黃年盛綜述彭建強(qiáng)審校
(1.廣東醫(yī)學(xué)院附屬福田人民醫(yī)院,廣東深圳518033;2.中山大學(xué)附屬第八醫(yī)院,廣東深圳518033)
低氧對(duì)間充質(zhì)干細(xì)胞遷移及成骨分化的影響
黃年盛1綜述彭建強(qiáng)2審校
(1.廣東醫(yī)學(xué)院附屬福田人民醫(yī)院,廣東深圳518033;2.中山大學(xué)附屬第八醫(yī)院,廣東深圳518033)
間充質(zhì)干細(xì)胞(MSCs)由于具有來源廣泛、自我更新及多向分化能力,是骨組織工程上的重要種子細(xì)胞。MSCs在體內(nèi)的生理環(huán)境及植入后都是一個(gè)低氧狀態(tài),低氧是影響MSCs遷移、成骨分化的一個(gè)重要因素。大部分研究認(rèn)為低氧通過調(diào)控相關(guān)趨化因子及細(xì)胞因子等促進(jìn)MSCs向低氧處遷移,涉及的相關(guān)因子包括整合素家族、基質(zhì)金屬蛋白酶、Rho-GTPase家族、SDF-1α/CXCR4信號(hào)、OPN/CD44信號(hào)等。低氧誘導(dǎo)因子-1α(HIF-1α)信號(hào)可促進(jìn)骨形成、骨修復(fù),然而,低氧對(duì)MSCs成骨分化的影響尚存在較大爭(zhēng)議,低氧環(huán)境下BMP-Smads、WNT/ β-catenin、Notch、Hedgehog等成骨相關(guān)通路的變化是影響MSCs成骨分化的因素之一。本文就低氧對(duì)MSCs遷移及成骨分化的影響及機(jī)制做一綜述。
低氧;低氧誘導(dǎo)因子-1α;間充質(zhì)干細(xì)胞;遷移;成骨分化;成骨相關(guān)通路
間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)具有分化為骨細(xì)胞、脂肪細(xì)胞及軟骨細(xì)胞的能力,并且在一定條件下可分化為內(nèi)胚層及外胚層組織。由于MSCs的分化潛能、易于擴(kuò)增及可獲得性,MSCs在組織工程及再生醫(yī)學(xué)方面具有廣闊應(yīng)用前景[1]。嚴(yán)重創(chuàng)傷、腫瘤切除后、先天性畸形等均可造成骨缺損,由于自體骨移植存在供區(qū)疼痛、感染等并發(fā)癥,限制了其在骨缺損中的應(yīng)用[2]。因此,將MSCs種植在骨修復(fù)材料上被視為一種修復(fù)骨缺損的理想方法[3-4]。在骨修復(fù)過程中,除了種植的MSCs外,機(jī)體損傷周圍MSCs遷移至骨缺損處是至關(guān)重要的一步[5],是MSCs成骨分化及修復(fù)骨組織的前提。在骨修復(fù)材料植入后初期,由于材料上不均勻氧氣供應(yīng)及缺乏新生血管長(zhǎng)入,骨修復(fù)材料處將會(huì)是一個(gè)低氧微環(huán)境[6];此外,機(jī)體生理環(huán)境及骨折后局部也是一個(gè)低氧狀態(tài)[7],其中機(jī)體組織氧張力范圍大致在1%~12%,骨髓中氧張力為4%~7%,甚至低至1%~2%[8]。在軟骨內(nèi)骨化過程中,低氧可誘導(dǎo)血管侵入無血管軟骨區(qū),在骨骼發(fā)育中發(fā)揮重要作用[9]。因此,探討低氧環(huán)境對(duì)MSCs遷移及成骨分化的影響及機(jī)制,可為MSCs在骨組織工程中的應(yīng)用提供理論依據(jù)。
損傷組織通過釋放趨化因子及細(xì)胞因子等誘導(dǎo)MSCs向損傷處遷移[10],以達(dá)到修復(fù)組織的目的,可見MSCs遷移至局部損傷組織處是MSCs再生修復(fù)的前提。因此,研究低氧下MSCs遷移的相關(guān)機(jī)制,必將涉及到相關(guān)趨化因子、細(xì)胞因子等的變化。
目前低氧下MSCs遷移的相關(guān)分子機(jī)制主要包括:①通過整合素家族及基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)調(diào)控MSCs遷移,研究表明,低氧及低氧誘導(dǎo)因子-1α(HIF-1α)通過調(diào)節(jié)MMPs的活性調(diào)控著MSCs的遷移[11-12];而整合素超家族是由α和β兩個(gè)亞單位組成的異二聚體,在細(xì)胞粘附、細(xì)胞外基質(zhì)形成、細(xì)胞分化及細(xì)胞遷移等進(jìn)程中發(fā)揮重要作用[13]。Choi等[14]研究發(fā)現(xiàn)低氧組整合素α4(integrin alpha4,ITGA4)表達(dá)下調(diào),整合素下游因子磷酸化局部粘附激酶(p-FAK)及Rho-GTPase家族分子Rho A、ROCK1等表達(dá)上調(diào),最終通過激活MMP-2表達(dá)促進(jìn)PDMSCs遷移;同樣,當(dāng)干擾ITGA4表達(dá)時(shí),其下游因子表達(dá)上調(diào),通過激活MMP-2促進(jìn)MSCs遷移,進(jìn)一步研究發(fā)現(xiàn),當(dāng)干擾ROCK1表達(dá)時(shí),MMP-2表達(dá)下調(diào),PDMSCs遷移被抑制,該研究表明低氧下調(diào)ITGA4表達(dá),從而使其下游因子Rho-GTPase家族表達(dá)上調(diào),最終通過MMP-2促進(jìn)MSCs遷移。另一項(xiàng)研究發(fā)現(xiàn)在常氧或低氧下抑制HIF 1α表達(dá),結(jié)果ITGA4表達(dá)上調(diào),其下游因子ROCK1、Rac1/2/3表達(dá)下調(diào),最終抑制MSCs遷移;當(dāng)抑制ITGA4表達(dá)時(shí),ROCK1、Rac1/2/3及HIF-1α表達(dá)上調(diào),促進(jìn)MSCs遷移,表明HIF-1α與ITGA4相互作用,通過調(diào)控Rho-GTPase家族參與MSCs遷移[15]。Saller等[16]同樣發(fā)現(xiàn)低氧通過調(diào)節(jié)整合素活性表達(dá),較常氧促進(jìn)MSCs遷移。②基質(zhì)細(xì)胞衍生因子1(stromal cell-derived factor-1,SDF-1)及其受體CXCR4在MSCs遷移具有重要作用。Yu等[17]在體內(nèi)實(shí)驗(yàn)中發(fā)現(xiàn)靜脈注入的MSCs可以遷移至缺血缺氧腦損傷處,HIF-1α、SDF-1α在缺血缺氧處較對(duì)照組表達(dá)上調(diào);體外實(shí)驗(yàn)中,1%低氧濃度處理6h或SDF-1α因子處理都可誘導(dǎo)MSCs細(xì)胞CXCR4表達(dá),并促進(jìn)MSCs遷移,CXCR4抑制劑可逆轉(zhuǎn)這一作用,表明低氧激活SDF-1α/CXCR4表達(dá)促進(jìn)MSCs遷移至缺血缺氧處。然而,Kadivar等[18]發(fā)現(xiàn)1%低氧濃度培養(yǎng)4 h抑制CXCR4表達(dá),這與上述結(jié)果不同,兩者細(xì)胞來源、低氧時(shí)間不同可能導(dǎo)致這種差異。Liu等[19]發(fā)現(xiàn)生活在10%低氧環(huán)境下大鼠外周血MSCs在2~14 d相比常氧組逐漸增多,進(jìn)一步研究認(rèn)為低氧在體內(nèi)外通過激活HIF-1α、SDF-1α表達(dá)促進(jìn)MSCs遷移。Ceradini等[20]通過體內(nèi)外研究認(rèn)為HIF-1α可誘導(dǎo)SDF-1表達(dá),使表達(dá)CXCR4受體的祖細(xì)胞遷移至缺血處。③除上述相關(guān)機(jī)制外,研究顯示1%低氧下骨細(xì)胞OPN表達(dá)上調(diào),可誘導(dǎo)MSCs細(xì)胞CD44受體表達(dá),并促進(jìn)MSCs遷移,當(dāng)分別使用OPN及CD44的中和抗體時(shí),卻抑制了遷移活動(dòng),表明低氧下骨細(xì)胞表達(dá)OPN分子可作用于MSCs的CD44受體,并促進(jìn)其遷移[21]。
與大部分研究結(jié)果不同的是,研究發(fā)現(xiàn)1%低氧環(huán)境培養(yǎng)MSCs細(xì)胞24~48 h,MSCs遷移能力相比常氧組被抑制,HIF-1α表達(dá)上調(diào)的同時(shí)RhoA活性下降,在低氧下激活RhoA活性可恢復(fù)細(xì)胞遷移能力,相反,當(dāng)激活HIF-1α表達(dá)時(shí)則抑制細(xì)胞遷移,表明低氧通過激活HIF-1α及下調(diào)RhoA表達(dá)抑制MSCs遷移[22]。該項(xiàng)研究使用的是無血清培養(yǎng)基,而在無血清培養(yǎng)中細(xì)胞活性本就會(huì)受影響,1%低氧濃度可能會(huì)顯著抑制細(xì)胞活性,使MSCs遷移受到抑制。
可見,低氧及其HIF-1α是MSCs遷移活動(dòng)的調(diào)控者,大部分研究認(rèn)為低氧及其HIF-1α通過調(diào)控相關(guān)趨化因子、細(xì)胞因子等表達(dá)促進(jìn)MSCs遷移,這其中包括整合素家族、基質(zhì)金屬蛋白酶、Rho-GTPase家族、SDF-1α/CXCR4信號(hào)、OPN/CD44信號(hào)等。然而,低氧具體如何調(diào)節(jié)上述細(xì)胞因子及HIF-1α與這些因子的關(guān)系尚需進(jìn)一步明確,同時(shí)可利用不同的低氧濃度及處理時(shí)間組合研究,以更全面系統(tǒng)理解低氧環(huán)境下MSCs的遷移活動(dòng)及其相關(guān)機(jī)制,未來結(jié)合損傷組織生理環(huán)境情況可篩選出最具促遷移的活性因子,以修飾骨修復(fù)材料,提高骨修復(fù)效率。
2.1 低氧對(duì)MSCs成骨分化影響Ciapetti等[23]利用2%氧濃度培養(yǎng)BM-MSCs細(xì)胞8 d,結(jié)果顯示成骨標(biāo)志基因表達(dá)上調(diào);Hung等[24]發(fā)現(xiàn)1%O2濃度下,BM-MSCs在28 d后成骨標(biāo)志基因較常氧表達(dá)上調(diào);其他研究同樣顯示低氧下MSCs有著更強(qiáng)的成骨分化能力[25-26]。與上述結(jié)果不同的是,Hsu等[27]通過hMSCs在1%氧濃度分別培養(yǎng)1周、2周及3周,結(jié)果相比常氧組抑制了hMSCs成骨分化能力,Wang等[28]利用2%O2濃度培養(yǎng)rBMSCs細(xì)胞7 d,發(fā)現(xiàn)低氧通過ERK 1/2通路抑制其成骨分化;其他研究也都認(rèn)為低氧抑制MSCs成骨分化[29-30],并認(rèn)為這與MSCs在骨髓生理低氧微環(huán)境的干性維持相符。上述研究結(jié)果表明,低氧下MSCs成骨分化仍存在較大爭(zhēng)議,上述研究的細(xì)胞來源、低氧濃度及低氧時(shí)間等的不同可能導(dǎo)致上述差異。
2.2 低氧誘導(dǎo)的HIF-1α信號(hào)對(duì)骨形成影響研究表明,HIF-1 α及血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)是機(jī)體血管-成骨相耦聯(lián)的主要調(diào)控者[31]。Wang等[32]通過特異性敲除Von Hippel-Lindau(VHL)基因,使小鼠成骨細(xì)胞HIF-1α表達(dá)上調(diào),結(jié)果小鼠顯示更強(qiáng)的成骨能力,在敲除HIF-1α的小鼠當(dāng)中表現(xiàn)相反,這表明HIF-1α對(duì)骨發(fā)育具有重要作用。其他研究則顯示,在骨折模型中,HIF-1α表達(dá)上調(diào),并可促進(jìn)骨折的修復(fù)[33]。當(dāng)在骨折處使用HIF-1α信號(hào)激活劑時(shí),同樣可加快骨折的修復(fù)[34-35]。在骨修復(fù)材料的運(yùn)用中,通過慢病毒轉(zhuǎn)染使MSCs細(xì)胞HIF-1α過表達(dá),負(fù)載到修復(fù)材料中,加快了骨缺損的愈合[36-37]。
低氧對(duì)MSCs成骨分化的影響存在較大爭(zhēng)議,然而,可以明確地認(rèn)為低氧下的HIF-1α可促進(jìn)骨發(fā)育及骨修復(fù)。
3.1 BMP信號(hào)通路BMP-Smads信號(hào)通路是參與調(diào)控MSCs向成骨細(xì)胞分化及骨形成的關(guān)鍵信號(hào)通路之一。Tseng等[38]發(fā)現(xiàn)在0.5%~3%的低氧環(huán)境下,6~24 h內(nèi)BMP-2在成骨細(xì)胞樣細(xì)胞系(MG-63、hFOB)及骨髓基質(zhì)細(xì)胞(M2-10B4)中較常氧表達(dá)逐漸上調(diào),分別通過抑制ILK、Akt及mTOR表達(dá),結(jié)果低氧誘導(dǎo)的BMP-2、HIF-1α表達(dá)下調(diào),并且當(dāng)阻斷HIF-1α表達(dá)時(shí),同樣可抑制低氧下BMP-2的表達(dá),說明低氧通過HIF-1α及ILK/Akt/mTOR通路較常氧組上調(diào)BMP-2表達(dá);然而另一項(xiàng)研究表明缺氧(<0.02%)及低氧(2%)狀態(tài)下BMP-2相比常氧組表達(dá)下調(diào)。Salim等[39]發(fā)現(xiàn)缺氧狀態(tài)下12~24 h可抑制MSCs體外鈣結(jié)節(jié)的形成及Runx2的表達(dá),在缺氧組轉(zhuǎn)染BMP-2重組體可恢復(fù)Runx2的表達(dá),表明缺氧抑制MSCs細(xì)胞BMP-2及Runx2的表達(dá),從而抑制MSCs成骨分化。Genetos等[40]發(fā)現(xiàn)1%低氧濃度BMP2的表達(dá)相比常氧下并無改變,通過1%氧濃度培養(yǎng)成骨細(xì)胞系(UMR 106.01及MLOA5)24 h,BMPs拮抗因子gremlin及noggin表達(dá)上調(diào),且抑制BMPs的下游因子Smadl/ 5/8磷酸化。因此,Genetos等[40]認(rèn)為低氧通過誘導(dǎo)BMPs拮抗因子的表達(dá),進(jìn)而抑制BMPs通路。從以上結(jié)果看來,低氧下BMP通路的變化尚不能明確,這與低氧濃度下MSCs成骨分化結(jié)果各異相關(guān),低氧濃度及低氧時(shí)間、細(xì)胞來源等不同都可造成有差異的結(jié)果。
3.2 WNT信號(hào)通路WNT/β-catenin信號(hào)通路在骨形成過程中具有重要調(diào)控作用,可以通過上調(diào)Runx2基因表達(dá)促進(jìn)成骨[41]。研究發(fā)現(xiàn)在1%氧濃度相比常氧可激活Wnt通路,Genetos等[40]通過1%氧濃度處理成骨細(xì)胞系(UMR 106.01)96 h,利用免疫熒光染色發(fā)現(xiàn)核內(nèi)激活狀態(tài)的β-catenin較常氧增多,并且DFO同樣使核內(nèi)β-catenin積聚,這表明低氧環(huán)境下可激活Wnt通路。然而,Chen等[42]發(fā)現(xiàn)1%氧濃度抑制Wnt通路,Chen等通過1%氧濃度處理MC3T3-E1細(xì)胞48 h,發(fā)現(xiàn)Wnt下游因子cyclin D1及c-Myc表達(dá)較常氧下調(diào),并且在HIF-1α及β-catenin共轉(zhuǎn)染的熒光素酶報(bào)告載體中,抑制了β-catenin激活的信號(hào),表明低氧通過HIF-1α抑制Wnt信號(hào)通路。上述結(jié)果不盡相同,還需更多的研究才能得出結(jié)論,才更有利于分析低氧下Wnt通路的變化。
3.3 Notch信號(hào)通路Notch信號(hào)通路參與細(xì)胞增殖、分化及凋亡等一系列生理活動(dòng),特別在成骨細(xì)胞成骨分化及骨形成過程中具有重要作用[43-44]。Xu等[45]發(fā)現(xiàn)1%氧濃度抑制MSCs成骨分化,Notch1較常氧組表達(dá)上調(diào),低氧下利用shRNA沉默Notch1的表達(dá),結(jié)果低氧組成骨分化與常氧組無異,并且通過熒光素酶分析檢測(cè)Notch1直接抑制Runx2轉(zhuǎn)錄活性,表明低氧通過上調(diào)Notch1表達(dá)抑制MSCs成骨分化。低氧下Notch信號(hào)通路的研究較少,尚不能得出明確結(jié)論,并且研究表明,Notch信號(hào)通路在體外具有誘導(dǎo)和抑制成骨細(xì)胞分化的雙向調(diào)節(jié)作用[46]。因此,需要更多低氧濃度下Notch信號(hào)通路的研究,才有助于理解低氧對(duì)MSCs成骨分化影響的相關(guān)機(jī)制。
3.4 Hedgehog信號(hào)通路Brown等[47]利用5%氧濃度培養(yǎng)BMSCs細(xì)胞72 h,發(fā)現(xiàn)hedgehog的下游信號(hào)Smo及Gli2較常氧組表達(dá)下調(diào),而其下游信號(hào)的激活可促進(jìn)MSCs成骨分化,表明低氧抑制hedgehog促成骨信號(hào)通路。急性低氧狀態(tài)下hedgehog信號(hào)受到抑制,然而在慢性低氧下hedgehog信號(hào)的變化尚不清楚,因此,在低氧與hedgehog信號(hào)之間的關(guān)系還應(yīng)更深入的研究,尤其是其他下游信號(hào)Ptch及Gli1等。
從以上幾個(gè)低氧下成骨信號(hào)通路的變化結(jié)果來看,低氧下成骨相關(guān)通路的變化參與了低氧環(huán)境下MSCs的成骨分化,低氧通過上調(diào)Notch1表達(dá)抑制MSCs成骨分化,而BMP信號(hào)通路則差異較大,與其不同低氧濃度、低氧時(shí)間及細(xì)胞來源等相關(guān),WNT及Hedgehog信號(hào)通路的研究雖然也涉及到其促成骨下游信號(hào)分子的改變,但并未研究其成骨現(xiàn)象,尚不能得出結(jié)論。
低氧下MSCs成骨分化研究結(jié)果各異,低氧的主要關(guān)鍵因子HIF-1α可促進(jìn)骨形成,這一觀點(diǎn)較明確,但這不能解釋低氧環(huán)境下的MSCs成骨分化,而從幾個(gè)低氧環(huán)境下成骨信號(hào)通路分析,也尚不能得出一致結(jié)果。因此,要解釋并深入理解低氧下MSCs的成骨分化機(jī)制,需要不同的低氧濃度與低氧時(shí)間相組合進(jìn)行研究,結(jié)合當(dāng)中成骨標(biāo)志基因及成骨相關(guān)通路變化,并且在HIF-1α與成骨相關(guān)通路之間的關(guān)系也應(yīng)深入研究,在未來才有希望系統(tǒng)、全面闡述低氧環(huán)境下的MSCs成骨分化結(jié)果及其機(jī)制。
機(jī)體組織、骨折損傷周圍及骨修復(fù)材料植入處等都是低氧狀態(tài),因此,MSCs在骨組織工程上的應(yīng)用必然涉及到低氧微環(huán)境。大部分研究認(rèn)為,低氧及HIF-1α信號(hào)調(diào)控相關(guān)趨化因子及細(xì)胞因子等促進(jìn)MSCs向低氧處遷移。而在成骨方面,盡管低氧誘導(dǎo)的HIF-1α信號(hào)可促進(jìn)骨發(fā)育、骨修復(fù),但低氧環(huán)境對(duì)MSCs成骨分化影響尚存在較大爭(zhēng)議,在低氧對(duì)成骨相關(guān)通路影響方面,低氧可能通過調(diào)控BMP-Smads、WNT/β-catenin、Notch、Hedgehog等成骨相關(guān)信號(hào)通路影響MSCs成骨分化,但缺乏足夠、有效、一致的研究。因此,未來采用不同低氧濃度梯度及低氧時(shí)間相組合研究,并結(jié)合其成骨相關(guān)通路變化,才有希望全面系統(tǒng)的闡述低氧環(huán)境下的成骨分化結(jié)果及機(jī)制,才能深刻揭示低氧與MSCs成骨分化的具體關(guān)系。深入理解低氧下MSCs遷移及成骨分化中的分子機(jī)制,可為生物活性骨修復(fù)材料的設(shè)計(jì)提供理論依據(jù),從而制備更具成骨活性的骨修復(fù)材料,有望臨床上更有效的修復(fù)骨缺損、骨不連等疾患。
[1]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016,99:62-68.
[2]Schaaf H,Lendeckel S,Howaldt HP,et al.Donor site morbidity after bone harvesting from the anterior iliac crest[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2010,109(1):52-58.
[3]Gamie Z,Tran GT,Vyzas G,et al.Stem cells combined with bone graft substitutes in skeletal tissue engineering[J].Expert Opin Biol Ther,2012,12(6):713-729.
[4]Chimutengwende-Gordon M,Khan WS.Advances in the use of stem cells and tissue engineering applications in bone repair[J].Curr Stem Cell Res Ther,2012,7(2):122-126.
[5]Phipps MC,Xu Y,Bellis SL.Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds[J].PLoS One,2012,7(7):e40831.
[6]Stiers PJ,van Gastel N,Carmeliet G.Targeting the hypoxic response in bone tissue engineering:A balance between supply and consumption to improve bone regeneration[J].Mol Cell Endocrinol,2016, 432:96-105.
[7]Lu C,Rollins M,Hou H,et al.Tibial fracture decreases oxygen levels at the site of injury[J].Iowa Orthop J,2008,28:14-21.
[8]Das R,Jahr H,van Osch GJ,et al.The role of hypoxia in bone marrow-derived mesenchymal stem cells:considerations for regenerative medicine approaches[J].Tissue Eng Part B Rev,2010,16(2):159-168.
[9]Wang Y,Wan C,Gilbert SR,et al.Oxygen sensing and osteogenesis [J].Ann N YAcad Sci,2007,1117:1-11.
[10]Haider HKh,Jiang S,Idris NM,et al.IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair[J].Circ Res,2008,103(11):1300-1308.
[11]Xing F,Okuda H,Watabe M,et al.Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells[J].Oncogene,2011,30(39):4075-4086.
[12]Lu X,Kang Y.Hypoxia and hypoxia-inducible factors:master regulators of metastasis[J].Clin Cancer Res,2010,16(24):5928-5935.
[13]Chua GL,Tang XY,Patra AT,et al.Structure and binding interface of the cytosolic tails of alphaXbeta2 integrin[J].PLoS One,2012,7(7):e41924.
[14]Choi JH,Lim SM,Yoo YI,et al.Microenvironmental interaction between hypoxia and endothelial cells controls the migration ability of placenta-derived mesenchymal stem cells via alpha4 Integrin and Rho signaling[J].J Cell Biochem,2016,117(5):1145-1157.
[15]Choi JH,Lee YB,Jung J,et al.Hypoxia inducible factor-1alpha regulates the migration of bone marrow mesenchymal stem cells via Integrin alpha 4[J].Stem Cells Int,2016,2016:7932185.
[16]Saller MM,Prall WC,Docheva D,et al.Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression[J].Biochem Biophys Res Commun, 2012,423(2):379-385.
[17]Yu Q,Liu L,Lin J,et al.SDF-1alpha/CXCR4 axis mediates the migration of mesenchymal stem cells to the hypoxic-ischemic brain lesion in a rat model[J].Cell J,2015,16(4):440-447.
[18]Kadivar M,Alijani N,Farahmandfar M,et al.Effect of acute hypoxia on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells[J].Adv Biomed Res,2014,3:222.
[19]Liu L,Yu Q,Lin J,et al.Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood[J].Stem Cells Dev,2011,20(11):1961-1971.
[20]Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.
[21]Raheja LF,Genetos DC,Yellowley CE.Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway[J].Biochem Biophys Res Commun,2008,366(4):1061-1066.
[22]Raheja LF,Genetos DC,Wong A,et al.Hypoxic regulation of mesenchymal stem cell migration:the role of RhoA and HIF-1alpha[J]. Cell Biol Int,2011,35(10):981-989.
[23]Ciapetti G,Granchi D,Fotia C,et al.Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head[J].Cytotherapy,2016,18 (9):1087-1099.
[24]Hung SP,Ho JH,Shih YR,et al.Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells[J].J Orthop Res,2012,30(2):260-266.
[25]Zhang QB,Zhang ZQ,Fang SL,et al.Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells:an in vitro and in vivo study[J].Genet Mol Res,2014,13(4):10204-10214.
[26]Grayson WL,Zhao F,Izadpanah R,et al.Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs[J].J Cell Physiol,2006,207(2):331-339.
[27]Hsu SH,Chen CT,Wei YH.Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells[J].Stem Cells,2013,31(12):2779-2788.
[28]Wang Y,Li J,Wang Y,et al.Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells[J].Mol Cell Biochem,2012,362(1-2):25-33.
[29]D'Ippolito G,Diabira S,Howard GA,et al.Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells[J].Bone,2006,39(3):513-522.
[30]Malladi P,Xu Y,Chiou M,et al.Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells[J].Am J Physiol Cell Physiol,2006,290(4):C1139-C1146.
[31]Riddle RC,Khatri R,Schipani E,et al.Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling[J].J Mol Med(Berl), 2009,87(6):583-590.
[32]Wang Y,Wan C,Deng L,et al.The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development[J].J Clin Invest,2007,117(6):1616-1626.
[33]Wan C,Gilbert SR,Wang Y,et al.Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration[J].Proc NatlAcad Sci USA,2008,105(2):686-691.
[34]Donneys A,Deshpande SS,Tchanque-Fossuo CN,et al.Deferoxamine expedites consolidation during mandibular distraction osteogenesis[J].Bone,2013,55(2):384-390.
[35]Huang J,Liu L,Feng M,et al.Effect of CoCl(2)on fracture repair in a rat model of bone fracture[J].Mol Med Rep,2015,12(4):5951-5956.
[36]Zou D,Zhang Z,He J,et al.Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1alpha and a phosphate cement scaffold[J].Biomaterials,2011,32(36):9707-9718.
[37]Zhang Y,Huang J,Wang C,et al.Application of HIF-1alpha by gene therapy enhances angiogenesis and osteogenesis in alveolar bone defect regeneration[J].J Gene Med,2016,18(4-6):57-64.
[38]Tseng WP,Yang SN,Lai CH,et al.Hypoxia induces BMP-2 expression via ILK,Akt,mTOR,and HIF-1 pathways in osteoblasts[J].J Cell Physiol,2010,223(3):810-818.
[39]Salim A,Nacamuli RP,Morgan EF,et al.Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expressionin osteoblasts[J].J Biol Chem,2004,279(38):40007-40016.
[40]Genetos DC,Toupadakis CA,Raheja LF,et al.Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts[J].J Cell Biochem,2010,110(2):457-467.
[41]Gaur T,Lengner CJ,Hovhannisyan H,et al.Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression[J].J Biol Chem,2005,280(39):33132-33140.
[42]Chen D,Li Y,Zhou Z,et al.Synergistic inhibition of Wnt pathway by HIF-1alpha and osteoblast-specific transcription factor osterix (Osx)in osteoblasts[J].PLoS One,2012,7(12):e52948.
[43]Lai EC.Notch signaling:control of cell communication and cell fate [J].Development,2004,131(5):965-973.
[44]Regan J,Long F.Notch signaling and bone remodeling[J].Curr Osteoporos Rep,2013,11(2):126-129.
[45]Xu N,Liu H,Qu F,et al.Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling [J].Exp Mol Pathol,2013,94(1):33-39.
[46]Ugarte F,Ryser M,Thieme S,et al.Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J].Exp Hematol,2009,37(7):867-875.
[47]Brown JA,Santra T,Owens P,et al.Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia[J].Stem Cell Res,2014,13(2):284-299.
Effects of hypoxia on migration and osteogenic differentiation of mesenchymal stem cells.
HUANG Nian-sheng1, PENG Jian-qiang2,1.Futian People's Hospital Affiliated to Guangdong Medical University,Shenzhen 518033, Guangdong,CHINA;2.Department of Spinal Surgery,the Eighth Affiliated Hospital,Sun Yat-sen University,Shenzhen 518033,Guangdong,CHINA
Due to the extensive sources,self-renewal and ability of multi-directional differentiation,mesenchymal stem cells(MSCs)are essential seed cells for bone tissue engineering.The environment after transplantation and physiological environment in vivo where MSCs live are a hypoxic state.Hypoxia is an important factor affecting MSCs migration and osteogenic differentiation.Most research suggests that hypoxia promotes the migration of MSCs by regulating the related chemotactic factors and cytokines.The relevant factors include integrin family,matrix metalloproteinases,Rho-GTPase family,SDF-1α/CXCR4 signal,OPN/CD44 signal.However,the effect of hypoxia on the osteogenic differentiation of MSCs remains controversial.The variations of signaling pathways of BMP-Smads,WNT/β-catenin, Notch,Hedgehog in hypoxia may be one of the factors that influence the osteogenic differentiation of MSCs.In this paper,the effects of hypoxia on the migration and osteogenic differentiation of MSCs and its mechanism will be discussed.
Hypoxia;HIF-1α;Mesenchymal stem cells;Migration;Osteogenic differentiation;Signaling pathway
R329.2+7
A
1003—6350(2017)14—2333—05
10.3969/j.issn.1003-6350.2017.14.030
2016-11-15)
彭建強(qiáng)。E-mail:13688806786@139.com