任作者,任連海(1971-),男,河北滄州人,教授,博士,主要從事固廢資源化研究,renlh@th.btbu.edu.cn